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ABSTRACY

Given a set of polyhedral cbstacles we consider
the problem of computing an obstacle-avoiding
shortest path between two specified points,
source and goal, external to the polyhedra.
This problem is commonly kmown as FINDPATH in
moasl-based robotics., We first show that
FINDPATH is solvable in a straightforward yet
inerficient way. We then comsider a locus
method based on an extension of the Voromoi
diagram in computatiomal geometry to solve the
subproblem of determining the sequence of
polyhedras edges where the shortest path bends.
This method, givem a source, partitions the free
space around polyhedra into regions bounded by
curved surtaces such that all goals inside a
particular region have the same ordered list of
bend edges. This reduces FINDPATH to a
preprocessing step (computing the regions), plus
a searching step (determining which region
contains a given goal). Omce the ordered
sequence of edges that a shortest path must
visit is known, the actual bend points are
calculated after solving a system of nonlimear
equations using algebraic elimination or
nomerical methods. Simce this last computation
can be dons by standard packages, albeit slowly,
in the common case where the goal point varies
while the source point and the obstacles are
fized, the shortest path cam be calculated by
meroly concentrating on the searching step.

Keywords: model-based robotics, computational
geometry, FINDPATH, locus method, Voronmoi
disgram, eliminmation, planar and spatial point
location.
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IN1RODUCT ION

A common problem in robotics is to find s
shortest path connecting two given points in the
presence of polyhedral obstacles inside »
workspace. This is known as FINDPATH after
Winograda's renowed robot simulator SHRDLU (32).
FINDPATH is a very important ingrediemt of
"model-based” robot systems where a task is
specified nonproceduraily and is expected to be
accompl ished automatically by referring to s
geometric model of the workspace, Thus,

cont ronted with a regquest such as "Move the red
cube which is in front of the green pyramid to
the top of the yellow prisa,” a model-based
system would activate its geometric path planmer
to fina an obstacle—avoiding optimal path for
the givenm cube. Since in a model-based system
human intervention is assumed to be nonexistent
or minimal, this may in turn require other
powertul functions from the path plaanmer such as
FINDSPACE (find a suitable location to place a
given object), MAKESPACE (move or remove some
obstacles to open up space), and so on, Inm
SHRDLU all these functions do exist although
their success is basically dependent on
heuristics and the fact that Winograd considers
simple workspaces called the "blocks world, "
where there are obstacles of low complexzity.

In this paper we consider only the FINDPATH
problem among the cited functions and give n
geometric solution which always succeeds.
Although we simply study the movement of a point
between s source and a goal, an "object
FINDPATH" version of the sort cited above can be
easily simulated provided that we are only
translating the given object (no rotations
allowed). This is achieved using the
"configuration space (C-space)” approsch, first
made popular by Lozano-Perez (16). In the
C-space approach to an object movement problem,
we transform the given obstacles to new
obstacles by growing them while simultanecusly
shrinking the moved object to s "reference
point.” Once a new workspace is computed from
the descriptions of the transformed polyhedra, a
"point FINDPATH” version can be applied. It is



noted that the C-space method gives exact
results for movements consisting of only
translations and has been used with some success
to obtain approximate paths when rotations are
also permitted.

TWO-DIMENSIONAL FINDPATH

Many attempts have been made to solve the
two-dimensiona]l versionm of FINDPATH, 1In this
case, the obstacles become polygons whose
interiors are forbidden, This is useful in
workspaces where all cobstacles are prisms which
extend between two parallel planes (such as the
columns of a Greek temple), and the source and
goal are both guaranteed to be in a plane
parallel to the given plames. Denoting the
source by s, the goal by g, and the polygons by
F(P,.....Pk}. it is seen that the shortest path
is a polygonal path with endpoints s and g, and
possible bend points at some vertices of the
members of P (5). To solve the problem, one can
construct a network which has s, g, and the
vertices of all Pi as nodes. There will be an
arc between a pair of nodes in this network if
the corresponding vertices in the workspace are
"visible" to each other, i.e., they can be
connected by & line segment which is free of
intersections with the members of P, The weight
of such an arc is taken as the Euclidean length
of this line segment. Once this network (which
will be denoted by Vnet, the "visibility

ne twork"”) is comstructed it is easy to search it
for a shortest path between the nodes
corresponding to s and g. If there is a total
of n vertices in P then Vnet may have in the
worst case O(n2) arcs; thus the search can be
performed in O(n? log n) time using say,
Dijkstra’'s algorithm on Vnet (7). The
conttruction of Vnet can either be dome naively
in 0(n?), or using a more sophisticated method,
in 0(n? log n) time (29).

THREE-DIMENSIONAL FINDPATH

For three-dimensional FINDPATH the above
approach is not applicable. In three
dimensions, shortest paths may bend at some
vertices as well as some interior points of some
edges., However, the fact that s shortest path
will still be a polygonal path (but this time
with bend points lying on some edges of the
members of P) makes the following brute—force
solution possible. Enumerate all possible
permutations of any length of the set of edges
of the given polyhedra. For each permutation of
edges find a shortést path between s and g
touching every edge of this permutation in the
order they appear in the permutation., If a
shortest path computed from a particular
permutation does interfere with the objects,
then discard it. (This can be seen using a
line-polyhedron intersection detection
function.) The shortest path between s and g is
the one which has the shortest length among the
shortest paths obtained from the surviving
permutations.

From the above algorithm it is apparent that we
nced & way to compute the shortest path through
a family of lines. This problem will be called
the optimal line visit (Figure 1). It can be
shown that, given an ordered sequence of n lines
and two points, the shortest path between these
points constrained to touch each line in that
order is unique (29). Furthermore, the shortest
path satisfies an important angular condition,
namely, the entry and the exit angles the
shortest path makes with each lime at its bend
point are always equal.

Assume that each lipme is given by its two
distinct points and assign different coordinate
systems to each line, i.e., let linme Li be
parametrized by x., Also, for each line compute
uy which is a unit vector along Li and demnote
the bend point on L, by c;. Then:

Ci-1%1°% ©3%41°%
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o303l legeiyy
where , denotes the scalar product and | | is
the vector length, If we rewrite the above
equation after putting values of ©i-1° S3r C44q
in terms of Tiqr X5 Tiuge respectively, and

eliminate the square roots due to | | then we
obtain a quartic in three variables, xi'-l’ :i.'

and x, .. Repeating this for all limes, we end
up \rig the following system of n quartics:

Q (x,,x,)=0
Q,(x,,x,,x,)=0
Qi“i-—l"i"‘iﬂ

Qn(xn-—l ..I:n)"O

)=0

Theoretically, the above system of equations can
be solved using resultants. This is a classical
method known as the "elimination theory, "

cf. van der Waerden (31) and Collimns (6).
Alternatively, one can use various numerical
techniques ranging from Newton—Raphson to the
homotopy methods for solving a system of

nonl inear equations.

If L:.' Lycesas L‘1 are but finite line segments
then the shortest path may be bending at points
located outside these line segments. In this
case, Sharir and Schorr (29) hint that the
shortest path will have to pass through some
endpoints of these segments at which it will
subtend different entry and exit angles contrary
to what was stated before., The problem is thus
reduced to a collection of subproblems where a
shortest path passes through the interior points
of a subsequence of line segments. .
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RELATED WORKS

There have been various developments in the area
of geometric path planning, especially in the
last few years. For brevity, we shall mention
only a certain section of it.

Lozano—-Perez (15,16) introduces the Cspace
approach and its practical applications in

two— and three-dimensional workspaces.

Brooks (3) and Nguyen (18) report working
programs for path planning in the plane although
these become guite slow when applied to
realistic workspaces. Reif (23), Schwartz and
Sharir (24,25,26,27), Sharir and

Ariel-Sheffi (28), O'Dunlaing and Yap (20), and
0'Dunlaing et al (19) prove results mostly on
the computational complexity of several special
cases of path planning. Their work is important
for showing the computational effort to
accomplish certain difficult functions such as
coordinating the collisionfree motion of many
objects, etc. Finally, shortest path
computation hes slso besn treated im recent
papers such as Framklin (¥}, Framklin and

Almas (10), Prenklis et al (11), Sharir and
Sohorr (I%), Lee and Proparata {14},

O'Bomrke ot wl (21}, Papadimitrios (22}, snd
Mitehell and Papadimitricn (17). In an mpeoming
work, Alman (1) discusses the problem im detail,
gives several implementations for special
instamcea of FINDPATH, and cltes s wide speotrom
of references on the sohjest. Framklin sed
Akmam (10) deml with shortest paths onfarousd a
single cosvexr polykedron, They also show how to
partition the boondary of & coovex polyhedrom ta
solve the single somrce = all gosls versicos of
FINDFATH. Frasklia et al (11} repost, smomg
other thisgs, a=z isplemsentaticn of a
two~dimensionnl Voronoi-hased FINDPATH &l goritha
which will be detailed ig the sext section,
Eharir aed Sckorr (I9) meption several resmlts
on the mature of shortest paths on s convex
pelyhedron. They alse prove that given o comvex
polyhedron P with & vertices ead a poiet s omn
it, P cam be preprocessed in O(n® log n)} time te
produce a data structore with the help of which
one ca@ Figd in Dia) time ithe shortest path
slong the sorface of P from s To any §.

Mitchell apd Papadimitriosw (17} show that the
same boond Bolds for o gemerel polyhedroa (with
concavities and holas) altheogh thay compute A
path omly on the anrface of the polyhedron, thus
lntroducing the possibility that the fowad path

may mot be the shortest.

The skortest path problem in some ways may be
considered aa an eatessics of the NPcomplets
TRAVEL ING SALESMAM problesm where wa wiak o
datersina the shortest walk {or toor) that
traversss the acdes aof a given network in any
order, of. Johnson mzd Papadimitricn (11).
Althoogh thers are some techoical difficoleies
arising from the distamce motric, the Euclidean
verslion of TRAVEL WG SALESMAN is also
NP-¢amplete. It is noted thet the optimel limoe
wilalt problem hicomems WP-ccmpletsa if we relax
the requirement that the sbortest path abould
vigit the lines im & specified ardsr. To saws
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this, assume that we have a set of points in the
plane. Draw perpendicular lines to the plame at
each point. If there is a polynomial algorithm
to solve the optimal line visit problem for this
instance then it can be used to find an optimal
tour of the given points. Thus, we have shown
that any approach which uses the optimal line
visit as a subroutine to solve FINDPATH must be
of at least exponential time complexity. It is
currently an open problem whether there is a
polynomial algorithm (polymomial in k, the
number of obstacles, and n,,,,.,n;, their sizes)

to solve FINDPATH.

In the remainder of this paper we shall assume
that FINDPATH is solved as soon as wo provide an
ordered sequence of edges the shortest path must
wvisit, In the naive algorithm we presented for
FINDPATH, the most annoying step was that we had
to treat all sequences of edges. In the nsxt
section we shall propose a scheme to cut down
the search space for FINDPATH from this to a
more manageable size using a locus approach.

A LOCCS METEOD FOR FINDPATH

A eommon specisl izatics of FINDPATH oscuga when
2 wxd P are fized, and mew paths abonld be
calculated as g moves srousd the workspace. For
szample, & sapipolstor amm may pick wp & past
from & pile of parts at a fized location, amd
then move scmewhers in the scene to work with
it.

In Franklim (9). an importast comstrscticn besed
o8 as extession of Yoronoi disgreme im the plams
Ls given which, for w gives 4 in the plane,
partitions the plase into n set of regless asuzh
that w1l g's withis & given reglen Bive the same
list of bend vertices. (Fof similar sxtensions
of Voresei Jdiagrams, #ee Lee sed Drredale (13),
pod Les ind Prepasats (14).) This redsces the
probles of fisding = shortest path to the
preprocessing step (fimding the regicms), pluos
the task of determining which reglom contaims g
[genrching), The last step is sasy since thi
borders of the regions are either lime sepments
or pertioms of hyperboelas. Thus, sxisting poimt
loestion &l goricthes casm ke osed after some
slight modifications. Im the common &aie whers
g varies whils » and the obstacles sre fized,
the shortest path can be fomnd by merely
repeating the search {(point lecation] phass,

If we emulete Franklis'as approach in space then
the reglons will have the followimg propesty.
All g's in n given regicm afe reachad from 3
after vialting the same seqoenca of edges of the
obgtacles in P, To gadm imaight to this
problem, we shall first work on & very aimple
cape, mamely, & 10lid trismgle sitoated in
ApECE .

Lec &, b, aed ¢ B8 points im space. Thems
points depcribe a trimngle abe if they are mot
colipser, Let ¢ b soy point im space extermal
te the the plans of abe. Assomipg that sbe ia o
9olid erisngle we want to partitios the space
igto regione soch that if = maw poiet g L



specified we would be able to tell whether g can
be directly reached from s, and if not, which
edge of the triangle (ab, bc, or ac) the
shortest path must touch, We refer the reader
to Figure 2 during the following discussion.

If § is outside the frustum obtained by
subtracting the pyramid described by basis abec
and apex s from the infinite pyramid similarly
described then the shortest path is sg. Thus,
one of the regioms, E,, has all the points of
the space that are not obstructed by abc.
Otherwise, g may belong to one of three regioms:
B oo Bper OF R, Ry is the region such that
if geR . then the shortest peth is vis edge ab.
R, snd R, are similarly defined, When g is on
the boundary of two regions there may be two or
three shortest paths.

Now, we shall compute the bounderies between the
pairs R . and B, By, and R, and R . and B .
In the sequel, s will be assumed to be the
origin without loss of generality. We shall
first compute the boundary between I‘..b and nhc'
Take g such that the intersection of sg with
triangle abc is not empty. If g belongs to the
surface between R . and B then there are at
least two s-to—g shortest paths, ome bending at
ab and the other at be.

Let us develop g into the plane of triangle sab
by rotating g sbout ab until it lands on the
plane of sab to the other side of ab with
respect to s, and demote the obtained point by
L Although omitted here, it is not difficult
to show that

lg,pl=lal+lagl?
+2((ng.u.b)(..uab)+
lag x o 1l x 1)

where x denotes the vector product, and u. is a
gnit vector along ab. This formula gives T;.bll
in terms of known guantities (a and u .) and the
unknown g (with coordimates x,¥,2). ﬂe formula
for lg, 12 (zesp. lg, |*) is anslogous to the
above formula; just change a to b (resp. ¢)
and Bp tO By (zesp. ). The surface
between regions B . and is computed from the
condition I'al:"lsbcl (after squaring both sides
and nsing the formulas for 8,y and 3‘bc} as a
ternary quartic. Other two regions are also of
the same type.
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This method can be applied to a solid polygon
too (Figure 3). Let P be a comvex polygon with
vertices a,b,... and s a point out side the
plane of P. It is possible to partition P into
convex regions (each completely containing an
edge of P) such that if g is later specified
inside one of these regioms then the shortest
path between s and g is vis the associated edge
of this region. To see this, rotate s about the
lines defined by edges ab,bc,... uatil it is
coincident to the plane of P and always on the
opposite side of a particular edge compared to

the interior of P. This is basically an
unfolding of the pyramid with apex s and basis P
to the basis plane. Thus, n image points are
obtained which will be demoted by S,br Bporcce

Draw the Voromoi diagram of these points and
clip it against the window P. This partitions P
into comvex regions since each Voromoi polygen
is comvex. Figure 3 demonstrates these regions.
To characterize the three-dimensional regions
behind the polygon we are roquired to compute
all the potential boundaries between pairs of
regions, Although conceptually easy, this may
be messy when it comes to intersect the
boundaries to compute their intersection curves.

“ In fact, even a crude drawing of the

three—dimensional regions is compl icated and is
left aside in Figure 3. However, it is noted
that the intersectiom of these regions with the
polygon would give the same Voronoi diagram
shown in Figure 3.

The extension of the method to several obstacles
seems difficult, In this case, @ desirable
property of plane partitions around polygons
disappears. First, a brief account of
Franklin’'s approach is in order. (The reader is
referred to Franklin (9) and Franklin et al (11)
for a detailed description.) Note that in the
plane, once & subdivision is formed there is
only one sequence of bend points for it
(provided that it is not on a boundary curve in
which case there may be more), Im Figure 4,
there are two obstacles (lime sogments), ab and
cd, in the planc and a source $ is given as
shown. Franklin's algorithm partitions the
plane into five regions in this case. R, holds
g's directly reachable from s. Il- holds g's
which cause a shortest path to bend at a. lh
holds g's which cause a shortest path to bend at
b. The boundary between l. and lh is a portion

of a hyperbola. Rd bolds g's which give rise to

a shortest path bending at d. Fimally, l. x
holds shortest paths bending first at a and then

at c. The boundary between R. & and Rd is also

a portion of a hyperbola. All'othu boundary
curves are linear, A crucial property of this
diagram is as follows. A bend point acts as 8
source point for s later regiom. For instance,
point a acts as a source poinmt for the points of

R .. Similarly, b acts as a souxce for the
points of lb Thus, the source point is
continuosly “pushed back” and this is the

underlying reason for the fact that all curves
are either line segments or hyperbolic sections.

In 3-space, mo such property exists., VWhen we
add a new triangle to a workspace with only ome
triangle the mew regions induced by this
obstacle will be separated by surfaces of order
higher than four. Thus, whereas the boundary
curves remain as hyperbolae in the plane in the
space they would grow with every new polygomal
obstacle placed imto the workspace, - One
practical way to get around this problem is to
approximate the boundaries with more managesble
surfaces (such as quadrics or planes) and to
keep them as such even when new obstacles are
introduced, This is possible since the boundary
surfaces are generally smooth.



SPATIAL POINT LOCATION

Once a workspace is preprocessed for a given s
and P, for each §, the region that it is in must
be determined. There are various algorithms
(known as planar point location algorithms) for
this problem in the plame but they work for
straight line subdivisions. Since the region
boundaries may be portions of hyperbolae in
Franklin’s method, it is necessary to convert
these algorithms to handle planar graphs where
edges can be hyperbolae as well as lines, This
can be done without much difficulty.

For spatial point location in the presence of
high order surfaces, we can use Chazelle's
method (4). His is & generalizationm of Dobkin
and Lipton’s multidimensional searching scheme
for the case of arbitrary (as opposed to linear)
real algebraic varieties, Dobkin and Lipton (8)
showed how to represent a family of n
hyperplanes, using a polynomial amount of space,
so that the query '"Does point x lie in any of
the given hyperplanes?” can be answered in
O(log n) time. Chazelle gemeralizes this in the
following manner. Let d be a constant which is
an upper bound on the degrees of a given family
of n polynomials Q’(Q,_,....Qn} in r variables
(in our case r=3)., He considers the problem of
preprocessing the members of Q@ so that for amy
point x, the predicate [There exists s Q,eQ such

that (li(x)-ol can be evaluated efficiently. If
the predicate is true, any of the indices i for
which Qi=0 can be reported. (Asking for all
such indices may rule out a fast response
anyway.) If the predicate is false then x lies
in a region over which each Qi does not change

its sign. Assuming that these regions have been
labeled during the preprocessing, reporting the
label corresponding to the region containing x
is required., It is noted that in our case we
store as a label a pointer to the sequence of
edges that the shortest path bends at.

The preprocessing is based on Armon et al's
"eylindrical algebraic decomposition” (2) which
is a more practical version of Tarski’s decision
procedure (30), and some ideas of Schwartz and
Sharir (25). The main result is a data
structure for answering any such predicate in
O(log n) time. The space and time spent to
construct the data structure are both polynomial
although the involved powers of n make it
doubtful if the method can be implemented at
all. This is an area with only recent results
and only further experimentation will show the
usefulness of Chazelle's approach.
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Figure 1. The Optimal Line Visit Problem.

Figure 2. Partitioning the Space around a Solid Triangle.
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Figure 3, Partitioning the Space around a Solid Polygon.

Figure 4.

Partitioning the Plane around Two Linear Barriers.
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