SIAM Conf. on Geom. Model. and Robotics, July 85, Albany

A Workbench to Compute Unobstructed
Shortest Paths in Three-Space

Wm. Randolph Franklin and Varol Akman
Dept. of Electrical. Computer. and Systems Eng.
Rensselaer Polytechnic Institute
Troy. New York 12180-3590
(518) 266-6077

Abstract

Recently, the following problem has gained considerable importance in com-
putational geometry:

FINDPATH: Given a set of obstacles and two points (source and
goal). calculate the shortest path between these points under the
Euclidean metric, constrained to avoid intersections with the given
obstacles.

We present three implementations to solve specific instances of FINDPATH
in three-space where the obstacles become polyhedra. In the first two cases
there exists a single convex polyhedron and the source and the goal points are
on its boundary or exterior. These solutions make use of planar developments
of polyhedra and polyhedral visibility. The last case is based on a locus
method. It partitions the boundary of a convex polyhedron given only the
source on it so that for a later goal on the boundary, the shortest path is
found efficiently. It makes use of standard point location algorithms for a
straight-edge planar subdivision once the partitioning is done.

0. Introduction and Recent Algorithms in Three-Space

Let P={P,, - - ,P,} be a prescribed set of disjoint polyhedra and s ,g¢ R?
be distinct points which are not internal to any P,. The class of rectifiable

curves which have endpoints s and ¢ and which do not intersect any intP,
will be denoted by C(s,g;P). For C in this class, 1(C) will denote the

36

length of C under the Euclidean (L ,) metric. An interesting problem in com-
putational geometry asks for the shortest one among these curves:

FINDPATH

INSTANCE: Polyhedra P={P,, - - - ,P,} such that P, P, =9,
i#7, and s.geR> such that s#¢ and s,g do not belong to
intP;, 1<ign.

QUESTION: Which Ce C (s ,g:P) has the shortest length?

The following theorem must be intuitively clear:

THEOREM 0.1 There exists a C €C(s,9:P) ‘ such that for all
CeC(s,g:P), |(C)KI(C). Moreover, every such C is a polygonal path
with its possible bend points belonging to some edges of some members of P.

Proof . Omitted. O

It is noted that the polygonal path € found in theorem 0.1 is not necessarily
unique. (In fact, there may be exponentially many shortest paths in terms of
n.) We shall call any such path an s -to-g shortest path . Thus, FINDPATH
asks for the characterization (i.e., the determination of the bend points) of an
s -to-g shortest path.

There is a wealth of material in the general area of motion planning which
comprises other familiar robotics problems such as FINDSPACE, MAK-
ESPACE, etc. in addition to FINDPATH. For brevity, we shall refer the
reader to a recent work by Akman|1] which deals with FINDPATH in greater
detail and lists numerous references. Franklin and Akman also inspect the
same problem from various perspectives in [8, 9, 10, 11].

Sharir and Schorr’s work[32] is another detailed study on shortest paths.
They mainly consider the case of BOUNDARY FINDPATH (locus) (cf. sec-
tion 3) and present an algorithm which works in time O (n) per query where
n is the measure of complexity of the polyhedron, say the number of vertices.
Their algorithm is based on the idea of "ridge" points on the object. A ridge
point on the polyhedron has the property that there exists at least two shor-
test paths to it from the source. It turns out that the set of ridge points is a
union of line segments and that the union of the vertices and the ridge points
is a closed connected set. Defining the union of the latter with the shortest
paths from the source to every vertex, one partitions the polyhedron boun-
dary into disjoint connected regions (called "peels") whose interiors are free of
vertices or ridge points. The peels can be constructed in O (n?’logn) (prepro-
cessing) time using complicated techniques whose implementation seems
extremely difficult. The size of the data structure that is created by the
preprocessing step is O (n 2).

O’Rourke et al[24] use Sharir and Schorr’s ideas to extend the problem to a
polyhedral surface which is no more supposed to be convex. (However, it
should be orientable.) The shortest path that they calculate is only a "geo-
desic", i.e., it is confined to the surface and thus may not be the true shortest
path. Their algorithm runs in O (n°) time. Furthermore, it does not follow a
locus approach: using their algorithm on each new query (goal point) would
take O (n*) time.

Mitchell and Papadimitriou[23] give an algorithm to solve this last problem in
a locus setting. (It is noted that they are still computing geodesics, not true
shortest paths.) Theirs is an O (n’logn) time algorithm for subdividing the
surface of an arbitrary polyhedron (possibly of positive genus) so that the
length of the shortest path from a given source to any goal on the surface is
obtainable by simple point location. It has striking similarities to Dijkstra’s
method for shortest paths in graphs. As in our algorithm to be presented in
section 3, point location is achieved in time O (logn), after which the actual
shortest path is backtracked in time proportional to the number of faces that
it traverses on the boundary.

1. Shortest Paths on a Convex Polyhedron
Consider the following specific instance of FINDPATH:

BOUNDARY FINDPATH

INSTANCE: Convex polyhedron P, specified points s.gebdP
where s #£¢ .

QUESTION: Which C ¢bdP has the shortest length?

Before we solve this problem we give an argument as to its importance. Let
P={P, ---.,P,} be a set of conver polyhedra. If we are allowed to com-
pute a reasonably short (but not the shortest) s-to-g path then we can pur-
sue the following strategy. Let P’ be the subset of P such that every
member of P’ is intersected by sg. (If a polyhedron is intersected by sg
only once then it is not included in P’ ; thus P’ consists of polyhedra inter-
sected by sg at precisely two points.) Applying BOUNDARY FINDPATH to
each member of P we obtain an s-to-¢g polygonal path which comprises two
types of curves: line segments through free space. and polygonal paths along
the boundaries of the polyhedra between where the path "lands" from free
space and "takes off" again (figure 1). Repeated optimization of this path is
possible and will frequently yield a better (with fewer bend points) and
shorter path (figure 2) although it is not difficult to come up with cases where
repeated optimization might cause clashes.

We shall assume that the boundary representation is used to define a

-3-

polyhedron P. In this representation scheme each vertex is defined by its
z,y,z coordinates and each face is given as a list of pointers to the vertices,
ordered in counterclockwise around the boundary of the face with respect to a
point above it. It is convenient to think of vertex labels or face labels as posi-
tive integers.

DEFINITION The face graph (Fgraph) of a convex polyhedron P is an
undirected graph Fgraph =(FV ,FE) with unit arc weight, FV={i:F, is a
face of P} and FE={(i,j):F,and F; are adjacent}. (Two faces are

adjacent if they share an edge.) O

EXAMPLE Figure 3(a) shows the face graph of a cube. In figure 3(b), the
face graph of a parallelepiped is given to note that Fgraph only preserves the
adjacency information. Figure 3(c) shows that two faces with a common
point only are not considered adjacent by this definition. O

DEFINITION Let Ce¢bdP be an s-to-g polygonal path. The sequence of
faces that C enters defines the face visit sequence of C which will be denoted
by fvsC . O

Thus fvsC is a walk in Fgraph between the nodes corresponding to faces F,
and F,, the faces of P containing s and g, respectively. An immediate
consequence of the above definition is:

LEMMA 1.1 Let C " ¢bdP be an s-to-g shortest path. Then fvsC is a sim-
ple walk in Fgraph .

Proof . If this is not true then C ~ enters a face at least twice. Recalling the
fact that the faces of P are all convex, we can then further shorten C . a
contradiction. O

From now on, all face visit sequences will therefore be assumed to be simple.

In addition to Fgraph , a useful construct that will be used by BOUNDARY
FINDPATH is the planar development of a given face visit sequence. It is
well-known that the boundary of a convex polyhedron has the structure of a
planar graph. Therefore, the totality of the faces of P, situated in three-
space in certain mutual relationship, can be represented in two-space (specifi-
cally the zy-plane) by a system of polygons identified with the faces of P.
The relationship between a planar development and the planar polygonal
polygonal schema will be apparent after the following description of how to
obtain the latter.

In the zy-plane associate with each face of P a polygon having the same
metrical form. (Two polygons have the same metrical form if they can be

made to coincide by translations and rotations.) Define the glue relationship
between the pairs of edges of these polygons such that two glued edges come
from the same edge of P. Figure 4 illustrates this for a cube. Each edge in
the planar polygonal schema is glued to exactly one edge.

DEFINITION A planar development corresponding to a face visit sequence
1, - -,k is a union of polygons F,, - - - ,F, of the planar polygonal schema
of P. In the planar development two polygons F, and F,.,, 1<i<k are
united along the edge that they are glued to each other, and do not overlap.
O

DEFINITION The image of a point on a polyhedron under a planar develop-
ment is the point in the plane that it ends up under the development. O

DEFINITION A planar development is legal if the line segment connecting
the images of the source and the goal is internal to the development. O

EXAMPLE Figure 5 shows several planar developments computed and drawn
by SP, our shortest path workbench (cf. appendix). The objects are as fol-
lows. Figure 5(a): cube, figure 5(b): icosahedron, figure 5(c) and (d): dode-
cahedron. It is noted that the last development is not legal. O

It should be apparent that once a planar development is built, it can be
moved to any position and orientation in the plane without changing the
intrinsic geometry of the paths. We shall now give a procedural definition of
a planar development:

DEFINITION To compute the planar development of a face visit sequence
1, - - - .k, start with F ;. If affF'| is parallel to the zy-plane then translate P
by a suitable amount so that F; is now in the zy-plane; otherwise, let the
dihedral angle between affF | and the zy-plane be D and and rotate P about
the line affF | zy-plane by D to map F, to the zy-plane. The remaining
faces F,; are inductively handled as follows. Let e be the common edge of
F, ; and F; whose dihedral angle is D . Rotate P by D about affe to place
F; to the zy-plane while avoiding overlaps with F, ,’s polygon which is
already there. O

Now we are ready for:

Algorithm BOUNDARY FINDPATH

1. Let F; and F, be the faces of P including s and g, respectively. Assume
that F; #F,; otherwise the shortest path is C' =sg.

2. Let FVS be the set of all simple walks in Fgraph of P, between the nodes
corresponding to F; and F, . Initialize vs ‘=@ and | = +o0.

3. For each member of FVS do the following steps:
3.1 Compute the planar development corresponding to this face
visit sequence. Let s° and ¢g° be the images of s and ¢ in the
ry -plane under the same development. (They can be computed
along with the planar development.)
3.2 If the development in step 3.1 is not legal then continue with
step 3. Otherwise, if d(s” ,g")</ then replace vs with the
current face visit sequence, let [=d(s’ ,¢"), and continue with
step 3.
4. At this point !~ is the length of the shortest path and vs = is the face visit
sequence that should be used to to compute the shortest path itself. To do
this, first compute the planar development of vs (and s° and ¢’) and inter-
sect "¢ with all pairwise common edges of the polygons in the development.
The intersection points in the plane are then easily used to compute the bend
points of the shortest path C . We know from the planar development of
vs the distance of an intersection point from a vertex in the plane. All we
need is to identify the vertex of P in three dimensions that led to this vertex.
Then marking the point which is away from this vertex the same distance
over the edge touched by the shortest path we locate the bend point for one
intersection. The others are found completely analogously.

End

An efficient way of checking whether a planar development is legal follows.
Let e,, - - - ,e; be the sequence of edges that are glued in the development.
Then the development is legal if s"¢” intersects every e,. Note that this is
always easier than testing if s"¢” is internal to the planar development’s
boundary.

To list the simple walks between two nodes of a graph we can use the algo-
rithm of Yen[36] which works in O (kn?3) if there are n nodes in the graph
and we require the first £ simple walks in increasing walk length. Katoh et
al[15] give an improved algorithm for the same task with a time complexity
O (kf (n,m)) under the assumption that shortest walks form one node to all
others can be found in f (n,m) time where m is the number of arcs in the
graph. Since f (n.m) is either O (n?) or O (mlogn) in the worst case, this
algorithm is more efficient than Yen's.

Determining the value of cardI'VS is difficult. Garey and Johnson[12] state
that the following problem is NP-hard:

K-th SHORTEST PATH

INSTANCE: Graph G =(V.E), positive integer lengths [, for
each e € E, specified nodes s .t ¢ V, positive integers b and k.
QUESTION: Are there k£ or more distinct simple walks from s to

t in G, each having total length b or less?

They also mention that K-th SHORTEST PATH remains NP-hard even if
l,=1 for all ec E, and is solvable in pseudo-polynomial time (polynomial in
cardV . k. and logb) and accordingly. in polynomial time for any fixed k
(e.g.. Yen's algorithm). The difficulty of K-th SHORTEST PATH basically
resides in the following counting problem which was proven to be #P-
complete by Valiant[34]:

S-T PATHS (SELF-AVOIDING WALKS)

INSTANCE: Graph G =(V ,E), specified nodes s ,te V.
QUESTION: What is the number of walks from s to ¢ that visit
every node at most once?

The problem of counting (s ,t)-walks in (s ¢)-planar graphs is also #P com-
plete[28]. (A graph is called source-sink planar, or (s .t)-planar in short, if
it has a planar representation with nodes s and ¢ on the boundary.) Pro-
van[29] states that the approximation problem for (s ,t)-walks is unsolved, in
the sense that the following problem is open:

"For any fixed e<1, does there exist a polynomial algorithm
which for a given (s .t)-planar graph G, will give an approxima-
tion N, for the number N of (s,t)-walks in G which satisfies
| N—Ny| <e N?"

On the other hand, for any fixed € >0, can it be proven that the above prob-
lem is NP-hard? Currently, the only known approximations are to count the
minimum length walks or to enumerate as many walks as possible (using a
large value of £ in Yen’s algorithm, for example).

It is not hard to find a convex polyhedron which has an exponential number
of simple walks in its Fgraph (figure 6). If there are | lateral faces of this
pyramid-like object (not counting the small triangular faces) then the number
of simple walks between the nodes F, and F, in the figure is Q(2'/ 2). This
result also shows that our BOUNDARY FINDPATH algorithm is of exponen-
tial time complexity in the number of faces of P. As mentioned before, there
exist polynomial algorithms by other researchers for this problem. Unfor-
tunately, theirs do not seem to admit practical implementations. In the light
of this, the algorithm presented in this section is applicable for objects of
moderate complexity. We can also try to test only a certain section (e.g., first
few in increasing walk length) of the face visit sequences between the source
and the goal faces for an object with many faces with the hope that the shor-
test path is generated by a short face development sequence. The shortest
path rendered by the legal developments found among the developments that

these sequences give may be taken as the true shortest path although this is
certainly vulnerable to an adversary.

2. Shortest Paths around a Convex Polyhedron
Now we inspect the following variant of BOUNDARY FINDPATH:

EXTERIOR FINDPATH
INSTANCE: Convex polyhedron P and points s ,g where at least
one of them is external to P, s #¢.

QUESTION: Which Ce C (s,g;P) has the shortest length?

Without loss of generality, we shall treat the case where s and g are both
outside P . In this case, the following fact is useful:

LEMMA 2.1 Let H =conv({s ,g }| JvertP). Then an s-to-g shortest path for
EXTERIOR FINDPATH is entirely on bdH .
Proof . Omitted. O

'Thus, once H is computed using standard three-space convex hull algorithms,
we can apply BOUNDARY FINDPATH to the instance made of H, s, and
g. (Preparata and Hong[26] give an algorithm to find the three-dimensional
convex hull in O (nlogn) time for n points.) However, there is a slight diffi-
culty with this approach. Assuming that we want to know which edges of the
original polyhedron the shortest path touches, we must keep extra information
with H, i.e., which vertex of H comes from which vertex of P. Below, we
shall give a more direct method to obtain H while keeping this information
implicitly using a visibility-based approach. (Sutherland et al[33] give an
overview of polyhedral visibility.)

DEFINITION For a convex polyhedron P and a point r external to it, the
silhouette edges of P are members of

{e:e€eF and ee F, where F ¢ F;, and Fo€Frpis }

11

Here, F,;; (resp. F;,.) is the set of visible (resp. invisible) faces of P from
viewpoint z. O

Clearly, F,;; M Finys =@ since a face of a convex polyhedron is either com-
pletely visible or completely hidden to an observer. Let By, (resp. By)
denote the silhouette edges of P from s (resp. g). It is clear that the faces of
H will be the union of three disjoint sets:

bdH = Ftrz ,$ UFtn',g U(Finvis] ﬁFinvis g)

Here Fy,; ; (resp. Fy, ,) is a set of triangular faces each characterized by an
edge of E;, ; (resp. E; ,) and s (resp. g). In essence, these are the lateral
faces of a pyramid-like object with (generally nonplanar) basis E; ; (resp.
E, ,) and apex s (resp. g). It is noted that the geometric complexity of

object H is the same as with P.

We conclude this section with an algorithm to compute the silhouette edges of
P from a point zr external to it:

Algorithm SILHOUETTE

1. Compute F,; ,, the visible faces of P from viewpoint z, by checking line
segments zc, where ¢; is the center of mass of face F, against all Fi, j#1
for intersection. F,, , consists of all F; which do not cause any intersection.
2. Let the totality of the visible edges of P from z be E,; ,={e:ee F where
FeF, ,}. Sort E, , and eliminate both of duplicate members. The
remaining edges are precisely the edges of E;; , .

End

Figure 7 demonstrates the working of EXTERIOR FINDPATH on a simple
object.

3. Partitioning the Boundary of a Convex Polyhedron
Finally, consider the following variant of BOUNDARY FINDPATH:

BOUNDARY FINDPATH (locus)

INSTANCE: Same as in BOUNDARY FINDPATH except that ¢
is not given. However, it is guaranteed that, when specified, g will
be on bdP.

QUESTION: Preprocess P so that for any specified ge bdP the
s -to-g shortest path is computed efficiently.

A practical case which would benefit from BOUNDARY FINDPATH (locus)
is as follows. Consider a truck on the surface of a mountain modeled as a con-
vex polyhedron, say. a pyramid. Suppose that the truck is required to carry
material from a fixed location on the surface to several points, say, construc-
tion sites. Then, it is reasonable to compute the shortest routes for the truck
(approximated as a point) more efficiently than can be achieved by repeated

applications of BOUNDARY FINDPATH for each specified destination.

This is a powerful paradigm of computational geometry known as the locus

approach and is studied in Overmars[25]. In solving a problem using this
approach, we are allowed to spend some initial effort (i.e., preprocessing) to
construct a data structure which will let us answer future requests (i.e.,
queries) quickly. To be effective, this assumes two things. First, the number
of the query points must be large to validate such an initial effort. Second, the
data structure must embody succinctly the locus of the required solution and
must enjoy the existence of a fast search procedure to retrieve it.

We shall now summarize one such data structure suitable for solving BOUN-
DARY FINDPATH (locus). The data structure is known as the Vorono:
diagram and was first introduced to computational geometry by Shamos[31].
Let S={z,,- - - ,z, } be a subset of R%. For 1<i <n let

regnz; ={y:d(z; ,y)<d(z,,y) for all j}

be the Voronoi region of point z;. The Voronoi diagram of S, denoted by
vorS , partitions the plane into cardS =n regions, one for each member of S.
The (open) Voronoi region of point r, consists of all points of R 2 closer to &
than any other point of S. For 1<i,j<n , letting H,; ={y:d(z;,y)<d(z;,y)}
(the halfspace defined by the perpendicular bisector of z, :c]-), it is seen that
for 1#7, regnz; =(H;;. Thus, regnz; is a convex polygonal region and
vorS is equal to the union of the boundaries of all regnz; . For every vertex z
of vorS there are at least three points z,, z;, 7, in S such that

d(z ,z;,)=d(z.,z;)=d(z,z;). The Voronoi diagram for a set of n points has at

most 2(n —2) vertices and 3(n —2) edges[22].

The Voronoi diagram of S can be computed in O (nlogn) time [30] and this
is optimal with respect to a wide range of computational models[17]. Unfor-
tunately, practical Voronoi programs which are both fast and reliable are dif-
ficult to write mainly due to the special cases in the diagram that are to be
handled precisely. Among the published algorithms, those by Avis and Bhat-
tacharya[2]|, Lee[19], and Guibas and Stolfi[14] seem to be more promising for
practical use. On the other hand. it is possible to construct slower implemen-
tations which handle special cases without much effort.

We now summarize how to search Voronoi diagrams in logarithmic time in
the number of the edges, n, of the diagram, i.e., we cite methods which let
one find the point zeS such that for a query point yeRZ d(z,y) is
minimum. The search methods we shall review are more general than search-
ing Voronoi diagrams in that they are based on searching a planar subdivi-
sion , i.e., a straight-edge embedding of a planar graph. The underlying prob-
lem is generally known as planar point location in computational geometry.
Let us call a subset of the plane monotone if its intersection with any line

-10-

parallel to the y-axis is a single interval (possibly empty). A subdivision is
monotone if all its regions are monotone. Mehlorn[22] shows that a simple
planar subdivision (a subdivision with only triangular faces) can be searched
in time O (logn) after spending preprocessing time O (n) and storage space
O (n). He also gives the following property to show that the last two bounds
apply to general subdivisions also, with a small penalty in preprocessing time:

LEMMA 3.1 If the searching problem for simple planar subdivisions with n
edges can be solved with search time O (logn), preprocessing O (n), and
space O (n), then the searching problem for general subdivisions with n
edges can be solved with the same search time and space but preprocessing
O (nlogn). If all faces of the generalized subdivision are convex then O (n)
preprocessing is sufficient.

Proof . Mehlorn[22|. (Lee and Preparata[18] also show that an arbitrary sub-
division with n edges can be refined to a monotone subdivision having at
most 2n edges in O (nlogn) time.) O

Now we shall review some planar point location algorithms in the literature
which either achieve these bounds or come close. Dobkin and Lipton[3] were
the pioneers to obtain an O (logn) query time but they use O (n?) space.
Preparatal27] modifies their method to prove that O (nlogn) space is suffi-
cient. His solution is implementable. In an important paper Lee and
Preparata[18] give an algorithm which is based on the construction of separat-
ing chains. Their algorithm achieves O (nlogn) preprocessing and O (n)
space yet has a query time of O (log’n). The constants hidden in these
expressions are small and make their algorithm practically useful. (Their algo-
rithm works for monotone subdivisions only.) Edelsbrunner and Maurer[4]
give a space-optimal solution which works for general subdivisions (and even
families of nonoverlapping subdivisions). Their query time is O (log3n). Lip-
ton and Tarjan[20, 21] give a method with O (logn) query time and O (n)
preprocessing and space (and thus optimal in all respects). Although based on
a graph separator theorem which has many far-reaching consequences, they
admit that their method is of only theoretical interest because of the imple-
mentation difficulties. Kirkpatrick[16] gives another method with the same
bounds. His method builds a hierarchy of subdivisions and seems to be imple-
mentable. Finally, Edelsbrunner et al[5] give a substantial improvement of
the technique of Lee and Preparata and again attain the optimal bounds in all
three respects. The importance of their method is that it seems to admit an
efficient implementation along with extensibility to subdivisions with curved
edges.

Now we are ready to present our algorithm for BOUNDARY FINDPATH
(locus). In the following we show the partitioning for only a face of P (other

than F,) which we shall denote by F,. To partition bdP, we apply the

-11+

following algorithm for each face. (Note that no partitioning is necessary for
F, due to convexity.)

Algorithm BOUNDARY FINDPATH (locus): Preprocessing

1. Find all simple face visit sequences between F, and F, using Fgraph of P.
2. For each face visit sequence found in step 1, compute the image of s with
respect to the planar development which starts with face F, and ends with
F,. (Note that we are not required to compute the whole development, but
just the image point.)

3. Compute the Voronoi diagram of the image points calculated in step 2
using standard Voronoi programs mentioned above. It is required that with
each image point (Voronoi center) we store the face visit sequence which is
used to arrive it.

4. Clip the diagram obtained in step 3 with respect to "window" F, so as to
preserve only those parts of it within the polygon Fo\ (Any of the standard
graphics algorithms such as the one due to Sutherland and Hodge[7] can be
used for clipping.)

End

Assume that for a given P, the above preprocessing is carried out for all faces
(except F,). Thus, we have a family of planar subdivisions for each face such
that for each region of a given subdivision we know the ordered sequence of
faces to be developed to the plane if g specified within that region. More
specifically, we can apply the following algorithm when we are queried with a
new g¢:

Algorithm BOUNDARY FINDPATH (locus): Querying

1. Compute the face F, holding a given g. If F,=F, then the shortest path
is trivially sg .

2. Using standard planar point location algorithms mentioned above locate ¢
inside the planar subdivision belonging to Fyn

3. Since we stored the face development sequence used to arrive this region we
can now use it to compute the s-to-g shortest path. Note that there may be
cases where g will be shared by at least two regions and thus there will be at
least two shortest paths each of which is obtained via a different development

sequence.
End

Figure 8 shows the Voronoi partitioning on a face of a cube using the above
algorithm. This figure was drawn by SP. It is noted that in figure 8(a) the
given face is partitioned into 4 regions whereas in figure 8(b) this number
becomes 6. This effect was obtained by simply moving the source to another
location on the source face.

=12

In general, the number of regions a given face F, is partitioned by this algo-
rithm is expected to be small. An informal argument for this is as follows.
Consider the images of s in the plane of F . If the face visit sequence for a
particular image is long then the image will usually end up in a point farther
away from F, compared to another image obtained by a shorter visit
sequence. Thus, only a small portion of the possible face visit sequences
between F; and F, can render images in the plane close to F; and contribute
to the Voronoi diagram on it.

Acknowledgment

The material reported herein has been supported by the National Science
Foundation under grants ECS 80-21504 and ECS 85-51942.

- O -
Appendix: SP - A Workbench to Compute Shortest Paths

SP is a family of programs written in Franz Lisp[6] and Macsyma command
language[13] to experiment with shortest paths. A detailed description of SP
is given in [1].

SP was designed with the following philosophy. Let W be a workspace (e.g.,
a bounding box) which includes a set of polyhedral obstacles. SP is given a
geometric description of the members of W and from that point on should be
able to compute shortest paths inside W between given pairs of points using
the algorithms some of which presented in the preceding sections. It is
imperative that SP has some graphics facilities and can supply the user with
views of W so that she can have an intuitive feeling about the correctness of
a particular computation. In that sense, SP resembles to Verrilli’s system[35];
it provides the user with facilities to carry out needed computations, but at
the same time needs her intervention here and there. Following a rapid pro-
totyping approach, we either simply excluded those computations which we
do not currently know how to perform effectively, or reformulated them to be
controlled by user advice at certain points.

Currently, one can only work with a single convex polyhedron using the Franz
part of SP. There are facilities to implement BOUNDARY FINDPATH,
EXTERIOR FINDPATH, and BOUNDARY FINDPATH (locus). It is also
possible to implement an approximate FINDPATH algorithm for a workspace
with several convex polyhedra as outlined in section 1 and depicted in figures
1 and 2. Using Macsyma parts of SP it is possible to compute shortest paths
in a general workspace with many objects (which may be nonconvex)
although this is not fully automated in the light of the combinatorial

explosion that known FINDPATH algorithms have. (Nevertheless, if the user
specifies the list of edges that the shortest path must visit, then the problem
is solved without much effort.) It is also possible (using Macsyma) to work on
FINDPATH (locus) (which 1is the general version of BOUNDARY
FINDPATH (locus)) although this is not automated yet. (In [11] all computa-
tions were done in this way.)

Finally, we give some additional examples computed and drawn by SP. Fig-
ure 9(a) and (b) show two shortest paths on the boundary of a dodecahedron.
Similarly, figure 10 shows a shortest path on the boundary of an icosahedron.
Figure 11 demonstrates a shortest path around a cube. This was computed
after constructing a new object via EXTERIOR FINDPATH and then apply-
ing BOUNDARY FINDPATH on it. Figure 12 shows the partitioning of the
boundary of a cube in the presence of a source point on face 1. Figure 12(a),
(b), (c), (d), and (e) respectively depict the regions induced on goal faces 2. 3,
4, 5. and 6.

References

1. V. Akman, “Shortest Paths Avoiding Polyhedral Obstacles in 3-Dimensional Euclidean
Space,” Ph.D. dissertation, Dept. of Electrical, Computer, and Systems Eng., Rensselaer
Polytechnic Institute, Troy, N.Y., Jun. 1985.

2. D. Avis and B. K. Bhattacharya, “Algorithms for Computing the d-Dimensional Voro-
noi Diagrams and Their Duals,” in Advances in Computing Research, ed. F. P.
Preparata, pp. 159-180, JAI Press, 1983.

D. P. Dobkin and R. J. Lipton, ‘“‘Multidimensional Searching Problems,” SIAM Journal
on Computing, vol. 5, no. 2, pp. 181-186, 1976.

o

4. H. Edelsbrunner and H. A. Maurer, “A Space-optimal Solution of General Region Loca-
tion,” Theoretical Computer Science, vol. 16, pp. 329-336, 1981.

5. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, “Optimal Point Location in a Monotone
Subdivision,” Tech. Rep. 2, DEC Systems Research Center, Palo Alto, CA, Oct. 1984.

6. J. K. Foderaro, K. L. Sklower, and K. Layer, The FRANZ LISP Manual, Univ. of Cali-
fornia, Berkeley, CA, Jun. 1983.

7. J. D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, MA, 1982.

8. W. R. Franklin and V. Akman, “Shortest Paths between Source and Goal Points
Located on/around a Convex Polyhedron,” Proc. of the 22nd Allerton Conf. on Com-
munication, Control, and Computing, Monticello, IL, Sep. 1984.

9. W. R. Franklin, V. Akman, and C. Verrilli, “Voronoi Diagrams with Barriers and on
Polyhedra for Minimal Path Planning,” The Visual Computer - An International Jour-
nal on Computer Graphics, Springer-Verlag, 1985 (to appear).

10. W. R. Franklin and V. Akman, “Partitioning the Space to Calculate Shortest Paths to
any Goal around Polyhedral Obstacles,”” Proc. of the 1st Annual Workshop on Robotics
and Ezpert Systems (Houston, TX, Jul. 1985), Instrumentation Society of America, 1985
(to appear).

-14-

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

24.

25.

26.

27.

28.

29.

30.

31.

W. R. Franklin and V. Akman, ‘“Euclidean Shortest Paths in 3-Space, Voronoi
Diagrams with Barriers, and Related Complexity and Algebraic Issues,” Proc. of the
NATO Advanced Study Institute on Fundamental Algorithms for Computer Graphics
(Ilkley, Yorkshire, Apr. 1985), Springer-Verlag, 1985 (to appear).

M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of
NP-completeness, W. H. Freeman, San Francisco, CA, 1979.

Mathlab Group, MACSYMA Reference Manual, 2 vols., Lab. for Computer Science,
Massachusetts Inst. of Technology, Cambridge, MA, 1983.

L. J. Guibas and J. Stolfi, “Primitives for the Manipulation of General Subdivisions and
the Computation of Voronoi Diagrams,” Proc. 15th Annual ACM Symp. on Theory of
Computing, pp. 221-234, 1983.

N. Katoh, T. Ibaraki, and H. Mine, “An Efficient Algorithm for k-Shortest Simple
Paths,” Networks, vol. 12, pp. 411-427, 1982.

D. G. Kirkpatrick, “Optimal Search in Planar Subdivisions,” SIAM Journal on Comput-
ing, vol. 12, no. 1, pp. 28-35, Feb. 1983.

V. Klee, “On the Complexity of d-Dimensional Voronoi Diagrams,” Archiv der
Mathematik, vol. 34, pp. 75-80, 1980.

D. T. Lee and F. P. Preparata, ‘“Location of a Point in a Planar Subdivision and its
Applications,” SIAM Journal on Computing, vol. 6, no. 3, pp. 594-606, Sep. 1977.

D. T. Lee, ““On k-Nearest Neighbor Voronoi Diagrams in the Plane,” IEEE Trans. on
Computers, vol. 31, no. 6, pp. 478-487, Jun. 1982.

R. J. Lipton and R. E. Tarjan, “A Separator Theorem for Planar Graphs,” SIAM Jour-
nal on Applied Mathematics, vol. 36, no. 2, pp. 177-189, Apr. 1979.

R. J. Lipton and R. E. Tarjan, ‘“Applications of a Planar Separator Theorem,” SIAM

2

Journal on Computing, vol. 9, no. 3, pp. 615-627, Aug. 1980.

K. Mehlorn, Data Structures and Algorithms (vol. 3: Multi-dimensional Searching and
Computational Geometry), 3 vols., Springer-Verlag, Heidelberg, Berlin, 1984.

J. S. B. Mitchell and C. H. Papadimitriou, “The Discrete Geodesic Problem,”
Manuscript, Dept. of Computer Science, Stanford Univ., Stanford, CA, 1985.

J. O’Rourke, S. Suri. and H. Booth. ““Shortest Paths on Polyhedral Surfaces,” Proc. of
the 2nd Annual Symp. on Theoretical Aspects of Computer Science (Lecture Notes on
Computer Science 182), pp. 243-254, Springer-Verlag, New York, Jan. 1985.

M. H. Overmars, “The Locus Approach.” Tech. Rep. RUU-CS-83-12, Computer Science
Dept., Univ. of Utrecht, Utrecht, the Netherlands, Jul. 1983.

F. P. Preparata and S. J. Hong, “Convex Hulls of Finite Sets of Points in Two and
Three Dimensions,” Communications of the ACM, vol. 20, no. 2, pp. 87-93, Feb. 1977.

F. P. Preparata, ““A New Approach to Planar Point Location,” SIAM Journal on Com-
puting, vol. 10, no. 3, pp. 473-482, Aug. 1981.

J. S. Provan, “The Complexity of Reliability Computations in Planar and Acyclic
Graphs,” Tech. Rep. 83/12, Operations Research and Systems Analysis Curriculum,
Univ. of North Carolina, Chapel Hill, NC, Dec. 1984.

J. S. Provan, private communication, 1985.

M. I. Shamos and D. Hoey, ‘“Closest-point Problems,” Proc. of the 16th IEEE Annual
Symp. on Foundations of Computer Science, pp. 151-162, Oct. 1975.

M. I. Shamos, ‘“Computational Geometry,” Ph.D. dissertation, Dept. of Computer Sci-
ence, Yale Univ., New Haven, CT, 1978.

-15-

32.

34.

35.

36.

M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral Spaces,” Proc. of the 16th
Annual ACM Symp. on Theory of Computing, pp. 144-153, 1984.

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, ‘““A Characterization of Ten
Hidden-surface Algorithms,” ACM Computing Surveys, vol. 6, no. 1, pp. 1-55, Mar.
1974.

L. G. Valiant, “The Complexity of Enumeration and Reliability Problems,” SIAM
Journal on Computing, vol. 8, no. 3, pp. 410-421, Aug. 1979.

C. Verrilli, “One Source Voronoi Diagrams with Barriers, a Computer Implementation,”
Tech. Rep. IPL-TR-060, Image Processing Lab., Rensselaer Polytechnic Inst., Troy,
N.Y., Feb. 1984.

J. Y. Yen, “Finding the k-Shortest Loopless Paths in a Network,” Management Sczence,
vol. 17, no. 11, pp. 712-716, Jul. 1971.

«16=

Figures

Figure 1 A reasonably short path between s and ¢ in the
presence of convex polyhedral obstacles.

Figure 2 Further optimization of the path shown in figure 1
yields a shorter path with fewer bend points.

s 2 |8 "

3
(a) / e
4
N 4
2; |8
S
-.-".' — 3
(b)
4 3

-5

(c)

Figure 3 Face graphs of convex polyvhedra:
(a) cube, (b) prism, (¢) pyramid.

w

} ¥— glue

Figure 4 The planar polygonal schema of a cube.

8.1,00 -0.00 1.00 2.00 3.00 4.08
] + G 5 # <
8 18
G
/
&
/
/
/
81 / 18
“-1 / N
7
4
£ 3
8l 18
s =
S/
8 8
?-r qb?
g g
- + + - + 'y
-1.00 -0.00 1.00 < 2.00 3.00 4.00
Face development sequence: 1 4 3 8¢
Source face no.: 1
Goal face no.: 8
Source point coords.: 0.000 0.700 0.300
Goal point coords. 1.000 0.200 0.250
Source paint coords. (plane): 0.300 0.700
Goal point coords. (plane): 1.800 2.750
Source—-to—goal distance: 2.540

Figure 5 Some planar developments computed and drawn by SP.
The objects that are developed are as follows: (a) cube, (b)
icosahedron, (¢) and (d) dodecahedron.

100 -0.30 0.60 1.40 3.20 3.09
= .) v o
81 X

g 14
4 1.3,
w=h e
3l 18
Q'ﬁ F°.
] &
T 17
g g
- +- . - : -
_100 -0.20 0.60 1.40 2.20 3.0d

Face development sequence? 8 13 18
?
9

Source face no.:

Goal face no.:

Source point coords.:

Goal point coords.:

Source point coords. (plane):
Goal point coords. (plane):
Source—-to—goal distance:

0.948
0.193
0.289
1.154
1.732

0.504
0.504

. saoo —41.00 1.?0 3.+00 5._Too 7.08
o~ o~
g1 18
" "
e 18
= -G
8.? <-8.
-l L]
3 g
- g - o
1 !
2 3
o + —— + - o
-3.00 -1.00 1.00 3.00 5.00 7.0d

X
Face development sequence: 3 6 8
Source face no.: 3
Goal face no.: 8
Source point coords.: 0.380 1.447 0.616
Goal point coords.: 0.996 -0.447 1.612
Source point coords. (plane): 0.688 0.500
Goal point coords. (plane): -1.276 3.927
Source—to—goal distance: 3.950

&3.00 1.00 5.00 9.00 13.00 17.8
~ +— h + + pe
o g
8 g
oT ta
e 18
aT - S
81 18
["r] (2]
8_ o > 8_
- =1
g g
o + +- + 4]
L_3.00 1.00 5.00 9.00 13.00 17.00

Face development sequence: 1 2 3 4 5 6 7 8 9 10 11 12

Source face no.: 1
Goal face no.: 12
Source point coords.:

Goal point coords.:

Source point coords. (plane):

Goal point coords. (plane):
Source—to—goal distance:

0.688
0.688
0.688
8.782
6.991

0.500
0.500
0.500
3.927

0.000
2.237

Figure 6 There exist an exponential number of simple walks
between nodes F, and F, in Fgraph of this object.

—Esil,s Esil,g =,

Fvis,s FViSJQ

Ftri,s Finvis,s n F:invis,g

Figure 7 Demonstration of how EXTERIOR FINDPATH works

via silhouettes.

*g

Deveopmant soqusces o o ue - " L
1: 6 S 1 il
3: ¢ 3 1
: 6 8 1
4 6 41
s: 6 5 ¢ 1
s: 6 3 8 1
7. 6 9 & 1 3 +§
8: 6 4 8 1
: ¢ 5 2 1
10: ¢ 3 3 1
};;:::} A7 .10
13: ¢ ¢ 5 8 1
“w: 6 5 3 8 1 §<~ "5
1: 6 3 8 8 1 20| Ja3]| 8| .¢| as] a6 .34
16: 6 ¢ 3 3 1
17: 6 8 4 3 3 1)
18: 6 3 8 ¢4 3 1 .5)
19: 6 3 ¢ 5 3 1
2: 6 ¢ 5 3 3 1 §<. q,g
81: 6 5 3 3 & 1
23: 6 3 3 ¢ 5 1 o4 -3
2: 6 3 8 35S 4 1
2: 6 ¢ 3 3 35 1
.9 <11 8
8| Jge| .e| .3| 0] a8| a8
a1 23
g-uo -100 1.00 3.00 .00 13
Source face mo.
Goal face a0
Source peimt ocoords.: 0000 0500 0.300

Figure 8 Demonstration of BOUNDARY FINDPATH (locus) on

a face of a cube. In figure 8(a) there are 4 regions on the goal face

(the shaded polygon) as a result of Voronoi partitioning. Figure
8(b) shows the effect of moving the source on the source face to

another location.

°
°

9
47

A5

o0 v9 o) o8 of v ¢ o9

Nt Nt DR DOD PN

WA AN AN A AN AN PN NNPORNPDNROPNN

NN NN PO POARNRNIO PO NNRNIPODINARNN®N

DRNLPODRNDPONNLPONNPIONARANCPODRNNTITDNRN P

oo o
- 0

SLLTFELTE

I - |

Visihie face mes: g" ' : + b

Invisible face nos.:

EBeveceswvwn~

Newpeint: 1.800 0.800 2.500

Seuree fase ne. 1

Geal fase ne: 7

Seurce peimt: 0.688 0.500 0.000

Geal peimt: -0.118 -0.088 L1818

Fece developanent soqUEBOE: 1 6 7

Shertest path leagth: 2818

Shertest peth bend peimts 2888 2.400 £.000
-0838 0447 0908

Figure 9 Shortest paths on the boundary of a dodecahedron.

Both (a) and (b) are shortest paths. This is a perspective view of
the object as computed by SP.

18
1f$

¢

i3

Viathie fase nes:

i
i

!
il

i
|

Visibie face mes:
16

35:555:5..4.¢d¢u—§8=
§

T—un -2.00 0.00 T 2.00 4.00
Viewpeiat: 0.300 0.800 2.000
Seurce face ae. 1
Geal face as: 10
Seurce point: 0380 0.500 0.000
Geal peint: -0378 0.93¢ 0.50¢
Face development sequemoce: 1 310
Shortest path length: 1.000
Shertest path dead points: 0380 0.800 0.000

0.000 0.067 0.000
-0318 0.833 0.183
0378 0.9%8 0.850¢

Figure 10 A shortest path on the boundary of an icosahedron.
This was computed by SP.

1 - -
3
| 4
10
Invisible face mes:
3
4 §¢ §
8
[]
8
[]
11
u §<> Tg
IS
& 18
11 7
18/
s 4
s Ik
]]
r/
'Y
/, 3
’ g
o 00 5.00 v.00
Viewpeint: 0.300 0300 2.000
Seurce face se- 1
Geal face me: 13
Source peimt: 1300 1.300 1400
Goal peint: -1380 -1100 -1500
Face develepment sequemoce: 1 7 813
Shortest path lemgth: 4.749
Shortest path demd potmis: 1.300 1.300 1.400
0.000 0.447 1000
-1350 -1100 -1500

Figure 11 A shortest path around a cube. This was computed by

SP after computing the new object and then applying BOUN-

DARY FINDPATH on it.

-3.00
Development s8qUEROE 5-4!.& +
1: 3 1

s: 3 8 1

s: 3 3 1

¢ 38 8 ¢ 1

s: 3 6 5 1

s: 8 3 ¢ 1

7 838 6 & 1 §<-
: 36 3 1

: 3 85 8 ¢ 1

0: 8 5 ¢ 3 1

11: 8 ¢ 8 4 1

13: 8 3 6 8 1

13: 8 8 ¢ 8 1

“: 36 ¢ 8 1 &t
15: 8 6 3 4 1

j6: 3 5 6 3 1

17: 3 3 6 & 1 ol
18: 38 6 ¢ 3 1

19: 8 S 8 ¢ 3 1 g
20: 38 5 ¢ 6 3 1 +
2: 3 3 ¢4 6 8 1 !
23: 3 ¢ 3 4 5 1

23: 3 8 ¢ 3 4 1

2:: 3 3 ¢ 4 5 1

-

s00 -3.00

Source facs me: 1

Geal face me.: 3

Source peiat cecrds. 0.000 0380 0350
Mo. of developments: %

Figure 12 This shows the partitioning of the boundary of a cube
in the presence of a source on face 1. Parts (a), (b), (¢), (d), and
(e) respectively show the regions induced on goal faces 2, 3, 4, 5,
and 6. These figures were computed by SP.

1.00

00 007-

g-uo
&t

0 ot v w0 ot w0

LEELEEREREREEEYEERE X X]

AN A A DRI D PN ORI ODONOR Y

N DDNDCPRONDNOODPRO OO ONONO®
LA A A X N K N R AN X KN X RN NRSENXNERN.]

SLLRERTEEFFEEEEEEEETETTE

;
i

!
§

|
i
I

“
i

b0 00y 008 000

!
g
00

0 ot ot ot o0 o4

ettt M M DN DN PN

NN A NI DN DNNNRRNORNONNN

NN ONNNORDNORNNOOPRANNNO®
TONDDNOODODNONNOONNOODONON®M

A A A A A A AL AL AR AR R R ERERERERER X}

LA LI L EEEFEEETEFFITE

I-‘“

i

Source face mo=

u

W + + +
bos 00's 00t 001 00's-
)
m -t ot =0 o ot =0
P e R L R R A A
m A AN ANNNPOIPRRNNNODONAN

AN OCNNHNONVTONNNRODNONNNOO
l"‘.'..“..'..‘..“‘."

:..::.::..:::::::::::..:
SddsserasgaasdenaagIdas

0.000 0380 02350

.w

¢
8.3

0.00
a1
1
’
24

0 ot o4 ot w4 w4 e vt
Mottt M QO RNECODON
AAAAAAA AN PONRNNPNRNPOANCTNR

A A POCTONRNANTNTNNNANPNIORNA®
‘.’.‘.3"'8‘8.,‘5..“."s'a‘

o vr e vr e ee e an e s e ..:...:..::.;
SdsvserssgainsasEqagifdlding

Mq- 00 008 000 008 00t

400

0.000 0350 0280

15”

