O\
V)

LOCUS TECHNIQUES FOR SHORTEST PATH PROBLEMS IN

ROBOTICS

Wm. Randolph Franklin and Varol Akman
Dept. of Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, New York 12180. USA

Abstract.

Let P be a set of obstacles in a workspace.

We describe two

locus techniques which, given a source point s and a description of P, parti-
tion the free space such that for subsequent goal points generically denoted by
g, the shortest s-to-g obstacle-avoiding path is found efficiently. In the first
case P is a convex polyhedron which has s and ¢ on its boundary. In the
second case P is a set of disjoint polyhedra and s and g are external to
them. Both techniques are based on a generalization of Voronoi diagrams to

accommodate more general geometries.

Keywords. Unobstructed shortest paths; Voronoi diagrams; computational

geometry; point location; locus method.

INTRODUCTION

Let P={P,. - ,P,} be a prescribed set of obstacles
and s.¢g ¢ R® be distinct points which are not internal to
any P;. Unless noted otherwise the members of P are
always in the Euclidean 3-space, R3. The class of rectifi-
able curves which have endpoints s and g and which do
not intersect any intP; is denoted by C(s,g;P). For C
in this class, I(C') denotes the length of C under the L,
metric. The relevance of the following problem to robot-
ics is obvious:

FINDPATH

INSTANCE: Polyhedra P={P,.---,P,}
such that P, NP, =@ for i# ;. and s.g¢ R®
such that s#g¢ and s.¢ do not belong to
intP,, 1<i<n.

QUESTION: Which Ce C(s,g:P) has the
shortest length?

It is known that there exists a C € C (s ,g:P) such that
for all CeC(s,9:P), I(C ')SI(C). In 3-space, every
such € is a polygonal path with its possible bend points
belonging to some edges of some members of P. Also
note that C is not necessarily unique. (In fact. there
may be exponentially many shortest paths in terms of
n.) We shall call any such path an s-to-g shortest path .
Thus. FINDPATH asks for the characterization (i.e., the
determination of the bend points) of an s-to-g shortest
path.

There is a wealth of material in the general area of
motion planning which includes other familiar robotics
problems such as FINDSPACE, MAKESPACE, etc. in
addition to FINDPATH. A recent work by Akman]l]
deals with FINDPATH in greater detail and lists
numerous references. Franklin and Akman also inspect
the same problem from various perspectives in
[9, 10,11, 12]. Among other relevant research. Sharir and
Schorr’s work[26] is a detailed study on shortest paths.
They mainly consider the case of BOUNDARY
FINDPATH (locus) (cf. next section) and present an

algorithm which works in time O (n) per query where n
is the measure of complexity of the polyhedron, say the
number of vertices. Their algorithm is based on the idea
of "ridge" points on the object. A ridge point on the
polyhedron has the property that there exists at least two
shortest paths to it from the source. It turns out that the
set of ridge points is made of line segments and that the
union of the vertices and the ridge points is a closed con-
nected set. Defining the union of the latter with the
shortest paths from the source to every vertex, one parti-
tions the polyhedron boundary into disjoint connected
regions whose interiors are free of vertices or ridge points.
The partition can be constructed in O (n’logn) time
using complicated techniques. O’Rourke and cowork-
ers[21] use Sharir and Schorr’s ideas to extend the prob-
lem to an orientable polyhedral surface which is no more
supposed to be convex. The shortest path that they cal-
culate is only a "geodesic", i.e., it is confined to the sur-
face and thus may not be the true shortest path. Their
algorithm runs in O (n®) time. It does not follow a locus
approach; using their algorithm on each new goal point
would take O (n?) time. Finally, Mitchell and Papadimi-
triou[20] give an algorithm to solve this last problem in a
locus setting. (It is noted however that they are still
computing geodesics, not true shortest paths.) Theirs is
an O (n’logn) time algorithm for subdividing the surface
of an arbitrary polyhedron so that the length of the shor-
test path from a given source to any goal on the surface
is obtainable by simple point location. As in our algo-
rithm to be presented in the next section, point location
is achieved in time O (logn), after which the actual shor-
test path is backtracked in time proportional to the
number of faces that it traverses on the boundary.

PARTITIONING THE BOUNDARY OF A CON-
VEX POLYHEDRON

Consider the following specific instance of FINDPATH:

BOUNDARY FINDPATH

INSTANCE: Convex polyhedron P, specified
points s .g e bdP where s #¢ .

QUESTION: Which C¢bdP has the shortest
length?

We shall assume that the boundary representation is used
to define a polyhedron P. It is convenient to think of
vertex labels or face labels as positive integers. The fol-
lowing definitions will be used in the sequel.

The face graph (Fgraph) of a convex polyhedron P is an
undirected graph Fgraph =(FV FE) with unit arc
weight, FV={i:F, is a face of P} and
FE={(i,j):F,and F; are adjacent}. Let C ¢bdP be an
s-to-g polygonal path. The sequence of faces that C
enters defines the face visit sequence of C which will be
denoted by fvsC. Thus fvsC is a walk in Fgraph
between the nodes corresponding to faces F; and F,, the
faces of P containing s and g, respectively. Let
C ¢bdP be an s-to-g shortest path. Then fvsC ' is
clearly a simple walk in Fgraph. A planar development
corresponding to a face visit sequence 1, * - - .k is a union
of polygons F,.- - ,F, of the planar polygonal schema
of P. In the planar development two polygons F, and
F,.,;, 1<i<k are united along the edge that they are
glued to each other, and do not overlap. The image of a
point on a polyhedron under a planar development is the
point in the plane that it ends up under the development.
A planar development is legal if the line segment con-
necting the images of the source and the goal is internal
to the development.

Now consider the following variant of BOUNDARY
FINDPATH:

BOUNDARY FINDPATH (locus)
INSTANCE: Same as in BOUNDARY
FINDPATH except that ¢ is not given.
However, it is guaranteed that, when speci-
fied, g will be on bdP.

QUESTION: Preprocess P so that for any
specified gebdP the s-to-g shortest path is
computed efficiently.

A practical case which would benefit from BOUNDARY
FINDPATH (locus) follows. Consider a truck on the sur-
face of a mountain modeled as a convex polyhedron, say,
a pyramid. Suppose that the truck is required to carry
material from a fixed location on the surface to several
points, e.g.. construction sites. Then, it is reasonable to
compute the shortest routes for the truck (approximated
as a point) more efficiently than can be achieved by
repeated applications of BOUNDARY FINDPATH for
each specified destination. This is a powerful paradigm
of computational geometry known as the locus approach
and is studied in Overmars[22]. In solving a problem
using this approach, we are allowed to spend some initial
effort (preprocessing) to construct a data structure which
will let us answer future requests (queries) quickly. To be
effective, this assumes two things. First, the number of
the query points must be large to validate such an initial
effort. Second, the data structure must embody succinctly
the locus of the required solution and must enjoy the
existence of a fast search procedure to retrieve it.

We shall now summarize one such data structure suitable
for solving BOUNDARY FINDPATH (locus). The data
structure is known as the Voronoi diagram and was first
introduced to computational geometry by Shamos|25].
Let S={z,," - - .z, } be a subset of RZ. For 1<i <n let
regnz; ={y:d(z; ,y)<d(z,;,y) for all 7} be the Voronot
region of point z,. The Voronoi diagram of S, denoted
by vorS , partitions the plane into n regions, one for each
member of S. The Voronoi region of point z, consists of
all points of R? closer to z; than any other point of S.
For 1<i.j<n, letting H; ={y:d(z; .y)<d(z;,y)} (the
half-space defined by the perpendicular bisector of z; z;)5
it is seen that for i # j , regnz; =M H,,. Thus, regnz; is a
convex polygonal region and vorS is equal to the union
of the boundaries of all regnz,. For every vertex z of
vorS there are at least three points z,, ,, %; in S such

that d(z ,z,)=d(z ,z;)=d(z .z).

The Voronoi diagram of S can be computed in
O (nlogn) time [24] and this is optimal with respect to a
wide range of computational models. Yet, practical
Voronoi programs which are both fast and reliable are
difficult to write mainly due to the special cases in the
diagram that are to be handled precisely. Among the
published algorithms, those by Avis and Bhattacharya[2],
Lee[16], and Guibas and Stolfi[13] seem to be more
promising for practical use. On the other hand. it is pos-
sible to construct slower implementations which handle
special cases without much effort.

We now sumimarize how to search Voronoi diagrams in
logarithmic time in n ., i.e., we cite methods which let one
find the point z¢ S such that for a query point ye R2,
d(z,y) is minimum. The search methods we shall review
are more general than searching Voronoi diagrams in that
they are based on searching a planar subdivision, i.e., a
straight-edge embedding of a planar graph. The underly-
ing problem is generally known as planar point location
in computational geometry. Let us call a subset of the
plane monotone if its intersection with any line parallel
to the y-axis is a single interval (possibly empty). A sub-
division is monotone if all its regions are monotone.
Mehlorn[19] shows that a simple planar subdivision (a
subdivision with only triangular faces) can be searched in
time O (logn) after spending preprocessing time O (n)
and storage space O (n). He also shows that if the
searching problem for simple planar subdivisions with n
edges can be solved with search time O (logn), prepro-
cessing O (n), and space O (n), then the searching prob-
lem for general subdivisions with n edges can be solved
with the same search time and space but preprocessing
O (nlogn). If all faces of the generalized subdivision are
convex then O (n) preprocessing is sufficient. (Lee and
Preparata15] also show that an arbitrary subdivision
with n edges can be refined to a monotone subdivision
having at most 2n edges in O (nlogn) time.)

Now we shall review some planar point location algo-
rithms in the literature which either achieve the above
bounds or come close. Dobkin and Lipton[5] were the
pioneers to obtain an O (logn) query time but they use
O (n?) space. Preparata[23] modifies their method to

prove that O (nlogn) space is sufficient. In an impor-
tant paper Lee and Preparata[l5] give an algorithm
which is based on the construction of separating chains.
Their algorithm achieves O (nlogn) preprocessing and
O (n) space yet has a query time of O (log?n). (Their
algorithm works for monotone subdivisions only.) Lipton
and Tarjan[17, 18] give a method with O (logn) query

time and O (n) preprocessing and space (and thus
optimal in all respects). Although based on a graph
separator theorem which has many far-reaching conse-
quences, they admit that their method is of only theoreti-
cal interest. Kirkpatrick[14] gives another method with
the same bounds. His method builds a hierarchy of subdi-
visions and seems to be implementable. Finally,
Edelsbrunner and coworkers[6] give a substantial
improvement of the technique of Lee and Preparata and
again attain the optimal bounds in all three respects.
The importance of their method is that it may have an
efficient implementation along with extensibility to subdi-
visions with curved edges.

Now we are ready to present our algorithm for BOUN-
DARY FINDPATH (locus). In the following we show
the partitioning for only a face of P (other than F,)
which we shall denote by F,. To partition bdP, we
apply the following algorithm for each face. (Clearly, F,
is not partitioned due to convexity.)

Algorithm BOUNDARY FINDPATH (locus): Prepro-
cessing

1. Find all simple face visit sequences between F, and F,
using Fgraph of P.

2. For each face visit sequence found in step 1, compute
the image of s with respect to the planar development
which starts with face F, and ends with F,. (Note that
we are not required to compute the whole development,
but just the image point.)

3. Compute the Voronoi diagram of the image points cal-
culated in step 2 using standard Voronoi programs men-
tioned above. It is required that with each image point
(Voronoi center) we store the face visit sequence which is
used to arrive it.

4. Clip the diagram obtained in step 3 with respect to
"window" F, so as to preserve only those parts of it
within the polygon F,. (Any of the standard graphics
algorithms such as the one due to Sutherland and
Hodge|7] can be used for clipping.)

End

Assume that for a given P. the above preprocessing is
carried out for all faces (except F,). Thus, we have a
family of planar subdivisions for each face such that for
each region of a given subdivision we know the ordered
sequence of faces to be developed to the plane if g speci-
fied within that region. More specifically, we can apply
the following algorithm when we are queried with a new

g:

Algorithm BOUNDARY FINDPATH (locus): Querying
1. Compute the face F, holding a given g. If F,=F,
then the shortest path is trivially sg.

2. Using standard planar point location algorithms men-
tioned above locate ¢ inside the planar subdivision
belonging to F, .

3. Since we stored the face development sequence used to
arrive this region we can now use it to compute the s-
to-g shortest path. Note that there may be cases where ¢
will be shared by at least two regions and thus there will
be at least two shortest paths each of which is obtained

via a different development sequence.
End

Figure 1 shows the Voronoi partitioning on a face of a
cube using the above algorithm. The source face is face 1.
It is noted that the given goal face (face 6) is partitioned
into four triangular regions. The numbers next to each
image in Fig. 1 define the face visit sequences used to

arrive it. For instance, the image labeled 3 is obtained
via face visit sequence 1, 3, 6. What Fig. 1 tells us can be
summarized as follows. If a goal point is in the upper tri-
angular region within face 6 then the shortest path to it
is obtained by face visit sequence 1, 4, 6. For the lower
triangular region this becomes 1, 2. 6, and similarly for
other two regions.

In general, the number of regions a given face F, is parti-
tioned by this algorithm is expected to be small. An
informal argument for this is as follows. Consider the
images of s in the plane of F,. If the face visit sequence
for a particular image is long then the image will usually
end up in a point farther away from F, compared to
another image obtained by a shorter visit sequence.
Thus, only a small portion of the possible face visit
sequences between F; and F, can render images in the
plane close to F, and contribute to the Voronoi diagram
on 1t.

PARTITIONING THE FREE SPACE AROUND
POLYHEDRA

The inspiration for the work to be described in this sec-
tion is Franklin's extension of Voronoi diagrams in the
plane in the presence of barriers (line segments)[8]. Here
he generalizes the Voronoi concept by allowing opaque
barriers that a shortest path must avoid. With this
environment. a shortest path will always be a polygonal
path through the free space bending at the endpoints of
the barriers. The ordered list of endpoints that a shortest
path passes through is called its contact list . Franklin’s
construction works as follows. Regions are constructed so
that every goal point in a region has a shortest path to
the source with identical contact lists. Each region will
have an associated vertex which is defined as the first
vertex on its contact list. When a new barrier is intro-
duced to the environment, two half-lines extending from
its endpoints are added. These boundaries are called sha-
dow lines and are the projections of the endpoints by
the associated vertex of the region it is in. A second type
of boundary is added to separate the two new regions
created. This will in general be a hyperbola and is called
a ridge curve. A goal on a ridge curve has two shortest
paths to the source. If a boundary extends to infinity
nothing interesting happens. However, sometimes a
boundary intersects a barrier or another boundary. In the
former case, the boundary is cut (i.e., stops at or blocked
by the barrier). In the latter case, when two boundaries
hit each other they join to create a junction .

We now give an example to illustrate Franklin’s parti-
tioning. The reader is referred to Verrilli[27] who presents
a rather complete implementation and gives several
interesting computer-generated examples. In Fig. 2, there
are two barriers ab, c¢d in the plane and s is given as
shown. In this case the plane is partitioned into five
regions. R, holds the goals directly reachable (visible)
from s. R, holds the goals which cause a shortest path
to bend at endpoint @ of ab. R, holds the goals which
cause a shortest path to bend at b. R, holds points
which give rise to shortest paths bending at d. Finally,
R,. describes shortest paths bending first at a . and then
at ¢ while going from s to g. It can be easily shown
that the boundaries between R, and R,. and R, and
R, are hyperbolic portions. All other boundaries are
made of straight lines.

A crucial property of the diagram in Fig. 2 (and of any
Franklin’s partitioning in 2-space around barriers) is that
a bend point acts as a source point for a later region.
(For instance, a acts as a source for the points of R, .)
Thus the source is continuously "pushed back" and this is
the underlying reason for all boundaries being either line
segments or hyperbolic sections. Once the boundaries are
constructed, one can use any of the standard point loca-
tion algorithms (modified slightly to take care of the fact
that some planar boundaries are curved) to locate a goal.
As soon as the region including the given goal is known
the shortest path is found immediately.

We now emulate Franklin’s approach in 3-space where
the regions will have the following property: all points of
a given region are reached from the source after bending
at the same edges of the obstructions in the same order.
We shall call this problem FINDPATH (locus). Our
treatment will not be entirely algorithmic since we have
not vet answered all the questions posed by this problem.
It is seen that the analogous constructs to those outlined
above will be associated edge , shadow plane , and ridge
surface in case of FINDPATH (locus). A contact list will
now hold the ordered set of edges instead of endpoints.
We shall use the terms cut and junction without modifi-
cation although now they refer to surfaces instead of
curves.

Let a.b,ce R® be three points not on the same line. We
shall refer to the opaque triangle abc by T. Let s be
any- point outside aff T. We shall start with the following
simple case: partition the space into regions such that if a
new g ¢ R® is specified. then we can tell if ¢ can directly
be reached from s. and if not, the edge of T where an
s -to-g shortest path bends.

When ¢ is outside the infinite frustum obtained by sub-
tracting the finite pyramid described by basis T and
apex s from the infinite pyramid described similarly. the
shortest path is sg itself. Thus. one of the regions. R4
contains all points ge R such that s¢(T =@. (In other
words, R ¢ is the set of all visible points from s JIfgis
not in R then three possibilities exist. For all g Ry,
the shortest path bends at bc. For all g¢ R, it bends at
ca . Finally, for all ge R, it bends at ab. The edges be,
ca.and ab are the associated edges of regions R, . R,
and R, , respectively. Fig. 3 shows these regions. Inter-
sections of R g with these three regions are the shadow
planes for this example.

Now we shall compute the intersections of the pairs of
regions. (These will be the ridge surfaces.) For clarity, we
take s as the origin of the coordinate system without loss
of generality. We shall compute the intersection of
regions R, and R, and generalize it to the other two
cases. If ge R, (M\R; then there exists a shortest path
to g either via ab or bc. Label the bend points of this
shortest path with ab (resp. bc) by d, (resp. dy.).
These points should satisfy:

d(s ’dab)+d(dab g)=d(s ‘db()+d(dbr *g) (1)

The left (resp. right) hand side of (1) is equal to d(s Gap)
(resp. d(s.g,.)) where g (resp. g,) is the point
obtained by rotating ¢ about affab (resp. affbe) until it
coincides with affsab (resp. affsbc) and is in the opposite
half-plane compared to s. In the sequel. we shall call
any such point obtained by rotating a point about an

axis an image point. If p is a point in 3-space and p” is
its image due to rotation by an angle © about axis u
passing through the origin then:

P =<p.u>+(p—<p,u>u)cosO+(u xp)sin® (2)
Applying (2) for the image of g about affab, we obtain:
Gap = a + [ugy +(ag — f ug, Jcosa +(ug Xag)sina (3)

where a is the dihedral angle between affsab and affgab ,
ug,=ab/ d(a.b), and f =<ag.,uy >. After some sim-
plifications in (3), which are given in full in Franklin and
Akman[12]. the following expression for g,, is obtained:

d*(gq)=d*(a)+d*(a.g)

+2(<ag ,ug ><a ug >+d(ag xug)d(a xug)) (4)

To have a geometric interpretation of (4), we expand the
scalar and vector products and simplify the resulting
expression to get:

d*(g,)= d*(a)+d*(ag)~ 2d(a)d(ag Jeos(a,+az) (5)

Here a, and a, are the angles <gab and <sab , respec-
tively. Thus (5) is a statement of the cosine theorem on
triangle sagg, -

Up to this point, we found an equation (i.e., (4)) that
gives d*(g,,) in terms of known quantities a and ug ,
and unknown g¢. The equations for d*(g,.) and d*(g.,)
are found completely analogously with obvious modifica-
tions. To compute the intersections of R, and R, we
solve the equation d(gg)—d(gs)=0. or ‘equivalently,
d*(g,;)—d*(gp.)=0. In [12] it is shown that the intersec-
tion surfaces are in general ternary (in z.y .z, the coordi-
nates of g) quartics which may degenerate to planes in
some cases.

If we want to partition the space behind a solid polygon
instead of a triangle then we are required to compute all
the potential boundaries between the pairs of regions. It
is obvious that the intersections of the regions with the
polygon (or the triangle in the previous case) are made of
straight edges. In fact the subdivision of the polygon by
these edges can be found more simply. Let P be a convex
polygon with vertices vy, - - ,v, and s a point outside
affP. The invisible side of P to s is partitioned into at
most n convex regions (each completely containing an
edge of P) such that for a goal g specified inside one of
the convex regions the s-to-g shortest path is via the
associated edge of this region. To see this rotate s about
affv,v,, affv,vs, - - - until it is coincident to affP and
always on the opposite side of a particular edge with
respect to intP. This is basically a planar polygonal
schema of the pyramid with basis P and apex s in affP.
Denote the n images obtained in this way by s,
8§45, © - - and construct their Voronoi diagram. When
clipped by window P the diagram partitions P into at
most n regions which are necessarily convex since P is
convex. Fig. 4 illustrates this process.

The extension of the technique outlined for FINDPATH
(locus) to several obstacles creates difficult problems. In
this case we cannot find a similar property to that of
Franklin’s partitioning mentioned above, i.e., the junc-

tions of the partition no more stay as quartics but grow
in degree for each new obstacle causing new regions. We
shall now imagine that for a given s we managed to com-
pute a subdivision of the space into n regions bounded
either by planes or quartic (or higher-order) surfaces
using the above approach. With each region we assume
the existence of a stored label which is simply equal to
the contact list for this region. If we are given a new
point ¢, we should first locate the region that ¢ is in,
and then use the contact list for this region to compute
the s-to-g shortest path. Since the latter operation can
be done by an optimal visit of the involved lines we shall
concentrate on the former operation.

Let S be a family of n planes in R%. Dobkin and Lip-
ton[5] show how to represent S in a polynomial amount
of space so that whether a given point belongs to any of
the given planes can be tested in O (logn) time. If we
approximate the boundaries of our regions with planes
then their algorithm is applicable. Chazelle|3] generalizes
this for the case where S is a family of algebraic
varieties. His algorithm is an adaptation of Collins’
quantifier elimination procedure[4]. Let d be a positive
constant and let S={Q,. - -.Q,} be a set of
polynomials of degree at most d in three variables with
rational coefficients. He considers the problem of prepro-
cessing S so that. for any (r.y.z)c R®. the predicate
"There exists an 7, 1<i<n. such that Q,(z.y.z)=0"
can be evaluated efficiently. This problem (and its gen-
eralization to spaces higher than R®) is known as spatial
point location . If the predicate is true then any of the
indices 7 for which @, (z.y .z)=0 is reported. Otherwise,
(z,y.2) is seen to lie in a region over which each @, has
a constant sign. Assuming that these regions have associ-
ated labels. his algorithm retrieves the label correspond-
ing to the region containing (z.y.z). The algorithm uses
O (n®?) preprocessing time (and space) and computes
the above predicate in O (logn) time.

CONCLUSION

We described two locus techniques to compute the shor-
test obstacle-avoiding path between two points in 3-
space. Only one of the points (source) is known prior to
preprocessing and it is required that for later (goal)
points the path must be evaluated quickly. Both tech-
niques are based on generalizations of Voronoi diagrams
to partition the free space and use standard point loca-
tion algorithms to search a partition efficiently.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under grants ECS 80-21504
and ECS 85-51942.

REFERENCES

1. V. Akman, “Shortest Paths Avoiding Polyhedral Obstacles in
3-Dimensional Euclidean Space,” Ph.D. dissertation, Dept. of
Electrical, Computer, and Systems Eng., Rensselaer Polytech-
nic Institute, Troy, N.Y., Jun. 1985

2} D. Avis and B. K. Bhattacharya, ‘“Algorithms for Computing
the d-Dimensional Voronoi Diagrams and Their Duals.” in

Advances in Computing Research, ed. F. P. Preparata, pp. 159-
180, JAI Press, 1983.

11

12.

14.

15.

16.

18.

19.

20.

21.

22.

23.

B. M. Chazelle, “Fast Searching in a Real Algebraic Manifold
with Applications to Geometric Complexity.” Tech. Rep. CS-
84-13, Dept. of Computer Science, Brown Univ.. Providence,
RI, Jun. 1984.

G. E. Collins, “Quantifier Elimination for Real Closed Fields
by Cylindrical Algebraic Decomposition,” Proc. of the 2nd GI
Conf. on Automata Theory and Formal Languages (Lecture
Notes in Computer Science $3) , pp. 134-183, Springer-Verlag,
Berlin, 1975.

D. P. Dobkin and R. J. Lipton, “Multidimensional Searching
Problems,” SIAM Journal on Computing, vol. 5, no. 2, pp.
181-186, 1976.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi, “Optimal Point
Location in a Monotone Subdivision,” Tech. Rep. 2, DEC Sys-
tems Research Center, Palo Alto, CA, Oct. 1984.

J. D. Foley and A. van Dam, Fundamentals of Interactive Com-
puter Graphics, Addison-Wesley, Reading, MA, 1982.

W. R. Franklin, “Partitioning the Plane to Calculate Minimal
Paths to any Goal around Obstructions.” Manuscript, Dept. of
Electrical, Computer, and Systems Eng., Rensselaer Polytech-
nic Inst., Troy, N.Y., Nov. 1982.

W. R. Franklin and V. Akman, “Shortest Paths between
Source and Goal Points Located on/around a Convex
Polyhedron.” Proc. of the 22nd Allerton Conf. on Communica-
tion, Control, and Computing. Monticello. IL, Sep. 1984.

W. R. Franklin, V. Akman. and C. Verrilli. “Voronoi Diagrams
with Barriers and on Polyhedra for Minimal Path Planning,”
The Visual Computer - An International Journal on Computer
Graphics. Springer-Verlag. 1985 (to appear).

W. R. Franklin and V. Akman. *‘Partitioning the Space to Cal-
culate Shortest Paths to any Goal around Polyhedral Obsta-
cles,” Proc. of the 1st Annual Workshop on Robotics and Ezpert
Systems (Houston, TX, Jul. 1985). Instrumentation Society of
America, 1985 (to appear).

W. R. Franklin and V. Akman, “Euclidean Shortest Paths in
3-Space, Voronoi Diagrams with Barriers. and Related Com-
plexity and Algebraic Issues.”” Proc. of the NATO Advenced
Study Institute on Fundamental Algorithms for Computer
Graphics (llkley, Yorkshire, Apr. 1985). Springer-Verlag, 1985

(to appear). .
L. J. Guibas and J. Stolfi, “Primitives for the Manipulation of
General Subdivisions and the Computation of Voronoi

Diagrams,” Proc. 15th Annual ACM Symp. on Theory of Com-
puting, pp. 221-234, 1983.

D. G. Kirkpatrick, “Optimal Search in Planar Subdivisions,”
SIAM Journal on Computing. vol. 12. no. 1, pp. 28-35, Feb.
1983.

D. T. Lee and F. P. Preparata, ‘“Location of a Point in a
Planar Subdivision and its Applications.”” SIAM Journal on
Computing, vol. 6, no. 3, pp. 594-606, Sep. 1977.

D. T. Lee, “On k-Nearest Neighbor Voronoi Diagrams in the
Plane,” IEEE Trans. on Computers, vol. 31, no. 6, pp. 478-487,
Jun. 1982.

R. J. Lipton and R. E. Tarjan, “A Separator Theorem for
Planar Graphs.” SIAM Journal on Applied Mathematics, vol.
36, no. 2, pp. 177-189, Apr. 1979.

R. J. Lipton and R. E. Tarjan, “Applications of a Planar
Separator Theorem,” SIAM Journal on Computing, vol. 9, no.
3, pp. 615-627, Aug. 1980.

K. Mehlorn, Data Structures and Algorithms (vol. $: Multi-
dimensional Searching and Computational Geometry), 3 vols.,
Springer-Verlag, Heidelberg, Berlin, 1984.

J. S. B. Mitchell and C. H. Papadimitriou. ‘“The Discrete Geo-
desic Problem,” Manuscript. Dept. of Computer Science, Stan-
ford Univ., Stanford, CA, 1985.

J. O’Rourke, S. Suri, and H. Booth, ‘“Shortest Paths on
Polyhedral Proc. of the 2nd Annual Symp. on
Theoretical Aspects of Computer Science (Lecture Notes on
Computer Science 182), pp. 243-254, Springer-Verlag, New
York, Jan. 1985.

M. H. Overmars, “The Locus Approach,” Tech. Rep. RUU-
CS-83-12, Computer Science Dept., Univ. of Utrecht, Utrecht,
the Netherlands, Jul. 1983.

F. P. Preparata, “A New Approach to Planar Point Location,”

SIAM Journal on Computing, vol. 10, no. 3, pp. 473-482, Aug.
1981.

Surfaces,”

Fig. 1. BOUNDARY FINDPATH (locus) on a cube.
Only the partition of one face is shown.

Fig. 2. Franklin’s partitioning in 2-space.

Here there are two linear barriers.

24. M. 1. Shamos and D. Hoey, ‘“Closest-point Problems,’’ Proc. of
the 16th IEEE Annual Symp. on Foundations of Computer Sci-
ence, pp. 151-162, Oct. 1975.
25. M. L. Shamos, “Computational Geometry,” Ph.D. dissertation,
Dept. of Computer Science, Yale Univ., New Haven, CT, 1978.
26. M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral
Spaces,”” Proc. of the 16th Annual ACM Symp. on Theory of
Computing, pp. 144-153, 1984.
27. C. Verrilli, “One Source Voronoi Diagrams with Barriers, a
Computer Implementation,” Tech. Rep. IPL-TR-060. Image
Processing Lab., Rensselaer Polytechnic Inst.. Troy. N.Y., Feb.
1984.
X
300 -100 100 300 8.00 708
3 .
sl t
47 10
20 <13 .8 .4 .18 -16 B
= »-
.S .7
8 Ig
.1 .3
.9 11
g g
=+ T
.18 14 .8 .3 «10 +18 43
§ 21 43 §
Laoo -100 100 300 .00 7.00
\\‘*II
S
Sodl tiae a Fig. 3. Partitioning 3-space around a triangle.
g 0.000 0.300 ®
Seurss point eserds. 0500 The curved surfaces are quartics.
1: ¢ 8 1 o= 13: 6 ¢ S 3 1
s 6 8 1 “: ¢ 5 3 3 1
s: 6 8 13 3: ¢ 3 8 5 1
¢ 6 &1 °: ¢ 4331
s s ¢ 1 m: 65 6331
e: 2 8 1 ’: 6 3 8 ¢ 3 1
2 s ¢ 1 19: 6 3 ¢4 5 3 1
M ¢ 8 1 2: ¢ 4 53 31
»: s 3 1 8: 6 5 3 3 ¢ 1
10: 2 3 1 23: 6 3 3 4 5 1
11: ¢ 8 8 1 23: 6 3 3 8 4 1
13: 6 ¢ 3 1 2: 6 4 33 3 1

561

Fig. 4. Voronoi partitioning on a convex polygon.
This is done by unfolding above pyramid.

