reprinted from

Prolog and Geometry Projects

5

-*>

Wm. Randolph Frankiin, Peter YF. Wu,
Sumitro Samaddar,* and Margaret Nichols*

Rensselaer Polytechnic Institute

™
n

Prolog is a useful tool for geometry and graphics
implementations because its primitives, such as uni-
fication, match the requirements of many gecmetric
algorithms. During the last two years, we have im-
plemented programs to solve several problems in
Prolog, including a subset of the Graphical Kernel
System, convex-hull calculation, planar graph traver-
sal, recognition of groupings of objects, Boolean
combinations of polygons using multiple precision
rational numbers, and cartographic map overlay. Cer-
tain paradigms or standard forms of geometric pro-
gramming in Prolog are becoming evident. They in-
clude applying a function to every element of a set,
executing a procedure so long as a certain geometric
pattern exists, and using unification to propagate a
transitive function. This article describes the experi-
ences, including paradigms of programming that seem
useful, and finally lists what we see as the advantages
and disadvantages of Prolog.

An earlier version of this article appeared in Proc. Graphics Interface 86.

46 0272-1716/86/1100-0046$01.00 ® 1986 IEEE

The fifth-generation logic programming language
Prolog!2 appears appropriate for research in geome-
try and graphics. Examples of its use in architectural
design?s in CADS and in constructing geometric
objects from certain constraints’ have been dis-
cussed.

Prolog has several properties important to geo-
metric and graphics applications. It is a declarative
instead of an imperative language, which means, at
least in theory, that you specify the formula satisfied
by the solution instead of the procedure to execute
to find the solution. In practice, for nontrivial pro-
grams you must often, for efficiency, be somewhat
imperative. Prolog, like pure Lisp, has no destructive
assignments, except for modifications of the global
database. The unification of logical formulas is a
primitive operator. The only data structure is the list.
Lists can contain free variables that are later in.
stantiated or unified with other free or bound vari-

“Sumitra Samaddar is now with Siemens Research and Technology
Laboratories. Margaret Nichols is now with the North American Philips
Lighting Co.

IEEE CG&A

ables. Prolog is often combined with other languages,
such as Fortran for numerical computations and
graphics, or Lisp. Finally, Prolog is quite nonstan-
dard, even in the basic syntax, and in the names of
common procedures, such as “print.”

Our area of interest is computational geometry,
such as problems of spatial coincidences and in-
tersections with a wide gap between conception and
implementation. Problems such as polygon inter-
section, where an algorithm can be described to
another person in about 100 words, can take weeks

- to design and code.

These problems include many special cases that
can consume half the total amount of code, are
often artifacts of the data structures used, and do
not belong to the intrinsic problem. For example,
one algorithm to solve the polygon intersection
problem traces around the edges in order. In a
special case many edges end at the same vertex.
However, this case does not exist explicitly, and need
not be considered if a data structure consisting only
of a set of the edges is used. The correct handling of
these special cases is important when a low-level
routine is used to solve a higher level problem, since
proper handling of the low-level special cases may
automatically solve the higher level special cases,
too.

Simpl'e example

For a simple example of Prolog’s use in geometry,
consider the problem of linking isolated edges to
form a chain (see Figure 1). Our only data structure
is

chain(A, B, L)

which represents one chain. Here A is the name of
the first vertex, B the last vertex, and L a list of the
vertices in the chain from the second to the last.
Initially each edge is separate, while eventually only
one chain remains (if possible). Thus, in Figure 1, the
initial database is

chain(a, b, [b]).
chain(d, e, [e]).
chain(c, d, [d]).
chain(b, ¢, [c]).

The random order emphasizes that this is a set of
facts whose order does not matter. The final data-
base is

chain(a, e, [b, ¢, d, e]).

The complete program to process this database is
as follows:

1 joinl =-

2 chain(A, B, L1),

November 1986

Figure 1. Four edges that will be linked.

chain(B, C, L2),
retract(chain(A, B, L1)),
retract(chain(B, C, L2)),
append(L1, L2, L3),
assert(chain(A, C, L3)).
8 join :- joinl, fail.

9 join.

~1 U bW

The line numbers are not part of the program.
Two procedures, join! and join, make up the pro-
gram; joinl searches for two chains that can be
combined in lines 2 and 3, deletes them from the
database in lines 4 and 5, forms the combined chain
in line 6, and adds it to the database in line 7. In more
detail, line 2 searches for a fact in the database that
matches it or, in other words, is a chain fact. If it
finds one, it assigns the three arguments of the fact
to variables A4, B, and L1, respectively. Then line 3
searches for a chain fact whose first argument
matches B. If there is no such fact, line 3 fails and
forces line 2 to redo, that is, to unbind the variables
that it has set, find another fact, and bind the
variables again. Superficially, the failure and redoing
appear similar to a destructive assignment.

If line 3 does not succeed with any fact that line 2
finds, then the whole procedure join/ fails and no
more chains can be combined.

Procedure join, which is called by the user, simply
calls join! until that fails. The fail in join here has
the effect of a repeat loop because the assert and
retract in joinl are not redone when joinl is.

This nine-line program is much more compact in
Prolog than in many other languages. Another style
of Prolog programming, instead of modifying the
global database, recurses one level deeper each time
two chains are joined and passes the modified data-
base to the new call.

47

Y4-R

Table 1. Computers and operating systemg :
used to implement Prolog.

Machine Operating System Prolog Version
IBM 3081 Michigan Terminal

; ~ System York (UK.)
IBM 4341 CMS Waterlog
IBM 4341 CMS VM-Prolog
Prime 750 Primos Salford
VAX 780 Unix bsd 4.3 UNSW
VAX 780 Unix bsd 4.3 C-Prolog

Implementations

Over the last two years we have implemented
several graphics and geometric algorithms in
Prolog—totaling a few thousand lines of code—
using four different Prolog interpreters on four
different computers (see Table 1).

Some of the versions were used for preliminary
projects that will not be reported here. The imple-
mentations, which vary from warm-up exercises to
large problems, include the following:

® Graphical Kernel System subset
® convex hull

® big rational numbers

polygon intersection

planar graph traversal
cartographic map overlay
photoreconnaissance inference

Graphical Kernel System subset

This graphics addition to Prolog was implemented
on an IBM 4341 using Waterlog under the CMS
operating system3® It allowed us to draw lines on the
3270 graphics VDT from a Prolog program. We
implemented two classes of lines: permanent and
backtrackable. If the Prolog procedure that drew a
backtrackable line was backtracked over, then the
line would be erased. The procedure used a feature
of IBM's Graphics Subroutine Package (GSP).

We found some major problems. Waterlog, like
most Prologs, lacks floating-point numbers and even
4-byte integers, a fact which was undocumented. It
has, however, the powerful capability to be linked to
programs in other languages such as Fortran. Thus
we implemented a real number in Prolog as a data
structure of the form real(A, B), where A and Bwere
Prolog integers holding the upper and lower half-
words, respectively, of the integer. The user never
looked at A and B but accessed the real numbers via
procedures such as addreal(X, Y, Z) and realto-
integer(R, I) that took real number structures in the
stated form and did the obvious things. For example,

48

our Prolog procedure addreal called a Fortran sub-
routine with six integer arguments that were the
two halves of the two inputs and the output. The
Fortran subroutine used equivalences to combine
the 2-byte integers into 4-byte reals, add them, split
the result, and pass it back.

Convex hull

This divide-and-conquer algorithm was imple-
mented in Salford Prolog on the Prime and in
Waterlog on the IBM 43411011 The Salford system
allows both real numbers and dynamic linking to
Fortran routines. We also tested York Prolog;? which
is written in Pascal. The York system has the ad-
vantage of being portable to any machine that can
compile a thousand-line Pascal program using 4-
byte integers. Unfortunately, at that time these
machines did not include the official Pascal compiler
available from Prime. (We have not evaluated third-
party Pascal compilers for Prime computers.) We
also tested York Prolog on an IBM 3081 running the
Michigan Terminal System, but found the other
computers’ operating systems more flexible and
cheaper to use, since York Prolog is very slow.

The convex-hull algorithm proceeds as follows,
using a divide-and-conquer paradigm!®* Duplicate
points are removed and then the set of points is split
into a left and a right subset based on the points’
x-coordinates. The convex hulls of these sets are
found recursively. Merging the two convex hulls
requires the top and bottom tangents or supporting
lines. The first approximation to the top tangent is
found by joining the top point of the left convex hull
to the top point of the right one. Then, if necessary,
these endpoints of the tangents are moved right and
left until the tangent does not intersect the convex
hulls (except at the endpoints).

This algorithm takes time T = 6(N log(N)). The
Prolog code is about 200 lines including comments.

Boolean combinations of polygons

A program to perform operations such as inter-
section, union, and difference on two planar poly-
gons was implemented on the Prime and IBM 434110
First, a package to perform arithmetic using rational
numbers in multiple precision was implemented.*
Each number, abstractly a quotient of an integer
numerator and denominator, is entered as a list of
the numerator and denominator. Each numerator
and denominator is a list of groups of the number’s
digits. For example, 123456789/987654321 is repre-
sented as [[56789, 1234], [54321, 9876]]. Rational
numbers—as part of an ongoing investigation into
their utility in geometry and the map overlay prob-
lem in cartography!S—are used to avoid roundoff
errors. They are used because they are closed under
the operations of intersecting lines; that is, if the

IEEE CG&A

-3

endpoints of two lines are specified in rationals, then
their intersection can also be exactly represented as
a rational. The result is no roundoff error.

Although the rationals are not closed under gen-
eral rotations, they are closed under rotations by
trig-rational angles: angles with a rational sine and
cosine. Trig-rational angles are dense in the reals, so
that an arbitrarily accurate trig-rational approxi-
mation to any angle can always be found. Unfor-
tunately, 45° is not trig-rational.

The big rational package was designed in several
. steps, following the ideas that have been available in
Macsyma for some years. First, rational numbers
are implemented. A rational number Q is stored as
the expression N/D. This is upwardly compatible
with integers, since is, which knows nothing of
rationals, thinks it is just an integer expression. Also
the rational number prints normally without a
separate print procedure. We implement a new infix
operator, is7, which operates on rationals just as is
operates on integers. It also converts integers to
rationals. Rational versions of all the integer arith-
metic operators are also implemented.

Next, a big integer arithmetic package is imple-
mented, along with a new infix operator are and big
versions of all the operators. Each big integer is
stored as a list of groups of digits. For 32-bit built-in
integers, each group is four digits. Zero is stored as
[] one as [1], 72 as [72], 10001 as [1, 1], 2180077 as
[80077, 21], minus one as [-1], -123456 as [-56, -
1234}, and so on.

Then these are combined into one package with
the operator isx. Now we can say things like

X isx ([3456, 12]+ 23) / [222, 3])

The big rational package was tested by calculating
m from the following formula, whose simplicity
overrides its very slow convergence:

The UNSW Prolog code to execute this is
pi([] [2]).- % preset value: pi =2
step -
pi(R, P),
Rlare R+[1]
R2 are R1 mod [2],
Plisx P*((R1+ R2)/(R1-R2+[1])),
retract(pi(R, P)),
asserta(pi(R1, P1)),
pb(R1), print(: "), pxq(P1), nl,.

go :- repeat step,fail.
The output (using a stack size of 50000) is
1: 4

November 1986

d©2) 3 c(22)
ez

e

a.0,0) el b0

Figure 2. Data structure for a 2 X 2 square.

31: 288230376151711744 / 90324408810638025

The polygon combination system uses an edge-
based boundary representation. Each polygon is
considered a set of edges. Here are the actual data
structures:

vert(vertexname, x, y)

edge(edge_name, name_of_first_vertex,
name_of_second_vertex)

edge_eqn(edge_name, g, b, ¢)

poly(polygon_name, edge_name, which_side)

The edge equation is of the form ax+ by + ¢= 0.
There is one poly fact for each edge of each polygon.
Since a given edge may be used by more than one
polygon, it is necessary to know which side of the
edge is the inside of this particular polygon. Legal
values are left and right. The facts for the polygon in
Figure 2 are

vert(a, 0, 0).

vert(b, 2, 0).

vert(c, 2, 2).

vert(d, 0, 2).

edge(el, a, b).
edge(e2, b,).
edge(e3, ¢, d).
edge(ed4, d, a).
edge_eqgn(el, 0, 1, 0).
edge_eqn(e2, 1, 0, -2).
edge_eqn(e3, 0, 1, -2).

49

yu-H

Figure 3. Combining polygons ABCD and EFGHIJ.

edge_eqn(e4, 1, 0, 0).
poly(a, el, left).
poly(a, 2, left).
poly(a, €3, left).
poly(a, €4, left).

With this data structure, special cases involving
multiple edges all ending at the same vertex are not
a problem; in fact, the algorithm never knows that
they exist. The data structure also does not store any
global topology, such as the number of connected
components. The information and the containment
relationships could be calculated if needed, but are
in fact never necessary.

The first stage of the algorithm is basically a
forward-reasoning system. It searches for cases
where two edges intersect. Whenever such a case is
found, the two edges are deleted, and three or four
new edges created. There will be three new edges if
one edge’s endpoint falls on another edge or if two
edges are collinear. The process continues until no
edges intersect, except possibly at both their end-
points.

This process is a little more complicated than it
appears since we are modifying the list of edge facts
as we iterate through it. Here different versions of
Prolog behave differently. One solution is as follows:

1. Handle deletions not by actually retracting the
edge, but by asserting a deleted(edge_name)
fact to record the information.

50

Initially consider all edges to be of level 0.
Compare all the edges pair by pair. Whenever
an intersection is found between two edges
that do not have an associated deleted fact,
assert a deleted fact about both of them and
create three or four new edges by asserting
level 1 edges.

4. Compare all the level 1 edges against each
other and against all the level 0 edges without
deleted facts. If any intersect, assert new level 2
edges and deleted facts about the intersecting
edges.

5. Compare all the level 2 edges with each other
and against all the level 0 and 1 edges.

6. Repeat this until no new intersections are found.

7. Clean up the database,

i

The procedure should be portable: it does not
modify any particular fact because control is iter-
ating through instances of that fact.

Next, in the Boolean combination, each edge is
classified into one of six categories:

an edge on polygon A that is inside polygon B
an edge on polygon A outside polygon B

an edge on polygon B inside polygon A

an edge on polygon B outside polygon A

an edge on both polygons A and B, and both
polygons are on the same side of it

an edge on both polygons, and they are on
opposite sides of it

Finally, a subset of the edges is selected, depending
on the particular result desired. For example, in a
union, edges on either polygon that are outside the
other polygon, plus edges on both polygons with
both polygons on the same side, are needed. Since
this selection takes almost no time, all the Boolean
combinations are found at no extra cost. In Figure 3,
polygon A is ABCD and polygon B is EFGHIJ. After
intersecting edges are cut, edges ABand EF are cut
into AE, EB, and BF: HI is cut into HC and CI When
the resulting edges are classified, edge AB is on
polygon A outside of B. Edge EJ is on B inside A.
Edge EBis on both polygons A and B, and they are
on the same side. In contrast, edge CI is on both
polygons, but they are on opposite sides.

Rational arithmetic is only an attempted solution
to numerical inaccuracies. The problem is that when
two rationals are added or otherwise combined, the
result usually has twice the number of digits of
either operand. The high number is burdensome if
the computation graph is deep. Another possible
solution would be to develop robust algorithms that
allow small errors while preserving critical aspects
of the problem’s topology. By analogy, numerical
operations on large matrices are designed to pre-

IEEE CG&A

H-5™

serve important properties, such as relations among
the eigenvalues, while allowing the actual coeffi-
cients to wander somewhat. However, such a solu-
tion would be difficult here, since the topology of a
planar graph is much richer than that of a matrix.

Planar graph traversal

At some point in an object-space hidden-surface
algorithm,'* we have the set of the visible edges and
must join them to find the visible polygons. Joining
requires a planar graph traversal, sometimes called
. a tessellation. In Figure 4, we are given the vertices
and edges in the form

vert(vert-name, x-coord, y-coord)
edge(edge-name, first-vertex, second-vertex, angle)

for example,

vert(vl, 0, 0).
edge(el, v1, v2, 0).

The angle of the edge is supplied because of the
difficulty of computing arctangents using only in-
tegers. The output is a set of facts of the form

polygon([vl, v2, v3, v4]).
This was implemented in UNSW Prolog!” on a VAX.

Cartographic map overlay

Cartographic map overlay is the process of super-
imposing two maps. The map overlay system was
implemented on the Prime in Salford Prolog!!#

A map is a 2D spatial data structure consisting of a
set of chains, each of which is a polyline on the 2D
plane. Each chain begins at a node and ends at a
node (which may or may not be the same node). A
chain does not intersect itself, nor any other chains
in the same map. Hence the set of chains and nodes
partition the 2D plane into regions, each enclosed by
an alternating sequence of nodes and chains. Each
region is called a polygon. The spatial structure of
nodes, chains, and polygons forms a map. Since we
require that each polygon does not contain any
other polygon, we deal only with the maps having no
separate components.

The algorithm is a combination and extension of
the algorithms for polygon intersection and planar
graph traversal. The major difference is that instead
of edges, the algorithm deals with chains or poly-
lines. Here is a brief overview of the algorithm:

1. Split intersecting chains. Search for intersecting
chains and split the chains at the intersection
points.

2. Compute node incidences. Identify the incident
nodes for each chain and compute a measure
of the incident angle.

November 1986

vé e v3
€6
ed e2 e
e5
vi el v2

Figure 4. Finding the faces of a planar graph.

3. Sort incidences and generate chain linkages.
Sort the incident chains at each node into
proper cyclic order. Associate each pair of
adjacent chains (in reverse cyclic order) to
form a linkage record. Hence each linkage
record identifies a corner of a polygon.

4. Link up the polygon boundaries. Connect the
linkage records into proper cyclic order, de-
termining all the polygons.

5. Mark adjacent polygons at each chain. Identify
for each chain the polygons on its left and right.

As we describe further details of the algorithm, we
will define the data structures involved.

The input map is a set of chains. Each chain is
represented by a Prolog fact, in the following format:

chain(chain_id,
tail_node, head_node,
[[X1, Y1] ... [X2, Y2]]
left_polygon, right_polygon)

Each chain has a unique chain_id; tail_node and
head_node identify the nodes at the beginning and
end of the chain. The list [[X, Y], ..] of coordinates
describes the polyline. The polygons to the left and
right of the chain are also identified.

In step 1, we search for intersecting chains and
split the chains at the intersection point, which is a
new node in the output map. The difficulty of
simultaneous iteration and updating in the database
arises in the same way as in polygon intersection,
and we resolve it the same way.

In step 2, we examine each chain and declare the
endpoints as nodes. Each node is represented by the
following:

51

node(node_id, [X, Y])

For each chain-to-node incidence, we make an in-
cidence record as a Prolog fact:

incidence(node_id, chain_incidence,
incident_angle)

The chain_incidence may be h(chain_id) or
t(chain_id), indicating the head or tail of the chain,
respectively.

In step 3, we sort the incidence records at each
node by the incident_angle. Hence we have the
incident chains at each node in proper cyclic order.
Every pair of adjacent chains in the cyclic list
therefore determines a corner of a polygon. For
every corner of a polygon, we form a linkage record
as a Prolog fact, identifying every pair of adjacent
chains around each polygon:

linkage([boundary_1, boundary_2])

Each boundary in the pair of adjacent chains can be
either th(chain_id) or hit(chain_id) to indicate,
respectively, that the boundary chain goes in the
tail-to-head or head-to-tail direction.

Prolog has the same high-level
advantages as Lisp, for example,
the equivalence of code and
data, and dynamic data allocation.

In step 4, linkage records are connected to trace
out polygons. The process is similar to the one in
“Simple example”—linking isolated edges to form a
chain. A linkage record that begins and ends with
the same boundary chain (in the same direction)
identifies a polygon to be declared as such in the
output map:

polygon(polygon_id, [boundary_1,
boundary_2, ...])

In step 5, we examine the boundary chains of each
polygon, and form the following left and right facts:

left(chain_id, polygon_id)
% if boundary has th(chain_id)
right(chain_id, polygon_id)
% if boundary has ht(chain_id)
We can then update the chain records with the
polygon identifiers on the left and right. We have the
chains in the desired output format:

chain(chain_id,
tail_node, head_node,

52

[[Xx1, Y1],..,[X2, Y2]],
left_polygon, right_polygon).

Prolog provides a relational approach in data
structuring. Geometric entities are defined as Prolog
facts, and Prolog rules implement geometry algo-
rithms for data processing. Each step is a sequence
of set-based operations. Explicit directives, namely
assert and retract, add and delete entries to and from
the database. Calculations are done using big
rational arithmetic. Incident angles are strictly trig-
rational, guaranteeing numerical accuracy and thus
topological consistency in the computation.

Photoreconnaissance inference

Now we wish to infer which units of an army
organization are present after seeing, via photo-
reconnaissance, an incomplete picture of their
equipment!® The army organization, parts of which
may be present in the photo, is described with
Prolog facts such as the following:

child(Father, Son, Number)

This says that unit Fatherideally contains Number of
the subunit Son. For example, parts of a Soviet
motorized rifle division might be defined thus:

child(motorized_rifle_division, btr_regiment, 2)
child(motorized_rifle_division, bmp_regiment, 1)
child(motorized_rifle_division, tank_regiment, 1)
child(motorized_rifle_division,
artillery_regiment, 1)
child(bmp_regiment, bmp_battalion, 3)
child(bmp_battalion, bmp_company, 3)
child(bmp_company, bmp_platoon, 3)

Each unit’s equipment is described by the follow-
ing form of fact:

egpmnt_overall(Unit, Ename, Number)

Unit is the name of the unit that has the equipment,
such as art_reg for an artillery regiment. Ename is
the name of the equipment, such as sa_6for an SA-6
antiaircraft missile. Number is the maximum num-
ber of pieces of equipment that the unit can have.
The fact for a particular unit includes only equip-
ment that the unit possesses directly, not a subunit's
equipment. Some sample facts are

egpmnt_overall(art_reg, sa_6, 20)
egpmnt_overall(mr_div, amphi_brdm, 48)

Then facts defining what equipment has been
recognized are stated as follows:

equipment(Name, Number)
For example,

equipment(sa_7, 7)

equipment(rpg_7, 23)

IEEE CG&A

-7

Given this information, the inference engine reports
that

Based on that, my first guess about the unit
present, and the remaining equipment associated
with it, is

Remaining = [[arm_per_car_btr, 38],

[mortar_120mm_1943, 6]]
Unit = mot_rif_btln_btr

This inference engine was designed to be part of a
larger blackboard format system where a low-level
" image-interpretation and geometry engine makes a
first guess about the objects present and passes the
information up to this unit. The output of this unit
can be used to bias the prior probabilities of the
geometry system as it continues to look.

The system is robust: it automatically handles
cases when the unit on the ground is understrength
and its image-interpretation system is unable to find
everything,

Strengths and weaknesses of Prolog

Advantages and disadvantages of Prolog for
graphics and geometric applications have become
evident from the above implementations.

Advantages of Prolog

Prolog has the same high-level advantages as Lisp,
for example, the equivalence of code and data, and
dynamic data allocation. Moreover, Prolog has spe-
cific advantages. Unification makes determining
graph connectivity a primitive operation and is, in
general, useful for propagating transitive properties
that occur frequently, such as graph connectivity.
This is a counterexample to the proposition that
“Unification is what you do when you don't know
what you are doing.”

The pattern matching fits with the form of expres-
sion of many algorithms. For example, our polygon
combination algorithm proceeds as follows. When-
ever the pattern of two edges intersecting or one
edge ending on the interior of another edge occurs,
we retract those edges and assert new smaller edges.
When this pattern no longer exists, we have a
superset of the edges in the output polygon.

Although many of the above features could be
implemented in any language that is Turing equiva-
lent, Prolog is somewhat standard. Therefore, differ-
ent researchers can understand and use each other’s
extensions.

Disadvantages of Prolog

There are, however, some problems with using
Prolog for geometry.
Because Prolog lacks nesting in the program and

November 1986

databases, software engineering problems arise
when using it for a large project. Many geometry
algorithms are more natural to a forward-reasoning
system than a backward-reasoning system; that is,
we are more likely to want the output from some
given input rather than the reverse.

The natural way of expressing pattern-matching
algorithms requires us to modify a database as we
are searching through it. Thus, in polygon overlay,
whenever we find the pattern of two edges crossing,
we retract them and assert four new edges. Back-
tracking and redoing a database that we are modi-
fying does not work on all Prologs. Furthermore,
Prolog does not support coroutines, which are a
natural way to express many algorithms.

In general, Prolog is completely unstandardized
around the fringes, as some tests of the cut pro-
cedure show?2°

Paradigms of programming

Certain techniques have proven to be generally
useful in our implementations, and may be useful to
others also. They include the following paradigms.

Set-based algorithms

Many algorithms such as polydedron intersection
and hidden-surface algorithms!é?! are the alterna-
tion of two steps:

@ Applying function to every element of a set
® Combining all the elements having a common
key

Clearly this is easy in Prolog.

Pattern matching

The second paradigm uses pattern matching to
propagate certain properties. For example, in the
planar graph traversal algorithm, the edges around
each vertex are found and sorted by the angle at
which they leave the vertex. Then the edges around
each vertex are paired to form corners. These
corners can be considered fragments of the output
polygons. Whenever two fragments exist such that
the last edge of one is the same as the first edge of
another, these two fragments are retracted and a
single, longer fragment asserted. When such a pat-
tern no longer exists, we have the output polygons.

Unification

Frequently we wish to determine the closure of
some transitive property, as when we are given a set
of graph edges edge(u, v) and wish to determine the
connected components. We have implemented the
following short algorithm that uses unification and
the set-processing paradigm:

53

Y&

Figure 5. Determining graph connectivity.

® Create a property list (plist) with one record per
vertex, and the property of each vertex a free
variable. For example, in Figure 5 we would
have [[1,-] [2,-] [3,-] [4-] [5.-]. [6,-]].

® Process the set of edges and for each edge unify
the free variable properties of the endpoints.
After this we will have [[1,_1], [2,_1], [3,-1],
[4,-2], [5,-2], [6,—3]] with one unique free vari-
able per graph component.

® Bind a name identifying each component to the
free variables in the list to give something like
[[1, first], [2, first], [3, first], [4, second], [5,
second], [6, third]].

A longer example of a simple hidden-surface algo-
rithm would go as follows:

® Wherever the pattern of the projections of two
edges intersecting occurs, split the edges into
four smaller edge segments.

® For each edge segment find the set of faces
hiding its midpoint. If it is empty, the edge
segment is visible. Draw the edge.

® Use a planar graph traversal algorithm such as
described above to link the visible edges into
polygons.

@ For each polygon, find a point inside it and then
find the set of faces whose projections contain
the projection of that point. Find the closest
such face—the polygon came from it. Color the
polygon accordingly.

This example illustrates all of the paradigms oper-
ating together.

Summary

Although not perfect, Prolog is a powerful tool for
expressing graphics and geometry algorithms in a
concise and natural format. This expressibility allows
larger problems to be solved with a given amount of
the designer’s time, and raises the size of the largest
problem that can be solved before the details be-
come overwhelming. ®

54

Acknowiedgments

Different parts of this work were supported by the
National Science Foundation under PYI grant no.
ECS-8351942, the Data Systems Division of IBM,
and the Rome Air Development Center under the
postdoctoral development program via Syracuse
University.

Franklin’s access to Prolog while at Berkeley was
sponsored by the Defense Advance Research
Projects Agency (DoD) Arpa order no. 4871 moni-
tored by Naval Electronic Systems Command under
contract no. N00039-84-C-0089. The VM-Prolog at
RPI was made available by the Center for Interactive
Computer Graphics.

References

1. WF. Clocksin and C.S. Mellish, Programming in Prolog,
Springer-Verlag, New York, 1981.

2. H. Coelho, J.C. Cotta, and L.M. Pereira, How to Solve It with
Prolog, Ministerio da Habitacao e Obras Publicas, Labatorio
Nacional de Engenharia Civil, Lisboa, 1980.

3. P.S.G. Swinson, “Logic Programming: A Computing Tool for
the Architect of the Future,” Computer Aided Design, Vol. 14,
No. 2, Mar. 1982, pp.97-104.

4. P.S.G. Swinson, F.CN. Pereira, and A. Bijl, “A Fact Depen-
dency System for the Logic Programmer,” Computer Aided
Design, Vol. 15, No. 4, pp.235-243.

5. P.S.G. Swinson, "Prolog: A Prelude to a New Generation of
CAAD,” Computer Aided Design, Vol. 15, No. 6, Nov. 1983,
pp.335-343.

6. J.C. Gonzalez, M.H. Williams, and LE. Aitchison, “Evaluation
of the Effectiveness of Prolog for a CAD Application,” IEEE
CG&A, Vol. 4, No. 3, Mar. 1984, pp.67-75.

7. Beat Bruderlin, "Using Prolog for Constructing Geometric
Objects Defined by Constraints,” Proc. Eurocal 85, Linz,
Austria, 1985.

8. Margaret Nichols, “The Graphical Kernel System in Prolog,”
master’s thesis, Rensselaer Polytechnic Institute, Troy, N.Y,,
1985.

9. Grant Roberts, Waterloo Core Prolog User's Manual (Version
1.5), Intralogic Inc., Waterloo, Ont., Canada, 1984.

10. Wm. R. Franklin and P.Y.F. Wu, “Convex Hull and Polygon
Intersection Implemented in Prolog,” SIAM Conf. Geometric
Modeling and Robotics, Albany, NY., July 1985,

11. Univ. of Salford, LISP/PROLOG Reference Manual Mar.
1984,

IEEE CG&A

Uy

12. I.M. Spivey, Univ. of York Portable Prolog System (Release 1)
User’s Guide, York, UK., 1983.

13. F.P. Preparata and S.J. Hong, “Convex Hulls of Finite Sets of

Points in Two and Three Dimensions,” Comm. ACM, Vol. 2,
No. 20, Feb, 1977, pp.87-93.

14. P.YF. Wu, “Two Arithmetic Packages in Prolog: Infinite
Precision Fixed Point and Exact Rational Numbers,” Tech.
Report TR-082, Rensselaer Polytechnic Institute, Troy, N.Y.,
1986.

15. Wm. R. Franklin, “Cartographic Errors Symptomatic of
Underlying Algebra.Problems,” Proc. Int'l Symp. on Spatial
Data Handling, Vol. 1, Zurich, Sw:tzerlancl Aug 1984, pp.
190-208.

16, Wm. R. Franklin, “A Linear Time Exact H:dden Surface
_ Algorithm,” Computer Graphics (Proc. SIGGRAPH 80), Vol.
14,-No. 3, July 1980, pp.117-123.

17. Claude Sammut, UNSW Prelog User Manual, Univ. of New
South Wales, Australia, 1983, -

18, Wm. R. Franklin, “A Simplified Map Overlay.Algerithm,”

Harvard Computer Graphics Conf,, Cambridge, Mass., July-

31-Aug. 4, 1983.

19. Sumitro Samaddar “An Expert System for Photo Inter-
pretation,” master's thesis, Rensselaer Polytechmc Instnute
. Troy, N.Y., 1985.

" 20. Chris Moss and Earl Fogel, “Tests to Distinguish Various

Implementations of Cut in Prolog,” Imperial College and
Logicware Inc., reported on Usenet June 1985.

21. Wm. R. Franklin, “Efficient Polyhedron Intersection and
Union,” Proe. Gmph:cs Interface 82, Toronto, May 1982,
Pp.73-80.

_Rensselaer Polytechnic Institute Troy, New York 12180-3590

Wm. Randolph Franklin is an associate pro-
. fessor with the Eleetrical, Systems, and
Computer ‘Engineering Dept. at Rensselaer
Polytechnic Institute. During 1985-86, when
some of this work was performed, he was on
sabbatical-at the University of California at
. Berkeley. His research interests include
graph:cs geometry algorithms, and artificial
intelligence. Franklin received the BSc in
~“ computer science from the University of
Toronto in 1973 and the AM and PhD in applied mathematics
‘(computer science) from Harvard in 1975 and 1978. He is a
member of IEEE, AEM, and SIAM.
Franklin's electronic address is FRANKLIN@CSV. RPI EDU.

Electrical, Systems, and Computer Engineer-
ng Dept. at Rensselaer Polytechnic Institute.
% He received his BS in electrical engineering
from the University of Rochester in 1979, and
MS in computer and systems engineering
¢ from Rensselaer Polytechnic Institute in 1983,
“ His research interests include géometry,
computer graphics, and the software tech-
nologies involved. He is a member of IEEE
and ACM.

November 1986

Copyright © 1986 The Institute of Electrical and Electronics Engineers, Inc.
- Reprinted with permission from IEEE Computer Graphics and Applications,

Sumitro Samaddar is a research scientist
with the rohotics group in the Siemens Re-
search and Technology Laboratories. He re-
ceived his BTech in-electrical engineering

MS in computer and systems engineering
from Rensselaer Polytechnic Institute, His
interests include computer graphics and
knowledge-based systems: Now he is involved
with the development of graphics tools and
interfaces in an mtegraied robot programming environment for
the design, simulation, and off-line programming of automated
factory cells. Samaddar is a member of the IEEE Computer
Society. :

Margaret Nichols is a programmer with North American Philips
Lighting Co. She obtained her BS from State University of New

. York at Binghamton and MS in computer and systems cnglnc:er-

ing from Rensselaer Polytechnic Institute. Her master's thesis
was about the development of GKS in Prolog. Her interests
include artificial mtelllgence and computer graphics. She is a

member of ACM.

Franklin' and Wu can be contacted at the ECSE Dept Rens-'
selaer Polytechmc Institute, Troy, NY 12180.

55

10662 Los Vaqueros Clrcle Los Alamitos, CA 90720

from the Indian Institute of Technology and .

Uit

