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1. Introduction
In (2] R.L. Graham asked the following question:

Given n positive integers a,, - --,a, and integer L, can we decide 7Is
n

Y v/a; <L ?" in time polynomial in n plus the number of bits needed to express
b

the integers a, - - * ,a, and L?

In this paper we summarize three approaches to this question. The first one is a straight alge-
braic manipulation which reduces the question to a question about the roots of a polynomial.
The second approach is based on the identification of algebraic numbers. The last approach
is known as Diophantine approximation and has close ties with continued fractions. Although
we cannot rule out the possibility, our results show that an affirmative answer to the above
question is highly unlikely. Throughout the paper, we shall only deal with the "equality”
question. We think that the "less than” question is more difficult to answer although we do
not currently have a proof of this.

2. Repeated Squaring

One approach to answer the equality question is to use repeated squaring to get rid of all the

n
square roots. Let Y,\/e; =z . Assume that P,_, is the polynomial with integral coeflicients
1

n-1
given in terms of a;, 1<i<n-1, such that P,.1(}+/¢;)=0. Then one obtains
1

P, _i(z -/, }=0. Notice that when we make the last substitution, the only coefficients that
are not integers would be made of several odd powers of y/a, . Clearly, all these terms can be
written as K +/a, where K is integer. Thus, P, is obtained from P,_, by just squaring to

n
eliminate /a,. P, (2\/ a; ) is necessarily zero and all coefficients of P, are integers in terms
1

of ¢;, 1<i <n . Furthermore, note that only the even powers of z are present in F, .

EXAMPLE. Since P, (z) is of degree 2", we give only the first few polynomials (using e, b,
¢ instead of @y, aq, as ):

P ](.’E ]=I‘2-'(l

38



Po(z)=2*-2(a +b)z%+(a-b )

Po(z )=2%-4(a +b +c )z *+(6(a2+b 2+ c ) +4(ab +ac +be ))z*
—(4(a®+b%+c)-4(a% +a%c +b%a +b%c +c%a +c?b )+40abe )2 *
+(at+bt+e*4(a’h +adc +b3a +b3%c +cla+c®b)
+6(a%+a%c2+b%c?)-4(a%bec +b%ac +c2ab))

Once P, (z) is obtained we can answer the equality question by evaluating P, (L ). Thus, for
example, v2+v3+v/5+V7 cannot be equal to 8 since for these numbers one can compute

P y(z )=2'%-1362'44-64762 '2-1419122'°+15133342 ®
7453176z +139507647 *-5506840z > +46225

which is not equal to zero at z =8. It is important to observe that one in fact very quickly
detects this since 8 is not a divisor of the constant term 46225 of P 4. (Any rational root of a
monic polynomial with integer coeflicients must be an integer which is a divisor of its con-
stant term.)

An important property of P, is the following. All 2" roots of P, are real and symmetric
about the origin. They are given as ++/a;+ * - - £\/a,. Fig. 1 shows how the graph of P,
looks like assuming that a;< - - <a,.
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Fig. 1. The graph of P, (z)

3. Mignotte’s Method

In [6] M. Mignotte gives a method to answer the following question. If o and /3 are given alge-
braic numbers, can we decide whether =/ or not by just inspecting their approximations
o and @ ? (It is convenient to think that we can obtain these approximations via a numeri-
cal technique.) We first give some definitions to make the following discussion clear.

A real number « is algebraic if there exists a polynomial P with integer coefficients such that
P (a)=0. By Irr(a) we denote the minimal polynomial of ; this is the unique polynomial R
such that (i) R (a)=0, (ii) the coeflicients of R are integer, (iii) the degree of R is minimal,



) :
and (iv) if R (z y=aoz®+a,2% '+ - - - +a, then 2,>0 and 3| ¢; | is minimal. We denote
0

d
the length of @ by L () which is equal to 331 |- The degree of « is denoted by deg(a) and

0
is equal to d. o and other roots of P are called the conjugates of . An algebraic number
becomes an algebraic integer if it is the root of a monic polynomial with integer coeflicients.
Clearly, for every algebraic number o there exists a least positive integer den(a) (called the
denominator of @) such that aden(a) is an algebraic integer.

A size function s for algebraic numbers satisfies the following conditions:

For all real numbers 7, card{a:s (o) <r }<co
s (0)=0; s (1)=1

. s (a+B)<s (@)+s (B)

s (aB)<s(a)s (B)

. 8 (—a)=s (o)

U R GO D =

Mignotte showed that s (o)=log$ (e) is a size where

5 (a)=den(a)deg(a)(l+m?x le; |)

Here a; are the conjugates of a.) He also proved the very important result
g

l a3 l 2c—deg{a)deg(ﬁ)(s(a)+s{ﬂ]]

when « and 3 are different algebraic numbers.

n

Returning to our original problem, let us try to see if Y,/a; is equal to L. Size of the
1

former term is <Y log(2(1++/a;)). Furthermore, we have seen in the previous section that

1
the degree of this term is <2". Size of L is log(L +1) whereas its degree is 1. (We omit the

details of how the sizes are computed.) Using the result of Mignotte it is seen that we should
=27 (logL +Sloga( )

evaluate approximations o' and ' to a precision of O (e t ). We think that
reaching to such a precision must take exponential time in n .

4. Simultaneous Diophantine Approximation

We start with some facts from the area of continued fractions. (R.W. Gosper provides a good
1 1 1
i -2 by the
shorthand [ag,a,,82, * * * ,0. |- ANy rational number can be represented by a finite continued
fraction. The main interest however lies in the application of continued fractions to the
representation of irrationals. For this infinite continued fractions are needed. Call an irra-
tional root of a quadratic equation with integral coeflicients a quadratic irrationality. (Thus, a
positive integer inside square root is a special case of it.) It is known that the continued frac-
tion which represents a quadratic irrationality is periodic. (A periodic continued fraction is an

summary in [1].) We shall denote the continued fraction ag+



infinite continued fraction in which a;=a; 4 for a fixed k¥ and all I >M . The set of partial
quotients @y, " ' ,0M4k1 1S the period and the fraction is  denoted
[@pss G 1,00 Gp 415 © * " s0M4k-1) Where the "dot” points out to the periodic portion.)
Thus, for example, v2=(1,2], V3=[1,1,2], and V7=[2,1,1,1 4].

We shall say that an irrational number o is approximable by rationals to order & if there is a
¢ (@), depending only on a, for which |p/g-a| <c (@)/q* where p and ¢ are integers.
Clearly, a rational is approximable to order 1, and no higher. Any irrational is approximable
to order 2. A quadratic irrationality is approximable to order 2, and no higher.

In simultaneous Diophantine approximation (SDA) one tries to approximate a given vector
a—(ay, - * * ,e4) by a vector of rational numbers p=(p,/q, -~ ,pa/q ) Here d is the dimen-

ston of the problem. For a historical review of the area, the reader is referred to 3, 5]. In the
first reference it is shown that the system of inequalities

| pi /g -a; | <1/q"** where p=1/d i =1, - ,d

has at least one solution. If one @; is irrational then it has an infinity of solutions. (Note that
by a solution we mean the determination of p; since ¢ is given.)

THEOREM (Dirichlet) [3]. Given ay, - = * ,ay and any positive ¢, one can find an integer ¢
such that g a; differs from an integer, for every ¢, by less than e.

The following has the same general character as the above theorem but is deeper.

THEOREM (Kronecker) (3]. If ay, - - 04,1 are linearly independent, By, - - * 84 are arbi-
trary, and N and € positive, then there exist integers n >N, py, - - - ,pg such that
| na;—pi—B; | <ei=1, - .d

Recently, J.C. Lagarias obtained several important results regarding the SDA problem. For
instance, he gives the following theorem for SDA of a rational vector a.

THEOREM 1 [4]. For a fixed dimension d, there exist algorithms to solve the following two
problems in worst case polynomial time in input length.

1. Given a=(z/yy, - -~ .%4/¥s) (Where z; and y; are integers) and positive
integers N, s;, and sp find a denominator Q@ (1<€@Q <N) such that
{{Q@}}<s./s2, provided at least one exists, and @ =0 otherwise.

2. Given @=(z,/yy, """ %4 /¥4) (where z; and y; are integers) and positive
integer N, find a complete list of all best simultaneous approximation denomina-
tors @ to @ for which @ <N .

It is noted that in Theorem 1 {{Q @}} is given by }g}_aé(d{(;) a; } where {8} is the distance of

B to the nearest integer. The best simultaneous approximation denominators are exactly those
Q for which {{Q&}}<{{@"' a}} with 1= @ < Q. However, if one allows d to vary then
the following decision version of the SDA problem is NP-complete.



THEOREM 2 [4]. The set recognition problem »Is there an integer @ (1<Q <N ) such that
{{@a}}<si/sy " is NP-complete for a given instance &=(z,/y1, * * * %4 /¥4) and positive
integers N, 5, and so.

We now shortly look at the consequences of the above facts. Although the fact that a qua-
dratic irrationality necessarily has a periodic continued fraction is seemingly a nice property,
the amount of effort to detect this period may be arbitrarily large. This is certainly very
discouraging since we may always err in answering the question in Section 1 if we employ the
incomplete continued fractions of the given irrationalities. The limit on the approximability
of quadratic irrationalities is less severe. One can always choose @ very large to obtain good
approximations a la Lagarias. Yet, we know from Theorem 2 that currently we cannot do
this in polynomial time (unless P=NP) in the dimension of the problem even for a vector of
rationals. Since irrationals are more complez than rationals, a polynomial method for them is
at least as unexpected.
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