......

COMPUTATIONAL GEOMETRY AND PROLOG

Wm. Randolph Franklin
Electrical, Computer, and Systems Engineering Dept.
Rensselaer Polytechnic Institute
Troy, New York, USA, 12180.

Telephone: (518) 266-6077
Telex: 646542 RPI TRO
Arpanet: WRE%RPI-MTS.Mailnet@MIT-Multics

ABSTRACT
Prolog is a good tool for implementing computational
geometry algorithms. This paper discusses its advantages and
disadvantages, and gives examples, including linking chains

together, boolean operations on polygons, and cartographic map
overlay and reduction. An implementation of polygon intersection
proves Prolog to be much more compact and easier to use than
Fortran.

This material 1is based upon work supported by the National
Science Foundation under grant no. ECS-8351942, the Rome Air
Development Center, contract number, F30602-85-C-0008,
subcontract 353-9023-7, and by the Data System Division of the
International Business Machines Corp.

NATO ASI Series, Vol. F17

Fundamental Algorithms for Computer Graphics
Edited by R. A. Earnshaw

© Springer-Verlag Berlin Heidelberg 1985

74

i 738

INTRODUCTION TO PROLOG

Prolog is a so-called fifth generation logic programming
language based on Horn clauses. The standard Prolog reference is
Clocksin and Mellish [8], accompanied by the exercises in
Perreira [9]. Its chief characteristics are as follows.

a) Prolog 1is a declarative, rather that a procedural,
language. Essentially, a formula that the solution must satisfy
is stated, and the system generates possible solutions and tests
them until a good one 1is found. Nevertheless, in real Prolog
programs, there are some procedural steps, such as the assertion
of facts, and I/O.

b) There are no assignments of values to variables, except
the binding (unifying) of two formulae. If one formula is a free
variable, and the other a known gquantity, then the effect is
similar to an assignment, except that the bound variable cannot
have its value changed, except as described below.

c) Prolog proceeds by finding facts in 1its database that
satisfy its current formula. If part of the formula fails, then
the system backtracks, undoes bindings, and matches another fact.

d) There is only one data structure, the list, as in Lisp.
The major control structure 1is the recursive procedure. This
effects the same result as iteration in most other languages.

e) Prolog is often combined with other languages such as
Lisp so that assignment, iteration, and other features can be
used. Of course a Lisp assignment executed from Prolog does not
get undone on backtracking. Another major limitation of Prolog

is that it is not self-referential in the same sense as Lisp: it
is difficult for a Prolog procedure to create another Prolog
procedure.

Some other implications of automated deduction are given in
Goos [17, 18]. Swinson [22, 23, 24] introduces the use of Prolog
in architectural design.

The examples in this paper were implemented in Salford

Prolog [21] on a Prime 750 computer in the Image Processing Lab
at Rensselaer Polytechnic Institute.

COMPUTATIONAL GEOMETRY

Intuition verses implementation

Computational geometry is concerned with spatial
relationships and geometric coincidences, such as which pairs of
a set of objects intersect. There 1is frequently a wide gap

between intuition and implementation. Consider for example

739

performing boolean operations on two polygons, A and B.

When the intuitive algorithm given in the section Boolean
Combinations of Polygons is implemented in Fortran by a typical
graphics programmer, it will require 500 to 1000 lines of code,
although it can be explained to another person in a few minutes.
while this is true throughout computer science - people joke
about the need for a DWIM (Do What I Mean) machine - nowhere is
it more true than for geometry algorithms.

Algorithms which are difficult to wunderstand, unlike the
above, can Dbe close to impossible to implement. An example 1is
the recursive construction of a Voronoi diagram.

Special Cases

Special cases form another problem with graphics
implementations. When all the special cases for the polygon
combination problem are considered, the number of lines of code
rises to 1000 to 2000. A simple example shows the problem. We
wish to determine whether two finite line segments intersect.
Wwhat do we do if the endpoint of one line lies on the other line?
Note that in software engineering terms, this is a functional
specification problem, not a design oOr implementation one. A
failure to realize this is common and serious.

How this special case is handled does not matter much except
that the line intersection routine will be incorporated into
other routines, such as one to determine whether two chains of
line segments intersect. The hope is that deciding the low level
special case properly will mean that the high level algorithm
will automatically work correctly. For example, we might define
the half plane on one side of each line segment positive, and
assume that an lying on a line lies on the positive side. Then
if and vertex of one chain lies on an edge of another, then the
chain intersection will automatically be correct.

However, the above fails if a vertex of one chain coincides
with a vertex of another. It can be proved by exhaustion that
that is no way to handle the special case of coincident vertices
when two lines intersect so that two intersecting chains will be
processed properly. The only solution is for the chain
intersection algorithm to consider the line intersection special
cases itself, at a considerable increase in complexity.

The above simple problem has been considered in some detail
since it illustrates guite well the problem of special cases.
Special cases in nontrivial problems are that much worse, and
they occur in everywhere. The cases that occur in polygon
combination include concident vertices, collinear edges, a vertex
of A on an edge of B, and multiple components that may or may not
intersect the other polygon.

740

SIMPLE PROLOG EXAMPLE - LINKING CHAINS

The thesis of this paper is the Prolog is an excellent tool
for implementing computational geometry algorithms. Its power
will be illustrated by a simple problem, that of linking isolated
pieces of a into a chain. The data structure is a set of facts,
one per chain piece:

chain(endl, end2, list)

'endl' and 'end2' are the names of the vertices at the two

ends of the chain. "1ist' is a list of all the vertices in the
chain after endl, up to and including end2. This definition of
1ist simplifies the algorithm. 1f the chain is only one edge,
then list = [end2]. The complete Prolog program to combine

chains segments into longer chains as long as this is possible 1is
this:

joinl == /* Combine 2 chains
chain(A,B,Ll),
chain(B,C,L2),
retract(chain(A,B,L1)),
retract(chain(B,C,L2)),
append(L1,L2,L3),
assert(chain(A,C,LB)).

joinall = joinl, fail.
joinall.

chain(a,b, [bl).
chain(c,d, [d]).
chain(b,c,lcl).

/* Sample data

Joinl searches for two chains where the ending vertex of the
vertex equals the starting vertex of the second. This search is
built into Prolog. The lists of vertices for the chains are
combined, then these two chains are deleted from the database,
and the new chain added.

Joinall repeats joinl as long as joinl can find two chains
to combine. After it is finished, the only remaining fact
concerning chains is

chain(a,d, [b,c,d]l).

This program, which is complete, compares guite favorably
with, a Fortran program to accomplish the same goal. We will now
consider in detail some of Prolog's advantages and disadvantages
for computational geometry.

. R

741

DETAILS OF PROLOG ADVANTAGES AND DISADVANTAGES

High Level Language

Prolog is a good high level language. It has dynamic data
structures, lists, and the code and data can be interchanged.

Another HLL advantage is that Prolog is extensible: we can

define new data structures and operators. This allows the
creation of more powerful virtual machines. This can improve
implementations of geometry algorithms that are Dbedeviled by
numerical inaccuracies. For example, 1f a point 1is slightly
inside a polygon, and you rotate the scene including the point
and the polygon, then the point might now be outside. Also,

although floating point numbers are a model for the real number
system, almost none of the real field axioms are satisfied.
There are computers, for example, where addition 1is not
commutative. This lack of correspondence between what the user
expects and what actually happens, is in SWE terms, a FAILURE.
Using Prolog, a rational number package can be implemented with
which to perform the arithmetic.

Pattern Matching

Much of geometry consists of processing patterns. If vyou
split a line where another line intersects it, then you are
pattern matching for the intersection of two lines. This matches
the intuitive way people think about geometry.

In the chain linking example given above, we wish to search
for the pattern which is two chains that can be linked, and then
link them.

Unification

This is equivalent to strong connectivity in graph theory.
This operation can be used in graphics to determine the connected
components of a graph as follows.

a) Associate a different free variable with each vertex of
the graph.

b) Process each edge of the graph by unifying the free
variables corresponding to the vertices at the ends of the
edge.

After all the edges have been processed, there remains
exactly one free variable for each separate component of the
graph. When the free variable corresponding to some vertex is

bound to a value, such as that vertex's name, then all the
variables corresponding to vertices in the same component are
simultaneously bound. If this 1is repeated until there are no

more free variables, then the graph components are determined.

R T B

742

Data Structures

Pure Prolog, at least, lacks the random addressing of local
data. Thus the only efficient way to simulate an array is to
implement balanced trees. This adds a log factor to the
execution time.

Efficiency

There are two considerations here. First, a primitive
operation in Prolog, such as A=B, can take an arbitrarily large
time to execute, depending on the size of the two expressions
being unified. This makes it more difficult to determine bounds

for the execution time.

Second, defining algorithms declaratively, which Prolog
executes with an exhaustive generate and test procedure, clearly
hurts efficiency. Although it is simple to write a procedure
that is satisfied for all intersections of two edges in the
database, this will reguire time = O(N**2) where N = number of
edges in the database.

There are two solutions to this, at least in the geometric

case. The first is to impose a second data structure such as an
adaptive grid. Franklin has implemented algorithms where this
can be quite efficient for geometric intersection problems. [11]

gives a hidden surface algorithm that when implemented on a Prime
500, a midicomputer, could determine the visible arcs of 10,000

random circles, packed ten deep, in 383 seconds. These
techniques would transfer to Prolog. An even more robust data
structure is a k-d tree invented by Bentley, [4]. However, these

techniques are retreating somewhat from the declarative form of
Prolog since they mean giving a detailed prodecure .

The more abstract answer 1is to notice that Prolog
implementations can be good at using hashing to test for equality
of the arguments of isolated facts. That is, given a database
with facts of the form

person(height, weight).
they can return all facts matching

person(H, 200).

in constant time per fact returned. It is possible to imagine
how searches such as

person(H1,W), person(H2,6W)

might be performed in time proportional to the size of the data
returned. However, what is really needed for geometry, and what
no Prolog implementation can do is to execute the following
search

redqt

amo’

rul
hav

con

bo«
di

co
in
or
re

pc
Hc
is

ge
ir

743

person(H,W), H > 5, H < 6, W < 200.

in time linear in the number of facts returned. This would
require that k-d trees be used in the search mechanism.

Nevertheless, with Prolog, the user has the choice of the
amount of efficiency desired. A purely declarative procedure
will be easy to code, but slow to execute, while as procedural
rules are added, the execution becomes faster. The user does not
have this choice in many other languages.

Software Engineering Considerations

Prolog lacks certain nesting facilities that may make it
difficult to properly modularize and structure large programs.
The definition of a procedure is global; it is not restricted to
the domain of another procedure. It is impossible to have
separate domains or subdomains of facts apart from the global
heap.

BOOLEAN COMBINATIONS OF POLYGONS

In this paper, our big example will be a polygon boolean
combination algorithm, so a review of this problem is in order.

History

There have been many solutions to the polygon and polyhedron
boolean combination problem, each with various advantages and
disadvantages. Some of them are:

Eastman and Yessios [10] give a general algorithm for
combining 2-D polygons. It works Dby finding all the
intersections between the polygons' edges, and then "threading"
or traversing around the pieces of edges to determine the
resulting algorithm.

Maruyama [19] gives a procedure for determining whether two
polyhedra intersect by comparing the faces pair by pair.
However, he does not determine the intersection, only whether it
is null.

Baer, Eastman, and Henrion [1] give a good summary of
geometric modelling systems, which "shape operations" (i.e.
intersection etc.) they perform, and how they do it.

Tilove [25] considers important questions of what
intersection and so on mean in the abstract, and introduces
"regularized set operators" to answer them. He also gives

recursive methods of intersection and union of objects defined as
as combinations from a small family of primitives. These methods

]
A
3

744
are used in P.A.D.L., one of the best known geometric processors.
PoBAsDuL also contains a non-CSG polyhedron combination

algorithm that has been presented in short courses.

Boyse [5] gives an algorithm for determining whether two
objects interfere, where one of the objects can be moving along a
straight or circular trajectory. His objects are composed of
vertices, straight edges, and flat faces, so for two objects to
interfere it 1s necessary and sufficient for an edge of one
object to pass through a face of the other object. This he tests
for. However, this does not extend to producing the
intersection.

If one of the objects is a convex polyhedron, then we can
use the fact that it 1is the intersection of a number of
semi-infinite half-spaces, one for each face, by intersecting
them against the other polyhedron, one by one. This is easier if
the other polyhedron is also convex. However, the only way that
this method generalizes to non-convex objects 1is to partition
them into convex pieces, which increases the complexity.

Baumgart [2, 3] has a good geometric manipulation system
with polyhedron combination operators, using a different
algorithm. Braid [6] has another polyhedron combination
algorithm. Parent [20] describes another one.

Another independent similar algorithm is described in Turner
[26]. Again, it does not include a means of handling complex
objects. It has been implemented, but cannot handle two objects
with a common face, or an edge of one lying in a face of the
other.

A similar polyhedron boolean combination algorithm is a part
of the design of the Kepler geometric manipulation system
described in [12, 13]. An earlier algorithm for polygons was
implemented in 1973. A similar planar graph overlay algorithm is
described in [14].

Finally, Weiler [27] gives an excellent polygon comparison
method that clips two polygons against each other. Its use of a
graph data representation simplifies matters, and can compare
concave polygons with holes.

Prolog Algorithm

A set theoretic definition of C = A intersect B is:
C=1f{p | pin A & p in B}

This is not directly implementable if the universe has an
infinite measure. A CSG (Constructive Solid Geometry)
representation merely avoids the problem until it must determine
whether the resulting object is empty, at which time it must
perform some approximation to the algorithms described below.

745

We give an intuitive definition of C that includes all
special cases and is implementable. It handles collinear edges,
many edges incident on the same vertex, a vertex in the middle of
another edge, a polygon with multiple separate components and
holes with islands, and an infinite polygon that includes the
whole plane except for a finite region. It is as follows.

a) Determine all the intersections of edges of A with edges

of B.

b) Split all the edges at these intersections into smaller
segments that do not intersect. If an endpoint of one edge
lies on another, then split the other edge. This includes
the case of two collinear edges; if either contains an
endpoint of the other in its interior, then it will be split
there.

c) Determine the relation of each segment to the other
polygon. There are six cases:

i) A segment from a edge of polygon A may be inside
polygon B.

ii) It may be outside B.
iii and iv) Ditto for segments of polygon B.

v) The segment results from an edge of A Dbeing
collinear with an edge of B, and is part of a edge of
both A and B. Both polygons are on the same side of
the segment.

vi) As before, except that A and B are on opposite
sides of the segment.

d) Use a decision table to select the segments appropriate
to the boolean operation desired. For intersection, we want
the segments from only cases (1), (iii), and (V).

This produces the set of segments in the output polygon. A
planar graph traversal may be done to link them up, but this is
not necessary since most desired operations, such as point
inclusion testing, area measurement, cross-hatching, and further
boolean operations, do not require the global topology.

Status
The program is implemented and working except for the
collinear edges. In contrast to Fortran, the Prolog version has

only 151 executable lines of Prolog. The lines are of a natural
length, not packed to column 80.

74

746

CARTOGRAPHIC MAP OVERLAY AND REDUCTION

Franklin [15] describes the problem of map overlay in
cartography. Here a difficult algorithm combines with numerical
inaccuracies. Peter Wu is implementing a solution in Prolog
where the two difficulties are decoupled. The algorithm is being
implemented with an infinite precision rational number package in

Prolog. Next the output will be reduced to floating point format
with an expert system.

This reduction process involves moving the vertices to legal
coordinate values one by one. After each vertex is moved, the
topology of the map around it is checked for correctness and

consistency. If an error has been produced, then the vertex must
be moved to another legal place, or something else must be moved
to correct the topology. In extreme cases, the topology must be

changed while keeping its consistency. For example,

a very small
polygon might be combined with a neighbor.

SUMMARY

The pattern matching, backtracking, capabilities of fifth
generation languages such as Prolog are particularly useful in
geometry. Their correlation with the way that people think about
geometry and their abstraction of unnecessary details allows wus
to spend more time on the creative aspects of the algorithms,

which makes larger systems and more difficult algorithms
practical to implement.

REFERENCES

[1] A. Baer, C. Eastman, and M. Henrion, "Geometric Modelling:
A Survey", Computer Aided Design 11 (5), Sept. 1979.

[2] B.G. Baumgart. GEOMED: Geometric Editor, Stanford

University STAN-CS-74-414, Also available as NTIS AD-780 452,
(May 1974),

[3] B.G. Baumgart. Geometric Modelling for Computer Vision,

Stanford University Artificial Intelligence Memo AIM-249,
(Oct. 1974),

[4] J.L. Bentley and M.I. Shamos. "Divide And Conguer in
Multidimensional Space", Proc. 16th Annual IEEE Symposium on the
Foundations of Computer Science, (1975), pp. 220-230

|
|
i
1
\
|

—

747

[5] J.W. Boyse. "Interference Detection Amo .
Surfaces", Comm. ACM 22 (1), Jan. 1979, pp. 3_9'ng felids and
[6] I.C. Braid. "The Synthesis of Solids Bounded by Ma n
Comm. ACM, (1975). Y Many Faces®,
[7] K.L. Clark and S.-A. Tarnlund. Logic Programming, (1982)
APIC Studies in Data Processing No 16, Academic Press. !
[8] W.F. Clocksin and C.S. Mellish. Programming In Prolog,

(1981), Springer-Verlag, New York.

[9] H. Coelho, J.C. Cotta, and L.M. Pereira. How to Solve it
With Prolog, 2nd edition, Ministerio da Habitacao e Obras
Publicas, Labatorio Nacional de Engenharia Civil, Lisboa, (1980).

[10] C.M. Eastman and C.I. Yessios, An Efficient Algorithm for
Finding the Union, Intersection, and Differences of Spatial
Domains, Carnegie-Mellon University, Dept. of Computer Science,
(Sept. 1972).

[11] W.R. Franklin. "An E=xact Hidden Sphere Algorithm That
Operates In Linear Time", Computer Graphics and Image Processing
15, 4, (April 1981), pp- 364-379.

[12] W.R. Franklin. "3_D Geometric Databases Using Hierarchies
of Inscribing Boxes", Proceedings of the 7th Canadian
Man-Computer Conference, (10-12 June 1981), Waterloo, Ontario,
pp. 173-180.

[13] W.R. Franklin. "Efficient Polyhedron Intersection and
Union", Proc. Graphics Interface'82, Toronto, (19-21 May 1982),
pp. 73-80.

[14] W.R. Franklin. "aA Simplified Map Overlay Algorithm",
Harvard Computer Graphics Conference, Cambridge, MA, (31 July - 4
August 1983), sponsored by the Lab for Computer Graphics and
Spatial Analysis, Graduate School of Design,

[15] W.R. Franklin. "cartographic Errors Symptomatic of
Underlying Algebra Problems", Proc. International Symposium on
Spatial Data Handling, vol. 1, (20-24 August 1984), 2Zurich,
Switzerland, pp. 190-208.

748
[16] J.C. Gonzalez, M.H. Williams, and I.E. Aitchison,
"Evaluation of the Effectiveness of Prolog for a CAD

Application", IEEE Computer Graphics and Applications, (March
1584), pp. 67-75.

[17] G. Goos and J. Hartmanis. Lecture Notes in Computer Science
87: 5th Conference on Automated Deduction, (1980),
Springer-Verlag, New York.

[18] G. Goos and J. Hartmanis. Lecture Notes in Computer Science
138: 6th Conference on Automated Deduction, (1982),
Springer-Verlag, New York.

[19] K. Maruyama. "A Procedure to Determine Intersections
Between Polyhedral Objects", Int. J. Comput. Infor. Sc. 1 (3),
1972, pp. 255-266.

[20] R.E. Parent. "aA System for Sculpting 3-D Data", Computer
Graphics (ACM) 11 (2), (Summer 1977), pp. 138-147.

[21] University of Salford. LISP PROLOG Reference Manual, (March
1984).

[22] P.S.G. Swinson. "Logic Programming: A Computing Tool for
the Architect of the Future" , Computer Aided Design 14, (2);
(March 1982), pp. 97-104.

[23] P.s.G. Swinson, F.C.N. Periera, and A. Bijl, "a Fact
Dependency System for the Logic Programmer", Computer Aided
Design 15, (4), (July 1983), pp. 235-243.

[24] P.s.G. Swinson. "Prolog: A Prelude to a New Generaion of
CAAD", Computer Aided Design 15, (6), (November 1983),
pp. 335-343.

[25] R.B. Tilove. '"set Membership Classification: A Unified
Approach to Geometric 1Intersection Problems", IEEE Trans.

Comput. C-29 (10), 874-883, (October 1980).

[26] J.A. Turner. An Efficient Algorithm for Doing Set
Operations on Two- and Three- Dimensional Spatial Objects,
Architectural Research Laboratory, University of Michigan.

N\

749

[27] K. Weiler. "Polygon Comparison Using a Graph
Representation", ACM Computer Graphics ACM Computer Graphics 14
(3), (Proc. SIGGRAPH'80), (July 1980), pp. 10-18.

[28] F. Yamaguchi and T. Tokieda. "A Unified Algorithm for
Boolean Shape Operations", IEEE Computer Graphics and
Applications 4, (6), (June 1984), pp. 24-37.

7

