What do you call an algorithm designed to stack things up
to build larger things? Why, STACK, of course.
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T‘le volume of a solid object Q bounded by planar or
curved surfaces is easily computed by numerical inte-
gration. Q is first approximated by a set of elements
bounded by planes (e.g., rectangular parallelepipeds, or
PPs for short). These PPs are assumed without loss of
generality to be evenly spaced in the xy-plane but to have
varying lengths along the z-axis. Then, the sum of their
volumes gives an approximation of the volume of Q.
Theoretically, the exact volume of Q is the limit of this sum
as the number of PPs approaches infinity, assuming that
@’s boundary consists of well-behaving surfaces.

To compute the PPs from @, one casts parallel rays
through the xy-plane.' The two-dimensional spacing g of
rays in the xy-plane defines two dimensions of the PPs.
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The third dimension is specified by the entry/exit points of
a ray to/from the object. In this article we demonstrate the
usefulness of parallelepiped approximation in a different
context: namely, solid modeling via octrees.>”

Octrees are data structures for modeling solids by
symmetric recursive indexing Assume that Q is inside a
cubic universe W with edge length u = 244X [ A\ 4 X an
integer (typically 10). The universe is divided into &’ cubes
of a unit size called voxels. To obtain the octree 0, W is
symmetrically subdivided into eight octants of equal
volume. Each of these octants will be either homogeneous
(fully occupied by Q or void) or heterogeneous (partially
occupied by Q). The heterogeneous octants are further
divided into suboctants. This procedure is carried out
recursively until octants (possibly single voxels) of uniform
properties are obtained. The approximate nature of {) in
modeling Q is inherent in the decision step at the voxel
level; a partial voxel must be labeled either full or empty. It
is useful to visualize octrees as a generalization of quad-
trees.”

In this article we provide a novel algorithm called
STACK for building an octres from a given set of PPs
approximating an object. The advantages of STACK are
that it is simple to program and understand, it creates a
minimal-sized octree (in a sense to be defined later) from
the given PPs, and it is well-suited for handling very large
(i.e., very precisely specified) objects, since it can be
programmed to work with linear files which are always
accessed in an orderly fashion. Furthermore, it does not
lead to an intermediate storage swell.

Relevant papers on this subject are quite recent. Samet
considers a special case, the conversion of two-dimensional
binary arrays to quadtrees’ Yau and Srihari give an
algorithm for constructing the tree of a d-dimensional
binary image from the trees of its (d — |)-dimensional cross
sections.”” Tamminen and Samet give an algorithm for
converting from the boundary representation of a solid to
the corresponding octree model using a connected com-
ponents labeling technique.'

Data structures

A set s = {x, x,, ..., x,} is a collection of distinct
clements. An interval [ . .. k] is a sequence of integers, j,
J+1,...,k Alist qis a sequence of elements, 5 S
x,]. Element x, is the head of ¢, and x, is the tail. The
empty list is denoted by [ ]. There are three fundamental
operations on lists: - "

1. Access: Given a list g = ey x,] and an
integer i, return the ith element g(i) = x, of the list.

2. Sublist: Givenalistg=[x, x,,..., x,] and a pair of
integers / and j, return the list g[i . . A=k, X - X1

3. Concatenation: Given two lists g = - TSRS
andr=[y, y,...,¥,], return their concatenation gr=
[xp % - <y X ¥4y Y3+« 4 3, If £ has only one element,
this operation is called append.
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We denote the cardinality n of a list g by | g|. (The same
notation is used for sets and for the ordinary absolute value
function also.) An n-tuple, <X, X, ..., x,>>, denotes n
elements in that order. In general, the notation of this
article closely follows that of Tarjan."

We start with a description of our input and output data
structures, 7 and (), respectively. It is assumed that u =
2M4¥ and g = 2" where K €[0 . . . LMAX]. The elements
of 7 are 4-tuples called PPs:

T={<0) 2, 5> | np2,5e[0...u-1], 2 <z,
and x, y, z,, z, + 1 are all divisible by g}.

The elements of 7 will also be denoted by ppi=1,|m|.
The x, , z,, and z, values of a particular p ¢ = will be
denoted by p(x), p(»), p(z,), and p(z,), respectively. It is
assumed that all PPs in 7 are mutually disjoint.

We refer the reader to Tarjan" for relevant terminology
on trees. In a tree, the level of a node v is defined
recursively as

level (v) = 0, if v is the root, and
level (v) = level (f(v)) + 1, otherwise.

Here f(v) denotes the father of v. A node with no sons is a
leaf. The level of a tree is understood as the level of its
deepest leaf. The output ) of our algorithm is an octree (a
tree in which every nonleaf node has eight sons) with the
following properties:

~ 1. The nodes of () are labeled with three types: empty,
full, and partial.

2. The root of () is always partial except when = is
trivially equal to a completely full (respectively completely
empty) W, in which case it becomes full (respectively
empty).

3. Thelevelof Nis LMAX' =logu—logg=LMAX —
K. (In this article log always denotes log,.)

4. The leaves of () are either empty or full

5. The nonleaf nodes of {} are partial.

Before we describe our main data structure, we give a
few definitions to make the upcoming algorithmic descrip-
tion easier, A row at level i is a 3-tuple <x, y, z>> where z is
divisible by h = 2*" this is shorthand for PP <, y, z,
2,>where z, = z+ h— 1. It is noted that the z-length of a
row at level i is always A units or /g spacings. Two rows r
=<x, ), z>and r, = <x,, y,, 2> at the same level are
called adjacent if x, = x, and |y, — y,| = g. (This definition
requires that they have the same z-length.) 2‘ (i e [1 . ..
LMAX])rows at level LMAX — i are combinable if, when
sorted in y to be r,, 7,, .. ., every intermediate 7, in this
sequence is adjacent to its predecessor and successor and r,
is a multiple of A.

For example, the rows <0, 0, 0>, <0, 1, 0>, <0, 2, 0>,
and <0, 3, 0> at level LMAX — 1 are combinable, while
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Figure 1. Two rows of length i = 2 that are combinable
into one square (a). Two rows that cannot be combined,
since they are misaligned (b).

Figure 2. Splitting a PP <1, 1, 17, 93> into nine rows.

Figure 3. Two rows of length 4 (a) that cannot be combined
into a square but can be splitinto four rows of length 2 (b)
and then combined into two squares of side 2 (c).
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the rows <0, 1,0>, <1, 1,0>,<2,0,0>, and <2, 1, 0>
at level LMAX — | are not, since they are not adjacent.
(See Figure 1 for other examples.)

Letr, r,, . .. be 2' combinable rows at level LMAX —i.
A square s at level LMAX — i of 2%4% by 2M4% by 1
voxels is obtained by combining them into a single 3-tuple
<x, y, z>> where s(y) = min, (r,(»)), and s(x) = r,(x), and
s(z) = r,(z). Two squares 5, = <x,, ¥, 2> and 5, = <x,,
¥,» 2> at the same level are called adjacent if y, = y, and
|x, — x,| = g (They have the same z-length.) 2 (i €
[1...LMAX]) squares are combinable if when sorted in x
to be s, §,, . . . every §; in this sequence is adjacent to its
predecessor and successor, and s, is a multiple of A.

For example, the squares <0, 0, 0> and <1, 0,0> at
level LMAX — | are combinable, while the squares <0, 0,
0> and <0, 3, 0> at level LMAX — | are not.

Lets,,s,, . . . be 2' combinable squares at level LMAX —
i A cube c at level LMAX — i of 22MA% py 224X py
JLIMAX=l yovels is obtained from their combination as a
3-tuple <x, y, z>where c(x) = minj(rj(x)), and c(y)=r,
(»), and c(z) = r, (2).

If a row <x, y, z>> at level i, i <LMALX, is split in the z
direction, then two rows, <x, y, z>>and <x, y, z + h>, are
obtained at level i + 1. If a square <x, y, z>> at level i is
split in x and y directions, then four squares, s A
<x,ythz><xthyz>and<x+ h,y+ h, z>,are
obtained at level i + 1. In both cases A = 2247 It
should be clear that the idea of splitting can be generalized
to cubes and hypercubes.

The maximal components of a single PP p form a list
[m,, m,, . ..] of rows in which each m, is a component. To
find the components, first search for the longest (in z) row
in p. This is a component. Remove it from p. This either
reduces p to a shorter (in z) PP or partitions it into two
PPs which are also shorter than p. In any case this
procedure recurses until a created component has z-length
g It is then partitioned no further. Once the maximal
components are found, it should be impossible to obtain a
longer component by combining two components.

For example, the maximal components of the PP <1, 1,
17, 93> are the list of rows [<1, [, 17> at level LMAX,
<1, 1,18>atlevel LMAX —1,<1,1,20>atlevel LMAX
—2.<I1,1,24>at level LMAX — 3, <1, 1,32>> at level
LMAX—5,<1,1,64>at level LMAX —4,<1,1,80>at
level _IMAX —3,<1,1,88>atlevel LMAX —2,and <I,
1, 92> at level LM AX], as shown in Figure 2.

Our main data structure consists of a set of at most
DMAX(LMAX + 1) — 1 lists that we will call §A-lists
(dimension-level lists). Here, DMAX is the maximum
dimension of W, and LMAX = LMAX — K, as before. A
8 A-list at dimension D and level L is denoted as 1. There
are LM AX’ one-dimensional A-lists, LMAX' two-dimen-
sional &A-lists, and LM AX’ — | three-dimensional §A-lists
when D = 3. (In general, the number of the highest
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dimensional lists will be one less than their predecessors.)
The elements of 7, are rows if D=1, squares if D =2,
cubes if D = 3, and hypercubes if D > 3. Although our
algorithm will still be correct for D >3, we will not be
concerned with this anymore, since its practical value is
questionable in the absence of affordable 4-D display
devices.

When || is very large, it may be advantageous to
employ linear disk files to hold the SA-lists. In this case
only three files will be open during the execution of our
algorithm: 7, for read, and both p,, , and 15, ., for write.
Since reads always take place sequentially and writes are
always carried out as appends, the algorithm is on solid
ground against virtual-memory page faults.

Finally, although we have a language with dynamic
data-structuring facilities in mind to implement this algo-
rithm, for static languages (such as Fortran) a list space to
hold 2(LMAX' + 1) 8A-lists would be enough for any
DMAX > 2. This is because once the combine/split
operation (to be explained later) is finished with one-
dimensional &A-lists, one can allocate the space they
occupied for the three-dimensional lists, and so on.

Algorithm

The following uses an Algol-like language combining
Dijkstra’s guarded command language and SETL to ex-
press our algorithm. This language is described in detail by
Tarjan' and will not be explained here.

Throughout this article DMAX will denote the maxi-
mum dimension, which is typically 3; D is the current
dimension. LMAX denotes the maximum level, which is
typically 10 for a spacing value g = I; L is the current level.
The universe W is at level 0, and an LM A X-level full octree
has 84X |owest level nodes. Using a larger spacing, it is
possible to reduce the maximum level to LMAX =
LMAX —log g.

A brief summary of our algorithm, STACK, shows that
STACK first tries to combine adjacent rows into squares.
(Assume that each PP has been divided into its maximal
components and these have already been inserted into
relevant one-dimensional 8A-lists using MAXCOM below.)
If a row cannot be combined, it is split into two smaller
(half-size) rows that are tried until the remaining pieces are
at level LMAX. (See Figure 3.) These are inserted into {},
since there is no way to combine them.

Then STACK tries to combine adjacent squares into
cubes. Any square that cannot be combined is split into
four smaller (quarter-size) squares, and the process is
repeated until the remaining pieces are at level LMAX,
and they are added to (). Finally, all the cubes that were
produced are added to {). We will show in the next section
that this builds Q) in its reduced form. (An octree is in
reduced form if it has no partial nodes having all empty or
all full sons.)
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In STACK the high-level operation “SORT list BY key”
is lexicographic, since key is composite. In the same
procedure the “addition of a full node to (17 is intentionally
left as a high-level step. This is because an octree is
basically a digital search tree (also known as trie), and
handling insertion in a trie is well-known."”

Several properties of STACK can be deduced from these
procedures:

Lemma I: Level (Q) < LMAX'.
Proof: Obvious, since the minimum cube must have an
edge length =g.

Lemma 2: The elements of 1, .5 and 1, ;5 cannot be
combined and hence are full nodes of ().
Proof: Trivial.

Lemma 3: There is no need for 1, ;-

Proof: Any input o 1, ;- can come only from 2, x»
which is [] at that point. Additionally, the latter cannot
send the former anything, since it cannot combine because
of Lemma 2.

Lemma 4: () is always in reduced form after STACK is
applied.

Proof: Assume that this is not true. Take any partial node
of ) at level L that has eight full nodes. (Eight empty nodes
are treated similarly.) These certainly imply 2-4**™* com-
binable squares at level L + 1, which must have been
correctly computed by the CSROW procedure. But then
CSSQR would correctly combine them into a full cube at
level L.

Efficiency

To estimate the efficiency of STACK, we examine its
individual steps. Since we are trying to see the worst-case
complexity, let's assume that g = [; thus LMAX" =
LMAX.

For a given PP there can be as many as 2ALMAX - 1)
maximal components. Therefore, MAXCOM initializes all
the one-dimensional §A-lists with rows in O(LMAX |m|)
operations under the assumption that appends take (X1)
time.

Sorting a §A-list is a common operation in STACK. The
important point is that for D > I, lists ¢, will not be
completely scrambled prior to sorting. Because of the way
new elements are appended into them in almost-sorted
order, they will have some order in them. (We refer the
reader to CSROW and CSSQR to see this clearly.) On the
other hand, one can assume that there will be no order in
one-dimensional 8A-lists initially; they are in random
order. This would not be true if the elements of = were
listed in some order; this may happen if the ray-casting is
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implemented in some methodical manner, for instance via
do-loops while computing the PPs. It is noted that one-
dimensional splits also introduce some order to one-
dimensional §A-lists. To exploit this last fact, one can use
Shell sort, which is of average-case O(n'**).”* A quick sort
routine that handles partly sorted lists efficiently would
also be excellent.

Finally, we emphasize that after the sorting step,
CSROW and CSSQR execute very efficiently, since they
make a single pass over the list and spend |7, | time.
(Appends are carried out in constant time.)
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Implementation results

We implemented STACK in Ratfor (a structured dialect
of Fortran). For a 1/8 sphere the elapsed CPU time of the
algorithm is 9.2 seconds on a Prime 750. This object is built
from 833 PPs with LMAX = 10 and g = 16. The final
octree has a total of 6569 nodes (4090 full, 1664 full with
surface normals—see the explanation of surface normals
below). For a paraboloid built from 916 PPs with LMAX
= 10 and g = 32, the final octree has a total of 5913 nodes
(3248 full, 1832 full with surface normals). This takes 7.4
seconds of CPU time. In agreement with our predictions,
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the 1/O time, which is due to paging, is low in both cases
(0.9 and 0.3 seconds, respectively). For a precisely specified
1/8 sphere consisting of 12,985 PPs, STACK takes about 3
CPU minutes to build the final octree, which has 106,833
nodes and LM AX = 8. The node distribution is 67,570 full
nodes, 13,354 partial nodes, and 25,909 empty nodes. This
object is larger than many of the examples cited by Yau
and Srihari'”® and by Tamminen and Samet."'

Since an octree created by STACK must eventually be

displayed, most of the time PPs will also have surface
normal vectors n, and n, associated with their z, and z,
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endpoints, respectively. That is, p is a 6-tuple <x, y, z,, z,,
n,, n,> where

n=n(x)i+n (¥)j+n (2)k and
n=n(x)it+tn (y)j+n, (2) k. (Here, i, j, and k are
the unit vectors in x, y, and z directions, respectively.)

In this case to create () from T, the following approach can
be used. Create for each p e¢ m three PPs p,, p,, and p’
where

p, =<x, ¥, 2, 7, + g — 1> with implied normal n,,

p, =<x, ¥, z, — g+ 1, z,> with implied normal n,, and

p'=<x y 2z, + & z, — g> with no normals,
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assuming that p=<x, y,z,, z,, M, ,>, z, —z; > g— L.(If
for a particular p, z, — z, = g — 1, then only p, is created
with implied normal n,. This happened twice in the above
1/8 sphere, as can be seen from the number of full nodes
with normals.) Once this partitioning is done, the idea is to
add p, and p, along with their normals to () directly, since
these must not be combined. Then for 7’ (which is the set
including all ) STACK is applied as before. Basically,
what we are doing can be summarized as “peeling off the
skin” of  to obtain 7. l
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