" perform the

Proceedings of the Twenty-First Annual
Hawaii International Conference on
Svystem Sciences
Vol. I1II, Kona, Hawaii; January 1988,
edited by Benn R. Konsynski

DEBUGGING AND TRACING EXPERT SYSTEMS

Wm. Randolph Franklin *
Rahul Bansal

Elissa Gilbert
Gautam Shroff

Electrical, Computer, and Systems Engineering Dept.
Rensselaer Polytechnic Institute
Troy, NY, 12180, USA

A bstract

We describe the Expert System Parsing Environ-
ment (ESPE), a system for debugging and testing
expert systems written in IBM’s Expert System
Development Environment (ESDE). ESPE can
following operations: count the
number of paths between each pair of nodes
(parameter-value combinations or rules), split the
expert system by focus control block (FCB) and
draw the relationships in each section, 2nd perform
a sensitivity analysis. Here, the values of any out-
put parameters that might change when a given
input parameter changes from one specified value
to another are listed. Also input parameters whose
value change might cause a given output change
are given. ESPE gives the expert system designer
some of the software engineering tools used in

traditional programming languages.

Introduction

An expert system is an expensive term for a
program that is written in an expert system shell,
which is a programming language, and often a
badly designed one from a software engineering
viewpoint. Many shells lack concepts of informa-
tion hiding and modularity. Their mix of forward
reasoning, backward reasoning, fuzziness, etc rem-
inds one of Pl/I, which had so many overlapping
features that their interactions were not humanly
predictable in advance. For example, the P1/I state-
ment

X=25+1/3;

TH0213-9/88/0000/0159501.00 © 1988 IEEE

would set X to 5.333333 and raise an fixed overflow
condition that was usually disabled. As larger
expert systems are written, we may expect similar
counterintuitive results, and therefore there is a

need for systems to debug and test expert systems.

Software Engineering Review

Since, as expert systems get larger, issues of
debugging and testing will become more important,
it is reasonable to review the traditional software

engineering life cycle, which has several stages.

Requirements Analysis
Specification

Design

Coding

Debugging and Testing

Maintenance

During requirements analysis the broad param-
eters for solving a problem are considered. For
example, if the problem is to pay a company’s
employees, then we might keep longhand accounts,
hire a payroll processing company, buy 2 computer
and software, or buy a computer and write our own
software.

In the specification stage we decide user visible
parameters such as whether to handle both semi-
monthly and biweekly employees, and the length of
the name field.

i (518) 276-6077, Internet: Franklin@

CSV.RPL.ED U, Telex: 6716050 RPI TROU

Ht§

The actual routines and their interfaces such as
common blocks and argument lists are part of the
design process. Next we code the system and pro-
duce something without syntax errors. In a student
term project, this stage is often reached the night
before the project is due.

Next we test the project with data to identify
the system to the customer.

Finally throughout the system’s life there is
due to

customer

continual maintenance. It may be

uncovered bugs, new hardware, or

requests for enhancements.

Experience with large projects has shown that
the first
specification, design, and coding) together consume
less than 25% of the system’s total cost and time.
Debugging and testing require another 25%, while

four stages (requirements analysis,

maintenance after delivery co: ts as much as every-

thing before combined.

However, much- current research in expert sys-
tems is concerned with issues such as expert sys-
tem shell, that is language, design. This research,
which affects only the coding part of the life cycle
process, is about where software engineering was in
the 1960s. Some of the few references on debug-
ging expert systems or on graphical access to expert
systems are 4,7,8,8 There are many references to
expert systems that debug hardware, such as 3,6,
Prolog has been used to implement expert systems,

as described in 3.

The Expert System Parsing Environment

We are developing a system, Expert System
Parsing Environment, ESPE, that assists in debug-
ging and testing expert systems by tracing the flow
of information, and assists in maintenance by per-
forming sensitivity analysis. These expert systems
are written in IBM's Expert System Development
Environment (ESDE)!»2. Consider a expert sys-
tem as a directed acyclic graph. A parameter-
value pair or 2 rule is a node and an instance of
a rule reading or writing a parameter-value pair
is a directed arc between the pair and the rule.

This system performs the following functions.

1. ESPE counts the number of paths, of any
length, between every pair of nodes and prints
a table of the information.

2. ESPE splits the
determined by the hierarchy of the Focus
Control Blocks.

expert system into pieces

a) For each part, it produces a plot showing
which nodes are joined by paths.

b) It prompts the user for a key word, and
determines all the parameters that contain
that word in their name or prompt.

3. ESPE performs a sensitivity analysis of the
expert system. Consider some input parame-
ter.

a) For each pair of values that that parameter

hold, ESPE lists the

parameter-value pairs that may be pro-

may output
duced from omnly the first input wvalue,
from only the second, or from both.

b) ESPE also allows the user to specify pairs
of values for any output parameter and
lists the
changes could cause that output change.

input parameters whose value

Parsing The Expert System

~ The expert systems we analyze are in the form
of ESDE EXPORTED files as shown by these
examples of rule texts. For an animal identification

game, we have rules such as shown in figure 1.

gRULE GIRAFFE?2

JPROP Rule text

if animal_class is 'mammal’' and

animal appearance is 'has long neck' and
animal color is 'dark spots’

then animal = 'giraffe'

Figure 1: Animal Expert System Rule

In a system to debug hardware, we have rules
such as figure 2.

The parsing process proceeds as follows:

1. Preprocess the expert system to remove a few
problems such as unbalanced quotes and con-

PROP Rule text

if crit_volt is "no"
and k1 is "ng"
and thermal is "no"
and clock is "no"

then crit_ind is "no"

gRULE ASH

@RULE RULE123
dPROP Rule text
if crit volt is "no"
and k1 is "no"
and thermal is "yes"
and therm ind_flashing is "no"
and (imlp_ind is "no" or
imlp_ind is "yes")
and IPC_PC_pon pb_imm fail ig “yes"
and cb2le is "no"
and sr_or agate_therm fault is "yes"

then fault is "card AlD2. Replace it"

Figure 2: Hardware-Debugging Expert System

Rules

structs in user prompts, such as 4E, that the

Prolog parser thinks to be illegal floating

numbers.

Read the expert system with a Prolog program

that parses it in the following steps.

a) Read the expert system 2s a sequence of
atoms or tokens.

b) Group the. atoms into clauses delimited by
'@’. Classify the parameter clauses as
parameter, rule, or focus control block
(feb) clauses.

Analyze the rule text to determine which

parameter values are read or written by each

rule. This has the following steps.

a) Separate the if and then text.

b) In each part, find parameter pames and
look for the following value, if any, in
these cases:

i) par = value, or paris value
ii) paris not value
iii) paris (v1, v, ...)

Very little of the text of the expert system’s

exported file is relevant to this determination.

For example, the only information we use

from the block describing a parameter is its

name.

Assert assorted facls about the expert system,

such as the names of the parameters and rules,

the rule text, and the parameters read and
written by each rule. Examples of these facts

are as follows.

nom(rule,al3).

prop(rule, 213, [rule, text, if,
faulttwo, ...]).

reads_param(al3, faulttwo_1).

writes_param(al3, ps2x).

This process abstracts away the internal struc-
ture of the rule and ignores how the rule com-
bines its inputs values to determine its output.
We have another program that considers the
internal structure and plots an and-or graph of
exactly how each rule reads its parameters and

values. With this more complete information

describing each rule, we could, if desired,
simulate most of the expert system by convert- ~

ing the rules into Prolog clauses and ignoring
the expert system shell. This would make the
expert system runnable very efficiently on the
special purpose Prolog microcomputers that are

now appearing.

Convert the expert system into a directed acy-
clic graph and assert the relevant nodes and
arcs. Each parameter-value pair and each rule
becomes a node. Each node has a text string
label associated with it that is used as a label
elsewhere in the program. The correspondence
between the parameter-value pairs or rules and
their labels are recorded in the facts par_label
and rule_label. The labels of parameter and
rule nodes start with P and R respectively so
that all the parameter nodes will appear
together after sorting. Some sample facts are:

rule_label(A13, 'R: A13’).
par_label(PS2X, yes, 'P: PS2X = yes').
node('P: PS2X = yes').

node('R: A13").

Then each instance of a rule reading or writing
a parameter with some value becomes an arc

thus:

are(’R: A13’, 'P: P52X = yes')-

oo b e

S P A B LM Y

Node names

__________ et 18: 18 P: ANIMAL LOCOMOTION = flies
1: 1 P: ANIMAL = albatross 19: 19 P: ANIMAL LOCOMOTION = flies well
2: 2 P: ANIMAL = cheetah 20: 20 P: ANIMAL, LOCOMOTION = swims
3: 3 P: ANIMAL = giraffe 21: 21 P: ANIMAL PRODUCES = gives milk
4: 4 P: AﬁIMAL = ostrich 22: 22 P: ANIMAL PRODUCES = lays eggs
5: 5 Pt ANIMAL = pengulh 23: 23 R: ALBATROSS1
6: 6 P: ANIMAL = tiger 24: 24 R: ALBATROSS2
7 7 P: ANIMAL = zebra 25: 25 R: BIRD
g8: 8 P: ANIMAL APPEARANCE = has claws g i '

: — . . 26: 26 P: CHEETAH
9; g P: ANIMAL APPEARANCE has feathers i X
= 20 27 R: GIRAFEEL
10: 10 P: ANIMAL APPEARANC has fur 28: 28 R: GIRAFFE2
11: 11 P: ANIMAL APPEARANCE -~ has hooves 29: 29 R: MAMMAL
12: 12 P: ANIMAL, APPEARANCE = has long neck 30: 30 R: OSTRICHL
13: 13 P: ANIMAL CLASS = bird 31; 31 R: OSTRICH2
14: 14 P: ANIMAL CLASS - mammal : 32: 32 R: PENGUINL
15: 15 P: ANIMAL COLOR = black and white i i
. 33: 33 R: PENGUIN2
16: 16 P: ANIMAL COLOR = black stripes 34: 34 R: TIGER
. 17 : ANIMAL COLOR = dark spots : n
17: 37 P: | 35: 35 R: ZEBRA

Number of paths between each pair of nodes

1 20 3 4 5 € 7 I3 14 23 24 25 26 27 28 29 30 31 32 33 34 35 Total

1 3 4
140 1l : 14
2 R 1)

2 3t
§ 8
1 N T
T)
B

—

8: T = it 2
9: 2 i L2 s VRN S
TD ke e Ll M2 o L M 1 s
1E15 X " . :
122 202 s . & 1
Tl 2 e o ST 3 =

14: 1 2

15: 1 o kA
G gl s s e &
172 T il

18: .
193
20: “ 2 =
21: X -2 TR
222 5
23
24:
253 5
26: 1
27

ZH . h
29 1 <
30: o pak B . . s .

L (e - TRETEESLS RS S ol B R e e O RS SR
32: . LA A . ! . g
334 . 1 ¥ % . 5 .

=
et o

=
=
o
=
(S
[
e e
=

(=
H

LSRN
e e e

e

[.
(=

(]

=

(=)

=

T T T = I o= =
[
e
[el

= e
T
R

oW oo

NN

=
=
[}

'
(U
]
-4
[}
=
[}

[S e R T]
:
5
5
S
A
P e B i R A S

35: AL KIS L1 . . : .
130

u
LeA]
[%)
wm
L=
w
[«)}
(a2}
~I

Tok: 15 713 1313 7 8 3 3 & 7 2 ®
Figure 3: Paths Counts for the Animal Expert System

6. A t tain identification facts:
HEERE input_node(’P: VI_OK = YES’).

filename(P128). output_node('P: FAULT = 3090 overloaded.

title{ AESOP). Upgrade to a PS2’).

unused_node('R: A23).
7. Derive certain facts, such as input ncdes,

which should be supplied by the user, = zut
nodes, which should be read by the user, and
unused nodes.

162

Path Counts On The Directed Graph

We count the number of paths between each
pair of nodes in the graph and display the informa-
tion, as shown for the animal expert system, in
Figure 3. Only the nonzero rows and columns are
listed. Thus parameter Animal is never used by any
(it is the

Amimal_Appearance is used many times, but

later parameter or rule user-visible
result).
unevenly. For instance, Animael_Appearance = has
claws is used 4 times while Animal Appearance =
has feathers is used on 14 different paths. Since
Amimal_Appearance = has hooves is used only twice,
we might say that it is not covered very completely

by this expert system.
The table of counts for large expert systems is
split and printed in strips.

Although this table has a superficial appearance
to a

misleading since it actually results from consider-

low level core dump, that appearance is

able processing and the abstraction of the relevant
The
path counts are determined by a Prolog program

information from a large mass of raw data.

that operates iteratively. Initially all arcs are paths
of length one. At any stage, the paths of length K
are determined by catenating all paths of length K-
This
requires time at worst proportional to the number
of paths at each length. Any cycles are detected
and arbitrarily broken. The output is done in PL/1
because of its more flexible format control.

I to all adjacent arcs and then asserted.

Partitioning By Focus Control Block

A focus control block (FCB) is a means of
grouping the parameters and rules of a large expert
system so that certain rules do not become active
or usable until certain conditions are reached. The
focus control blocks, which form a tree structure,
are a convenient way to display only part of a larger
€xpert system. For each leaf FCB we can produce
& plot of all the ares that have at least one node in
that FCR hierarchy, the set of that FCB and its
8ncestors up to the root. This information can be
displayed on either a 3250 vector refresh CRT, or
0 23277 Graphics Attachment Storage CRT.

163

Since parameters can have short, domain-
specific names that are not obvious to users, the
program can prompt the user for a string, and list

all the parameters that contain it in their prompt.

Seunsitivity Analysis

It is useful to know what different goals are
reached depending on different values in the input
parameters. We take each pair of possible values
of an output parameter, such as Animal, and deter-
mine what different values of the input parameters
might cause this distinction, as shown in figure 4.

PARAMETER NAME? animal

PARAMETER ANIMAL VALUES 'albatross'
'penguin' ARE DISTINGUISHED BY:

AND

(1) ANIMAL LOCOMOTION = flies
(1) ANIMAL LOCOMOTION = flies well
(2) ANIMAI, LOCOMQTION = swims

PARAMETER ANIMAL. VALUES 'albatross'
'ostrich' ARE DISTINGUISHED BY:

AND

(1) ANIMAL, LOCOMOTIQON = flies
(1) ANIMAL LOCOMOTION = flies well
(2) ANIMAL APPEARANCE = has long neck

PARAMETER ANIMAL VALUES 'albatross'
'giraffe' ARE DISTINGUISHED BY:

AND

(1)
(1)
(1)
(1)
(2)
(2)
(2)

ANIMAL_CLASS = bird

ANIMAL LOCOMOTION = flies

ANTMAL LOCOMOTION = flies well
ANTMAT, COLOR = black and whicte
ANIMAL _CLASS = mammal

ANIMAL, APPEARANCE = has long neck
ANIMAL, COLOR = dark spots

Figure 4: Input Parameter Values That Distinguish
Between Output the
Animal Expert System

Parameter Values in

A (1) means that this vaiue can lead to the
first output value of the pair; and a (2) labels
values that cause the second. Here we see that the
only input difference between albatross and penguin
is in values of the Animal _Locomotion parameter,
and that there are a total of three differences.

Albatross and ostrich are a little more different.

Although there are still only three differences, they
involve two parameters: Animal_Locomotion and
Animal_Appearance. Albatross and giraffe have seven
differences involving four different input parame-
If the number of

which is reasonable.

diferences detected does not accord with the user’s

ters,

view of the problem, then we have uncovered an

area of weak coverage in the expert system.

A part of the output from the analysis of a
larger, hardware-debugging expert system is given

in figure 5.

PARAMETER: FAULT

VALUES
repair or replace cable from J21 to
control card 2 (AlD2). Refer to YF410

card AlD2. Replace it
ARE DISTINGUISHED BY:
THERMAL = no
CLOCK = yes
PSXX_DRIVES_CLOCK = None
AlE2J07_LT_OP8V = yes
A1E2G07_LT OP8V = yes
VALID CLK_PULSE_1 = no
VALID CLK PULSE_2 = yes
THERMAL = yes
THERM_IND_FLASHING = no
IMLP_IND = no
IMLP_IND = yes
IPC_PC_PON_PB_IMM FAIL = yes
CB21E = no
SR_OR_AGATE_THERM_FAULT = yes

(1)
(1)
(1)
(1)
(L)
(1)
(1)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

Figure 5: Input Parameter Values That Distinguish

Between OQutput Parameter Values in the
Hardware-Debugging Expert System
The above method may generate a large

number of pairs of values for a complex output
parameter. Therefore we also allow the user to
specify two pairs of values and see just that com-

parison.

Since the particular input parameter values are
not as important as the fact that those parameters
are involved, we also create a table showing, for
each pair of output parameter values, which input

parameters might distinguish between them. See

figure 6 for the animal expert system. Looking
down the columns, this shows that three valye
pairs: albatross-penguin. giraffe-cheetah, and tiger.
cheetah are distinguished by only one input parame.
ter each. The surprising fact that only difference
between giraffe and cheetah is animal_appearance
suggests that this expert system might be improved

here.

Looking across the that

animal_locomotion distinguishes only 11 pairs of out-

rows, we see
put values, while animal_appearance is more impor-
tant since it distinguishes 18 pairs. This informa-
tion is automatically summarized by ESPE in figure

75

A sample output from analyzing a larger
hardware-debugging expert system is this shown in
figure 8. . =

Here we are analyzing input parameter Prbiypl

~which has four values to see how it affect output

parameter End, which has three values. For each
pair of possible input values, we see which of the
pair might influence each output value. For exam-
ple, neither of the pair Install or relocate or EC/MES
of

the pair Preventive Maintenance or Service Call, the

Activity can cause any of those output values.

first might cause only the first output value, while
the second input might cause the second or third
output values.

Onee of the applications of this work is to
judge whether an uncertain input is important is
making a particular diagnosis. Thus the first pair of
possible inputs is useless in discriminating between
the three listed outputs, and only the last pair can
give any of the three of the outputs depending on
which one of the pair is picked.

Sufhimary

We have applied certain software engineering tech-
niques to the analysis of expert systems. We con-
vert the expert system to a directed acyclic graph
and then count paths and perform sensitivity ana-
lyses. This allows the user to test the completeness

of the expert system’s coverage of the problem,

DIFFERENCES IN VALUE FOR: ANIMAT,
NUMBER OF VALUE PAIRS: 21
NUMBER OF PARAMETERS USED TO MAKE DISTINCTIONS: 4

VALUE PAIRS:
1 albatross penguin
2 albatross ostrich
3 albatross zebra
4 albatross giraffe
5 albatross tiger
6 albatross cheetah
7 penguin ostrich
8 penguin zebra
9 penguin giraffe
10 penguin tiger
11l penguin cheetah
12 ostrich zebra
13 ostrich giraffe
14 ostrich tiger
15 ostrich cheetah
16 zebra giraffe
17 zebra tiger "
18 zebra cheetah b
19 giraffe tiger
20 giraffe cheetah &
21 tiger cheetah
PARAMETERS : '

1 ANIMAL_ILOCOMOTION

2 ANIMAI, APPEARANCE

3 ANIMAT, CLASS =
4 ANIMAI, COLOR

LAST COLUMN INDICATES NUMBER VALUE PAIRS THIS PARAMETER DISTINGUISHES BETWEEN
LAST ROW INDICATES NUMBER PARAMETERS DISTINGUISH BETWEEN EACH VALUE PAIR.
A e ISR R T s 13 14 15 16 17 18 19 20 21 TOTAL

*

31, * * * * * * * * * S
2 * * * * * * * * * * * * x x* * * * * 18
3 * * * * * * * * * * * * ko)
4 * * * * * * * * * * * * * * * * * 5
JC oy U R SRR TR GO TR T T 2 3320 el ol gl g
Figure 6: Input Parameters That Distinguish Between Output Parameter
Values in the Animal Expert System System
] Zhd e ; ; Acknowled ents
8ives the user an intuitive feel for how information lowledgemen :
'[0 - - . ks - .
S-ﬁow:ng through it, and assists him in judging the This work was supported by the National Science
Suitability of an unfamiliar expert system f[or solv-

Foundation under PYI grant no. DMC-8351942,
and by the Data Systems Division of the Interna-
tional Business Machines Corporation.

ing a task,

There were 21 pairs of values,
and 4 parameters distinguish values.

The average number of distinguishing characteristics
between goal value pairs is 2.76

Value pairs with fewer than 2 differences:

albatross, penguin —- 1 difference
giraffe, cheetah -— 1 difference
tiger, cheetah —— 1 difference

Parameters that distinguish more than 15 value pairs:

ANIMAL APPEARANCE -- used for 18 differences.
ANIMAL COLOR -- used for 17 differences.

Figure 7: Sensitivity Analysis of the Animal Expert System

Comparison of conclusions reachable by parameter PRBTYPL values.
Conclusions examined are END

Input parameter value pairs:

1 Install or relocate \- EC/MES Activity
Install or relocate \- Preventive Maintenance
Install or relocate \- Service Call
EC/MES Activity \- Preventive Maintenance
EC/MES Activity \- Service Call
Preventive Maintenance \- Service Call

Oy U o W B

Goal values:
1 IN3SEE THE FOLLOWING DOCUMENTATION FOR PM
2 FOLLOW VOLUME B0l, PCE START MAP
3 REFER TO IOPD SECTION OF VOL AOQ2

rray rows represent input value pairs.
Array columns represent goal values.

array contents have the following meaning:
A--the goal value is reachable only from the first input value.
B--the goal value is reachable only from the second input value.
C--the goal value is reachable fromboth values in the input pair.

1 2 3
1
2 B
3 B B
4 B
5 B B
6 A B B

Figure 8: Comparison of Reachable Conclusions

166

References

International Business Machines, Corp., Ezpert
System Development Environment User Guide,
1985. SH20-9608

International Business Machines, Corp., Ezpert
System Consultation Environment User Guide,
1986. SH20-9606

J.S. Bennett and C.R. Hollander, “DART: An
Expert System for Computer Fault Diagnosis,”’
Proc. IJCAI-81, pp. 843-845, Vancouver, BC.
D.C. Berry and D.E. Broadbent, ‘‘Expert Sys-
tems and Man-Machine Interface - The User
Interface,’”’ IEEE Ezpert Systems, July 1986.
K.L. Clark and F.G. McCable, ‘“PROLOG: A
Language for Implementing Expert Systems,"
Machine Intelligence, vol. 10, pp. 455-470, 1982.
R. Davis et al, ‘‘Diagnosis Based on Structure
and Function,”’ Proc. AAAI Conference, pp-
137-142, August 1982.

D.W. Loveland and M. Valtora, ‘‘Detecting
Ambiguity: An Example in Knowledge Evalua-
tion,”’ Proc. IJCAI-88, pp. 182-184, Karlsruhe,
West Germany, August 1983.

Mark H. Richer, ‘“An Evaluation of Expert
System Development Tools,”” IEEE Ezpert Sys-
tems, July 1986.

E.H. Shortliffe and S. Tsuji, "Graphibal Access
to the Knowledge Base of a Medical
Consultation System,’’ Proc. of AAMSI
Congress'83, pp. 551-555., May 1983.

167

