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Efficiency of Uniform Grids for Intersection Detection on
Serial and Parallel Machines

Wm. R. Franklin, N. Chandrasekhar, M. Kankanhalli, M. Seshan, and V. Akman (USA)

Abstract

The uniform grid data structure is a flat (non-hierarchical)-grid whose resolution adapts to the
data. An exhaustive analysis of the uniform grid data structure for determining intersections in a set
of many small line segments is presented. Databases from cartography, VLSI, and graphics with up
to 115,073 edges are used. For each data set the intersection time, the ratio of edge pairs tested to
pairs found to intersect, and size of intermediate data structures was measured as a function of grid
resolution. The execution time was relatively insensitive to the grid size over a range of up to a fac-
tor of 10. 115,973 edges were processed to find 135,050 intersections in 883 seconds on a Sun 3/50
workstation. This data structure is also ideally suited for implementation on a paralle] machine.
When executing on a 16 processor Sequent Balance 21000, total times averaged ten times faster than
when using only one processor. Finding all 81,373 intersections in a 62,045 edge database took only
28 seconds elapsed time. This research shows that more complicated, hierarchical data structures,
such as quadtrees, are not necessary for this problem.

Introduction

In diverse disciplines such as graphics, cartography, and VLSI design there are problems, such
as hidden surface detection, map overlaying, and interference detection, respectively, where the fun-
damental, low level, operation that consumes most of the time is edge intersection. Some applica
tions are described in Brown (3|, Eastman and Yessios(6), Levin [17], Maruyama [18], Ottman,
Widmayer, and Wood [20], Nievergelt and Preparata [19], Six and Wood [22], Tilove (23], and
Bentley and Woed [2].

We are given from thousands to millions of small edges, very few of which intersect, and must
determine the pairs of them that do intersect. Clearly, a quadratic algorithm comparing all [;V] pairs
is not acceptable. A worst case solution that finds all K intersections of N edges in time

2
T =8|+ MgV
loglogV
it cannot find all the red-blue intersections in a set of red and blue edges without finding (or already
knowing) all the red-red and blue-blue intersections. Second, it is inherently sequential, and is
more difficult to parallelize. Chazelle has recently improved the time to T =8( K+ Nlogh).

Alternative data structures, based on hierarchical methods such as quadtrees, have also been
used extensively, Samet [21]. They are intuitively reasonable data structures to use since they sub-
divide to spend more time on the complicated regions of the scene. A criticism of their overuse in
Geographic Information Systems in given in Waugh [24].

This paper concentrates on an alternative data structure, the uniform grid. Here, a flat, non-
hierarchical grid is superimposed on the data. The grid adapts to the data since the number of grid
cells, or resolution, is a function of some statistic of the input data, such as average edge length.
Each edge is entered into a list for each cell that is passes through. Then, in each cell, the edges in
that cell are tested against each other for intarsection. The grid is completely regular and is not finer
in the denser regions of the data.

is presented in Chazelle [5]. However, this method has some limitations. First,
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The uniform grid (in our use) was first presented in Franklin[7| and was later expanded by
Franklin, Akman, and Wu [8,9,10,11,12, 13, 14]. In these papers the uniform grid was called an
adaptive grid. However, there is another, independent and unrelated, use of the term adaptive grid in
numerical analysis in the iterative solution of partial differential equations. Our papers present an
expected linear time object space hidden surface algorithm that processed 10,000 random spheres
packed ten deep in 383 seconds on a Prime 500. The idea was extended to a fast haloed line algo-
rithm that was tested on 11,000 edges. The concept was applied to other problems such as point
containment in polygon testing. Finally it was used, in Prolog and with multiple precision rational
numbers in the map overlay problem in cartography.

as a quadtree, appears to be necessary.

However, even a quadtree cannot efficiently process all data sets. If we have N parallel edges
separated by distances of N™? for p>1, then it will take more than quadratic time to build either a
uniform grid or a quadtree with cells fine enough to distinguish the edges. The plane sweep algo-
rithm would work well in this case. However, the plane sweep cannot handle the red-blue intersec-
tion case mentioned above.

There are good reasons for assuming that data sets with one region exponentially denser than
another are not common. If there are relatively sparse regions in the data, people then tend to put
anything at all in to fill the vacuum. We could also define such data sets out of existence as numeri-
cal analysts do with partial differential equations. Just as they consider only equations that satisfy a
Lipschitz condition where the greatest slope of a curve is bounded, we might restrict ourselves to
sequences of data sets where the densest region’s density, relative to the average density, remains
bounded as N —oco.

This present paper presents experimental evidence that the uniform grid is an efficient means
of finding intersections between edges in real world data also. The uniform grid is similar to a quad-
tree is the same sense that a relational database schema is similar to a hierarchical schema. The
power of relational databases, derived from their simplicity and regularity, is also becoming apparent.

The uniform grid data structure is also ideally suited to execution on a parallel machine
because of the simpler data structures. Also, it is more numerically robust than sweepline algo-
rithms that have problems

In the following sections, we will review a theoretical development of the uniform grid, see the
databases used to testing, and learn the test results,

Intersection Algorithm
Assume that we have N edges of length L independently and identically distributed (i.i.d.) in

alXl screen. We place a G XG grid over the screen. Thus each grid cell is of size %XIE The

grid cells partition the screen without any overlaps or omissions. The intersection algorithm
proceeds as follows.

l.  For each edge, determine which cells it passes through and write ordered pairs {eell number,
edge number).

2. Sort the list of ordered pairs by the cell number and collect the numbers of all the edges that
pass through each cell.

3. For each cell, compare all the edges in it, pair by pair, to test for intersections. To determine
if a pair of edges intersects, we test each edge’s endpoints against the equation of the other
edge. We ignore calculated intersections that fall outside the current cell. This handles the
case of some pair of edges oceurring together in more than one cell.

-2



290
Theoretical Analveis

Let N,/ be the number of cells that an average edge passes through. Then, approximately,
N, =(1+2LG)
Then N,, the total number of (cell, edge) pairs is
N, =N(1+2LG)
The average number of edges per cell is
N,

-Ne,"c 5'52_

_%(1+2LG) .

The time to calculate the (cell, edge) pairs is
T, =N,
The time to test the edges for intersections is about
Ty =GEN,.2
= %( 1+2LG)?
and the total time is
T=T+T;

N2 2LN?
=N + 2LGN + _6_2 + el

This is minimized if the 2 fastest terms in the sum grow at the same speed, which occurs
throughout the range from N,;, =2 to N,; =4, i.e.

__2_lz_< G < 2NL+V4N°L*+18N

+4L2N?

The flatness of the time curve from about N, =2 to N,;, —4 is also observed experimentally. If
the average is used for N then the grid is quite insensitive to nonuniform data.

What about some cells being denser since the edges are randomly distributed? Since the time
to process a cell depends on the square of the number of edges in that cell, an uneven distribution
might increase the total time. However, since the edges are assumed independent, the number of
edges per cell is Poisson distributed, and the expected value of the square of the number of edges
equals the square of the expected number of edges. Therefore the expected time doesn’t increase.

Test Data

We used four different types of data sets, as follows [4].
L. The Risch Ukranian Easter egg, projected onto a plane. The multiple coincidences make thisa
hard case, especially for a sweep-line algorithm that must keep all the active edges ordered.

2.  The state boundaries of the coterminous USA, shifted and overlaid on themselves. The multi-
ple near correlations make this a bad case also.

3.  The USGS (United States Geological Survey) DLG (Digital Line Graph) sampler tape. This
represents a quadrangle around Chikamauga Tennessee that is split into 8 rectangles. Each
rectangle has 4 overlays, for a total of 32 files. The overlays are

a)  hydrography,

50-5
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b)  roads and trails,
¢)  railroads, and
d) pipes and transmission lines.

Each file overlay was divided into 8 sections by USGS. These data files were sometimes pro-
cessed separately and sometimes combined.

4. Some CIF (Caltech Intermediate form) VLSI data.
Sample plots of this data is shown in figure 1.

Experimental Results

For each data set, we tried different grid sizes to find the optimum. For each experiment, we
measured *

a) the standard deviation of edge length,

b)  the number of (edge, cell) pairs,

c) the number of pairs per cell,

d)  the number of pairs per edge,

e)  the time in seconds to determine the pairs on the Sun 3/50,

f) the time to sort the pairs by cell number,

g) the time to pair up the edges in each cell and calculate intersections,
h)  the total time,

i) the number of intersections where the two edges shared an endpoint,
i) the number of intersections where they didn’t,

k) the total number of intersections,

1) the expected number of intersections, calculated from .2 N°L?,

m) the observed number of comparisons between pairs of edges,

n) the expected number of comparisons, assuming that the edges were independently and uni-
formly randomly distributed, and

o)  the ratio of observed and expected comparisons; large values indicating nonuniform or corre-
lated data.

For each data set we tried many values of G to learn the variation of time with G. Table 1
shows the results from intersecting the 18,092 edges in the roads & trails and hydrography overlays
of the Chikamauga DLG. There are 23,586 intersections in all, and the best time is 93 seconds with
a 275 X275 grid. The time is within 50% of this for grids from 115 X115 up to 800 X800, which
shows the extreme insensitivity of the time to the grid size. This is why real scenes with dense and
sparse areas can be accommodated efficiently.

The economy of the grid structure is shown by the fact that only 40,031 comparisons of pairs
of edges were needed to isolate the 23,588 intersections. This behavior was also observed in hidden
surface algorithm described in earlier publications. There is not much room for further improve-
ment by a hierarchical method.

Figure 2 graphs the time versus G for the USA state boundaries shifted and overlaid on them-
selves. The execution time is within 20% of the optimum from about G =40 to G =400 and is
within a factor of two of the optimum from about G =20 to G =700. Outside these limits, the
execution time starts to rise quickly.

Table 2 shows the results from processing each data set. Our biggest example overlaid all four
parts of the DLG, totaling 115,973 edges of average length 0.0022. It found the 133,050 intersec-
tions in 883 seconds with a 650 X850 grid.

The size of the grid, 422,500 cells, may appear inefficient. However, most cells are empty and,
unlike in a tree data structure, an empty cell does not occupy even one word of storage, not even
for a nil pointer.
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Table 1: Chikamauga Area 3 - Hydrography, Roads & Trails

No. of edges 18092
Avg. edge length 0.0044
Standard deviation 0.0061
Xsecta. by end pt. coincidence 23007
Xsects. by actual equation soln 579
Total intersections 23586

Grids Pairs P/Cell P/Edge  Grid Sort Xsect Total
Time Time Time Time

10 18988 189.880 1.050 15.45 4.60 306015  3080.20
13 19235 113.817 1.063 15.43 4.62 248620 2508.25
15 19421 86.316 1.073 17.15 7.55 2101 .47 2128.17
20 19959 49.898 1.103 15.58 4.75 1370.98 1391.31
25 20420 32.672 1.129 16.17 5.17 927.71 949 .05
30 20888 23.209 1.155 15.83 4.92 689.41 710.15
40 21831 13.707 1.212 15.78 4.92 421 .88 442 .58
50 22862 9.145 1.264 15.88 5.10 308.15 329.14
85 24378 5.770 1.347 16.18 5.50 217.57 239.26
80 25841 4.038 1.428 16.50 5.80 168.63 190.93
100 27713 2.771 1.532 16.95 8.27 131.89 155.11
115 29187 2.207 1613 17.47 8.53 114.10 138.09
125 30131 1.928 1.665 17.72 6.70 105.30 129.71
140 31572 1.611 1.745 18.22 7.15 95.23 120.60
150 32496 1.444 1.796 18.47 7.20 89.38 115.05
160 33514 1.309 1.852 18.77 7.47 84.50 110.73
175 35005 1.143 1.935 19.33 8.07 79.40 106.80
200 37340 0.933 2.064 20.15 8.38 72.08 100.60
275 44483 0.588 2.459 22,83 10.03 60.81 93.28
325 49373 0.487 2.729 24 .88 11.42 57 .48 93.58
400 56817 0.354 3.129 28.72 13.37 55.01 97.10
500 66222 0.265 3860 30.92 16.03 58.05 103.00
625 78304 0.200 4328 36.22 19.25 56.70 112.16
800 85143 0.149 5.259 45.91 24.13 81.85 131.89
1000 114419 0.114 8.324 6135 30.20 89.01 160.56

Execution in Parallel

The uniform grid method is ideally suited to execution on a parallel machine since it mostly
consists of two types of operations that run well in parallel: applying a function independently to
each element of a set to generate a new set, and sorting. Determining which cells each edge passes
through is an example of the former operation.

We implemented several versions of the algorithm on a Sequent Balance 21000 computer,
which contains 16 National Semiconductor 32000 processors |1, 15|, and compared the elapsed time
when up to 15 processors were used to the time for only one processor [16]. The speedup ratios
ranged from 8 to 13. Figure 3 shows the results from processing 3 overlays of the United State
Geological Survey Digital Line Graph, totaling 62,045 edges. 81,373 intersections were found. The

)
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Table 2: Summary of Results from Processing All the D ata Sets

Serial tation
D atabase Edges  Length Std Xsects  Grid Time
Dev Size
Risch Egg - YZ Projection 5897 00355 00124 39666 100  194.24
X7Z Projection 5887 0.0391 0.0132 37415 115 193.18 |
XY Projection 5887 0.0352 0.0131 40177 80 183.83 \
USA Map 915 0.0186  0.0245 1078 125 4.97 ]
Shifted by 2% and overlaid on 1830 0.0184  0.0243 2430 140 14.38
itself
Shifted by 10% & overlaid 1830 0.0180  0.0237 2348 125 12.57 \
Chikamauga Area 1 - Hydrogra- 13712  0.0044  0.0084 15039 275 68.50
phy, Roads & Trails
Area 2, HR&T 14145 0.0049 0.0080 185895 275 T1.11
Area 3, HR&T 18082 0.0044 0.0061 23588 275 93 .28
Area 4, HR&T 16425 0.0048 0.0076 20335 200 88.58
Area 5, HR&T 12868 0.0053 0.0103 14978 275 62.93
Area 8, HR&T 13871 0.0050 0.0080 16072 275 68.40
Area7, HR&T 13578 0.0134 0.0518 16640 160 188.76
Area 8 HR&T 11937 0.0048 0.0098 13283 275 58.86
All sections - Railroads 1122 0.0159 0.0543 1316 150 8.10
Pipe & Transmission Lines 850 0.0277 0.0523 1211 115 7.95
Railroads, Pipe & Transmission 1972 0.0208 0.0533 2745 115 22.28
Lines
Railroads, Pipe & Transmission 3044 0.0208 0.0533 13268 115 84.15
Lines Overlaid on itsell
Hydrography, Railroads, Pipe & 55873 0.0023 0.0162 53426 500 323.09
Transmission Lines
Roads & Trails, Railroads, Pipe 62045 0.0028 0.0106 81373 500 436.35
& Transmission Lines
Hydrography, Roads & Trails, 115073 0.0022 0.0115 135050 650 682.51
Railroads, Pipe & Trans. Lines
VLSI Data - XFACEA MAG 436  0.0314 0.0908 1403 150 5.22
VLSI Data - XFACELL MAG 19680 0.0487 0.0852 6488 65 16 .87
VLSI Data - XFACELL MAG 1960 0.0352 0.0643 6488 125 32.48
- Rotated by 30 des.
VLSI Data - XFACELL MAG - 1980 0.0487 0.0852 6488 85 - 18.87 4\
Rotated by 80 deg.
Parallel Computation _ |
D atabase Edges Xsects Grid Time Taken For
Size 1 Proc 5 Procs 10 Procs 15 Proes
Risch Egg - YZ Projection 5807 39668 100 98.91 24.02 14.19 11.96
XZ Projection 5807 37415 115 97 .88 23.55 14.83 11.81
XY Projection 5807 40177 80 92.33 20.33 12.36 10.40
Roads & Trails, Railroads, Pipe 82045 81373 250 273.11 62.98 39.42 27.77
& Transmission Lines
rRsndom Edges of Size 0.01 50000 45719 100 521.08 108.90 57.88 40.15




285
100 —
75 —

TOTAL 5
TIME °[ .

T

25 - .

| J
10 30 100 300 1000
GRID DIMENSION

Figure 2: Graph of Time vs Grid Resolution for the USA Overlaid on Itself

300 —

250 — .:-.
Total 200~
Time 150 :'-,_

(seconds) 100

sl N e

0 | | | | .

0 3 [ 9 12 15
Number of Processors

151— (a)

10 | ‘--—l
Speed .mw-“.

’ ......,.....,.......

5 ) B
. .

0 - L | l l )
0 3 6 2 L |

Number of Processors

(b)

Figure 3: Time and Speedup When Intersecting the 82045 Edges in the Roads & Trails, Railroads,
and Pipes and Transmission Lines Overlays of the Chikamauga DLG in Parallel on 1 to 15
Processors. Grid Size = 250. 81,373 Intersections Found.

509



296

time for one processor was 273 seconds, and for 15 processors was 28 seconds, for a speedup of
about 10. This is a rate of 7.9 million edges and 10.5 million intersections per hour. For other data
sets, these extrapolated times would depend on those data sets’ number of intersections per edge.
Times for intersecting other data sets in parallel are given in table 2. .

Finally, the speedup, as a function of the number of processors, was still rising smoothly at 15
processors. This means that we should achieve an even bigger speedup on a more parallel machine.

Conclusion
We have answered the objection that the uniform grid is suitable for only evenly spaced data
by showing experimentally that it is just as efficient on unevenly spaced, real data.- Since it is also

very easy to implement, and executes well on parallel machines, there is now no need for more
complicated methods such as quadtrees and plane-sweep algorithms.
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Addendum to

EFFICIENCY OF UNIFORM GRIDS FOR INTERSECTION DETECTION ON SERIAL AND
PARALLEL MACHINES

Wm. Randolph Franklin!, Narayanaswami Chandrasekhar’, Mohan Kankanhalli!, Manoj Seshan!,
Varol Akman? '

April 26, 1988

We have now transported the program to the Sun 4/280, with the following results.

1. On the United State Geological Survey Digital Line Graph sampler tape with 116,896 edges (Fig-
ure 1), we found 144,666 intersections with a 3252325 grid in 37 seconds.

2 We tested a 1,000,000 (one million) edge database from the middle 60% x 60% (i.e. densest

region) of a 2,500,000 edge chip design (Figure 2). The edges ware badly distributed; the aver-
age length was 0.001 while the standard deviation was 0.004 (Figure 3).

Using a 600x600 grid, 2,010,564 intersections were found (af the 500,000,000,000 possible inter-
sections) in 295 seconds. In this case we used the fact that all the edges are either horizontal or
vertical; otherwise the time would 784 seconds with a 2000x2000 grid.
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Figure 1: USGS DLG Sampler Tape with 116,896 Edges
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CHIPS DATA FILE - CONTAINS 834829 BOXES I.E. 2218118

:

Figure 2: Sample Chip, Of Which The Middle 60% With 1,000,000 Edges Was Used.

VLSI file (windowed between 0.2-0.8 in x and y dir)
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