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ABSTRACT

We consider the problem of computing the shortest path under
the Euclidean metric between source and goal points in 3-space while
avoiding clashes with polyhedral obstacles. This can be thought as
the ultimate version of the notorious TRAVELING SALESMAN problem in
terms of generality and is known as the FINDPATH problem in
artificial intelligence and robotics. We show that this problem is
solved using algebraic elimination techniques in a straightforward
yet very inefficient manner. We then introduce a Voronoi-based
strategy for solving the subproblem of determining the sequence of
obstacle edges through which the shortest path passes. This is
based upon a natural extemsion of Franklin’'s "Partitioning the plane
to calculate minimal paths to amy goal around obstructions”

[Tech. Rep., ECSE Dept., Rensselaer Polytechnic Inst., Troy. NY,
Nov. 1982] to 3-space. In 3-space, a very desirable feature of the
plane partitions disappears making the space partitions complicated.
For this case, we suggest an approximation technigue.
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1. INTRODUCT ION

Let P,, P,,..., P be solid polyhedral objects in 3-space. A
very important problem in computational geometry (which is known as
FINDPATH in artificial intelligence and robotics, and has wide
applications) is to find a shortest path between two points S and G
(commonly termed as the source and the goal points) avoiding
intersections with Pi' i=1,...,n. Touching the boundaries of P, is
allowed. Throughout this paper, we shall use the L, (Euclidean)
metric to measure distances.

In 2-space where the obstacles are polygons whose interiors are
forbidden, the problem is easy to solve. Since the shortest path
can only be a polygonal path whose vertices bend at the vertices of
the given polygons the problem is reduced to the following
subproblems: (i) Construct a "visibility graph"” whose nodes consist
of (S,G} v {(T: T is a vertex of Pi’ i=1,..,.,n}. A link in this

graph connects a pair of vertices visible from each other and
carries a weight equal to the distance between these vertices,

(ii) Search through this graph to find the shortest path from S to G
using an algorithm such as Dijkstra [1959]. Lee—Preparata [1984]
mentions an algorithm to accomplish steps (i) and (ii) in

O(m? log m) total time where m=3 |P.|. (|P| denotes the number of
vertices of polygon P.) 1t

In 3-space the problem is much more difficult., In this case,
the shortest path is also a polygonal path but the omly thing we can
say about its vertices is that they bend on the edges of the given
polyhedra. The characterization of these bend points is a
formidable task,

There have been various developments in the area of path
planning in the last two decades. For brevity, we shall mention
only a certain section of it. (Akman [1984] contains a long list of
references.) Lozano-Perez [1981, 1983], Brooks [1983],

Donald [1983], and Nguyen [1984] report many applications oriented
toward robotics. Reif [1979], Schwartz—Sharir [1983a, 1983b, 1983c,
1984], Sharir—Arielsheffi [1984], Hopcroft-Schwartz-Sharir [1984],
O'Dunlaing-Yap [1983], Spirakis-Yap [1983, 1984], and
O0’Dunlaing-Sharir—Yap [1983] report work mostly on the computational
complexity of several special cases of path planning. Finally,
shortest path computation has also been treated in recent papers
such as Franklin [1982], Frankl in—Akman [1984],

Frankl in—Akman-Verrilli [1985], Sharir-Schorr [1984],

Lee-Preparata [1984], and O'Rourke-Suri-Booth [1984]. Sharir and
Schorr's work is especially interesting in that it mentions many
results on the nature of shortest paths on a convex polyhedron, For
example, they prove that "A shortest path cannot pass through a
vertex or a ridge point of the polyhedron’ where a ridge point is
defined as a goal poinmt on the polyhedron for which there are at
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least two shortest paths from a given S on the polyhedron. The crux
of their paper nevertheless is the following result which is arrived
after employing complex data structures and algorithms:

"Given a convex polyhedron P and a point S on it, P can be
preprocessed in O(IP|* log IP|) time to produce a data
structure (taking O(|P|3) space) with the help of which one can
find in O(|P|) time the shortest path along the surface of P
from S to any G."

The shortest path problem is in some ways may be considered as
an extension of the NP-complete (in the strong sense) TRAVELING
SALESMAN problem (TSP) where we wish to determine the shortest path
(or tour) that traverses the nodes of a given graph in any order,
cf. Johnson-Papadimitriou [1981] and Papadimitriou—Steiglitz [1982],
Although there are some technical difficulties arising from the
distance metric, the Euclidean version of TSP (ATSP) is also
NP-complete as shown by Papadimitriou [1977].

Rest of this paper is organized as follows. Section 2 treats
the problem of finding the shortest paths in 3-space using an
algebraic approach. Section 3 deals with the subproblem of
specifying which sequence of edges a shortest path should follow.
Finally, Section 4 mentions some complexity issues and algebraic
problems created by shortest path determination.

2, SHORTEST PATHS IN 3-SPACE: AN ALGEBRAIC APPROACH

If we want to find the shortest path from S to G in the
presence of obstacles Pi’ i=1,...,n, the first thing is to check
whether G can be reached from S directly., Note that, since we allow
a shortest path to touch an obstacle, this would entail checking
line segment SG against each P, for at most one intersection. This
can be done using standard metﬁods. Chazelle-Dobkin [1979] gives a
fast (0(log? |Pl)) algorithm for 1ine-polyhedron intersection
detection for convex polyhedra. Thus, in the sequel, we shall
assume that such a check has already been made and SG is not the
shortest path.

It is intuitively clear that the shortest path from S to G will
be-a polygonal path which bends on some edges of some obstacles,
i.e., it cannot touch the interior of a face of an obstacle. (A
formal proof is quite involved; Chein—Steinberg [1983] gives a
proof in 2-space,) This observation immediately gives an algorithm
to compute the shortest path. First, list all permutations of {e: e
is an edge of Pi' i=1,...,n} of positive length. Second, for each
permutation im this list, compute the shortest of the polygonal
paths which visits each line of this permutation exactly once in the
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given order. Thus, at the end of this step, we have a list of
permutations and the shortest polygonal paths associated with each
permutation. (A polygonal path is specified by its comsecutive
vertices: S, bend points on the limes belonging to a permutation in
that order, and G.) Now start at the top of this list. Test the
shortest polygonal path associated with this permutation against
each Pi for intersection. The only intersection points reported by

this process must be the ones that we already know, i.e., the
vertices of the polygonal path at hand. Otherwise, we discard this
polygonal path (because it passes through ome or more obstacle(s))
and continue with the next permutation, We mote in passing that in
Sharir-Schorr [1984] this last step is missing; thus their
algorithm is incomplete.

It is emphasized that when there are more than one shortest
paths, with a slight modification of the above algorithm one can
obtain all of them. The number of shortest paths is an interesting
problem in itself. Figure 1 shows a particular arrangement of a
vorkspace in 2-space which clearly demonstrates that there may be an
exponential number of shortest paths between S and G. A few thinmgs
need some explanation in this figure. It is assumed that P and all
the even—numbered obstacles are semi-infinite or large emough so
that a shortest path cannot tour around them. All Pi’ i=1,...,n,

and the "teeth” of P are aligned tlong the line connecting S to G.
n

In this specific case there exist 20' shortest paths. It is
trivial to extend this workspace to 3-space by simply erecting
prisms for each polygon.

Given a permutation, the problem of finding the bend points of
a shortest polygonal path on these lines can be solved using
algebraic means, Before we proceed to show this, we shall state a
problem and two useful lemmas regarding shortest polygonal paths
through a set of lines. (For proofs of the lemmas,
cf. Sharir-Schorr [1984].)

LINE VISITATION problem (LVP): Given a sequence 1oz ywwsng A
of lines in 3-space, what is the shortest path from S to G
constrained to pass through each of the lines Lyw Lyvanns 1n in
this order?

n

Let €y, Cuiseun C, be the bend points of the shortest path on
the given lines. For notational ease, we shall denote S (resp. G)
by C, (resp. Coey)

LEMMA 2.1, For each i=1,...,n, the angle between Ci—lci and 1,
is equal to the angle between Cici+1 and 1i'

LEMMA 2.2. The shortest path from S to G passing through the
sequence of lines 1,, 1,,..., 1n in this order is unique.

We now give some algebraic preliminaries that will be necessary
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for the upcoming presentation., Let A and B be polynomials of
positive degree with coerfic:ents in a connutntive ring with an
identity element. If A(x)=Ja.x' and B(x)=Jb,x’ where degree(A)=m
and degree(B)=n, the “Sylvestér matrix” of A and B is the m+n by m+n

matrix:
r b
. ‘ L LN .
m m—1 0
a a ia a
m m1 0
a a Wiy a
m m—1 0
b b i b
n n—-1 0
b b e b
n n-1 0
b b e b
L n n-1 0]

in which there are n rows of A coefficients, m rows of B
coetficients, and all elements not printed are 0. The "resultant”
of A and B, denoted by resultant(A,B), is the doterninant of the
Sylvester matrix.

THEOREM 2.1 (Collins [1971]). If A and B are polynomials of
positive degrees over a unique factorization domain then
resul tant (A,B)=0 if and only if A and B have a common divisor of
positive degree.

In this paper, we shall be dealing with multivariate
polynomials. In this case, the following interpretation of the
resul tant becomes crucial. The resultant of two multivariate

polynomials A and B (both given in variables - GRS T— xr) with
respect to X, 1¢s<r is obtained as follows: (i) Write both A and B
in terms of single variable x_ treating the other variables as
constants. (ii) Compute the resultant of these new polynomials
using the original definition above, The outcome of this is another

polynomial with one less variable, i.e., x has been eliminated. We
shall denote it by resul tant (A, B.x ).

THEOREM 2.2 (Collins [1971]). Let A and B be multivariate
polynomials in variables x,, x,,..., x_ with positive degrees m and
n respectively. Write both A and B in terms of the single variable
X, as explained above. Let C be resultant(A,B, x ). If

(al.a,.....a ) is a common zero of A and B then C(a;.a,....,ar_1)=0.
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Conversely, if C(lt.l,.-...ar_1)=0. then at least one of the
following is true:

(a) ALl coefficients of A are 0,

(b) All coefficients of B are 0.

(c) The constant coefficients of A and B are both 0.

(d) For some 8., (a,.:,.....ar) is a common zero of A and B.

This theorem immediately suggests a way to solve multivariate
polynomial equations simul taneously,

EXAMPLE 2.1 (adapted from Collins [19711). Let [A=0,B=0,0=0] be
a system of three equations in variables X, ¥,z with integer
coetficients. Compute
f(x)=resnlt:nt(rosu1tlnt(A,C.z),resnltlnt(B.C,z),y). By Theorem
2.2, if (a,b,c) is a solution to the given system then f(a)=0,
Similariy we can compute polynomial s
g(y)=tesu1tant(resultant(A.C.z),resultant(B,C,z).x) and
h(z)=resu1tant(resultant(&,C.y).resultant(B,C,y],x) such that g(b)=0
and h(c)=0 whenever (a,b,c) is a zero of the system., Thus, one can
solve f, g, and h individually to find their roots to arbitrary
accuracy and then decide which triples (a,b,c) are solutions of the
system,

Now we proceed to outline the algebraic solution to the LVP.
In the following we refer the reader to Figure 2. Assume that each
line is given by its two distinct points and assign different
coordinate systems to each line, i.e., let line li be parametrized

by X.. Also, for each line compute N, which is a unit vector along

1i in any direction. (||V|| denotes the length of vector V.) From
Lémma 2.1, it is seen that:

Ci 1€ Ny CiCivg-N;

he,_je. le;cy 1

If we rewrite the above equation after inserting values of
Ci—l’ C;» Ci+1 in terms of ¥j-1+ Tj» X;.q1, Tespectively, and remove
the square root signs, then we obtain a quartic in three variables,
X1 x;, and X;+1+ Repeating this for all lines, we end up with

the following system of n quartics:

Q]_ (11,13)-0
Q (x;,%;,%,)=0

Qi(xi'l’xi'xi+1)=0

Qn(xn—l"n)=0

Theoretically, the above system of equations can be solved
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using resultants as demonstrated in Example 2.1. This is a
classical method known as the "elimination theory”,

cf. Van der Waerden [1970]. Alternatively, we can use a numerical
technique such as the Newton—Raphson method for solving a system of
nonl inear equations.

If 1,, 1354405 1, are but line segments then the shortest path
may be bending at points located outside these line segments, In
this case, Sharir—Schorr [1984] states that the shortest path will
have to pass through some endpoints of these segments at which it
will subtend different entry and exit angles contrary to Lemma 2.1.
Thus the problem is reduced to a collection of subproblems where a
shortest path passes through the interior points of a subsequence of
line segments,

3. PARTITIONING 3-SPACE AROUND POLYHEDRA

A common specialization of the shortest path problem occurs
when S and the obstacles are fixed, and new paths should be
calculated as G moves around the workspace. For example, a
manipulator arm may pick up a part from a pile of parts in a fixed
location, and then move somewhere in the scene to work with it.

In Franklin [1982], an important construction based on an
extension of Voromoi diagrams in the plane is given which, for a
given S in 2-space, partitions the plane into a set of regioms such
that all the G within any given region have the same list of bend
points, (For another extension of Voronoi diagrams, see
Lee-Drysdale [1981].) This reduces the problem of finding a
shortest path to the preprocessing step (finding the regions), plus
the task of determining which region contains G (searching or
querying). The last step is easy since the borders of the regions
are either straight line segments or portions of hyperbolae. Thus,
existing point location algorithms can be used after some slight
modifications, In the common case where G varies while S and the
obstacles are fixed, the shortest path can be found by merely
repeating the search (point location) phase.

In this section, we shall try to emulate Franklin's approach in
3-space, Here, the regions will have the following property: All
the points in a given region are reached from S after visiting the
same sequence of edges of the obstacles. We first work on a very
simple case, namely, a solid triangle.

Let W,, W,, and ¥W,; be points in 3-space, These points describe
a triangle W,W,W, if they are not colinear. Let S be any point in

3-space not in the plane E of W,W,W,. Assuming that W,W,¥W, is a
solid triangle we want to partition the space into regions such that
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if a new point G is specified we would be able to tell whether G can
be directly reached from S, and if not, which edge of the triangle
(WyW,, W,W,, or W,W,) the shortest path must touch,

Obviously, if G is outside the semi-infinite Prism (frustum)
obtained by subtracting the pyramid described by base W,W,¥, and
dpex S from the infinite pyramid described similarly then the
shortest path is SG, Thus we found one of the regions, R,. Note

that B, has all the points of the space that sre not obstructed by
WyW,W,. See Figure 3,

Otherwise, G may belong to one of three regions R , R,, or R,.
R, is the region such that if GeR, then the shortest path is via
edge W,¥,. R, is the Tegion such that if GeR, then the shortest
path is via edge WyW,. Finally, R, is the region such that if GeR,

then the shortest path is via edge ';W,. When G is on the boundary
of two regions there may be two or three shortest paths,

Now, we shall compute the boundaries between the pairs R, and
R,, R, and R,, and Ry and Ry, 1In the sequel, S is assumed to be the
origin, (This is éasy to achieve by translating everything in the
workspace by ~S5.) We shall first compute the boundary between R,
and R,. Take G such that SG W, W,W, is not empty. If GeR, N R,
then there exists a path to @ either via W, W, or via WaW; and
rendering equal lengths, Labeling the bend points of these paths
with the triangle by C12 and C23' we get:

8€12%C126=5C,3+C, 6
The left hand-side is equal to IIGIZII where G, is the point
obtained by rotating G about ¥iW; until it is coincident to the

plane of SW,W, and on the opposite side of S with respect to W.W,.
Similarly, the right hand-side is equal to ||923|| where G,; is the

Totated image of G about V.w,.

Before we continue with our analysis, we give a list of useful
vector and trigonometric identities that we shall employ frequently,
(x and . denote vector cross and dot products.)

(11) 1lAll3=1 if A is & unit vector.

(12) Ax(BxC)=(A.C)B-(A.B)C

(I3) (AxB).(CxD)=| A.C A.D '=(A.C)(B.D)—(A.D)(B.C)
B.C B.D

(14) IIA+BI|==HAII=+IIBII=I!+2IIAII lIBllcos @

where ® is the angle between A and B.
(I5) sin 2€=2sin Bcos @
(I6) cos(B+8)=cos Bcos Q-sin @sin Q

It is known that if P is a point and P’ is its rotated version
by an angle @ about an axis U (a unit length vector) passing through
the origin then:
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P'=(P,U)(+(P-(P.U)U)cos 8+(UxP)sin ©
Using the last formula, it is easy to see that:
012=I1+£N12+(',G—fN12)cos a+(N, ,xW,G)sin «

where a is the dihedral angle between the plames of triamgles SW,W,
and GW,W,, N ,=W,W,/[IW,W,|l, and £=W,G.N;,. Using (I5):

lie, 1 12=

()2 (Ween )0

(b) +(W G-fN, ,)2cos? a

(c) +(N b?‘s:n’

(d) +2(‘ +fN ) (W, G—fNE lJecos a
(e) +2(W +f ) (N, ,xW }sxn a
(f) +(WxG-f ) (lex! G)sin 2a

The following are the simplifications:

Using (I1), (a) is simplified to |IW, |[3+2£(W, Ny ) +E3,
(b) is simplified to (lIW,G|l2-f2)cos? a.

Using (I3), (c) is simplified to (|IW,G||2-£2)sin? a.
Using (I1), (d) becomes Z(WI.WIG—f(Wi.le))cos a.

(e) is simplified to 2(W,.(N;,xW,6)).
(f) is identically O.

It is possible to simplify (d) and (e) further. Noting that
the normal of the plane of the triangle SW,W, is:

1IN 1259, 61|
one obtains:
cos a=Mg,,.M512

Af ter some routine calculations, one arrives at:

W, (W, 6N ,)

COos @
FIN xW, 1] 1w, 6N, 511

In a similar manner, but using the cross product:



904

sin a=||H5121H612!|, or equivalently

LW, (N pxW, 60 1

sin @
FIN =W, 11 11w, 62N, 11

Thus, we showed that:

2cos n(wl,(WIG—le ))=
2cos? ulIlexwlll f[lexle'| and

2sin a(W + (N; ,x¥,6) )=
2sin? alIN 2xa,.“ IIN ¥, Gl

Returning to our original equation, we obtain a more symmetric
equation:

(*) "612|"fi:f;‘é’;|'f}“"’ )
G W, . +
W, Gany 21| ’II:§NHI1)

Now, we shall give a geometric interpretationm of this equation,
Expanding the dot and cross products in (®), we obtain:

lie, ,1s=l1w, [12+]1v,6]13
+2(11W. Gl lcos a,|IW, | lcos(n-a,)
+11W, Gl |sin a,|IW,|1sin(n-a,)), or

||G12||‘-||Wlll‘+||W,G||’
=21IW,6ll 1w, llcos(a,+a,), using (I6).

Above, a, and a, are the angles of GW,W, and SW,W,, cf, Figure 4a,
Finally, it is emphasized that this last formula is simply a
statement of (I4) on triangle SN,_G12 as can be seen from Figure 4b.

Up to this point, we found a formula which gives ||G12||1 in
terms of known quantities (W, and N;,) and the unknown G (with
coordinates x,y,z). The formula for ||623||3 (resp. ||G31||‘) is
analogous to (*); just change W, to W, (resp. W,) and Ny, to Ny,
(resp. N;,). In terms of degree, the following example shows that
the surfaces between regioms Ri are in general ternmary quartics
although they may degenerate to planes in some cases.

EXAMPLE 3.1. Given the triangle with coordinates W, (1,2,1),
¥,(0,0,1), and ¥,(2,0,1), we shall compute the boundaries of regions
R, and R,, R, and R,, and R, and R,.

Using (*), the surface between regions R, and R, is found as
|IG121|'—IIGZ3||’-0. or:
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~2x-4y+10+2 (x42y-5
+ J{z=1)3+(1/5) (2x-y) 3- /(z-1) 3+y3)=0

which is further simplified to:
(2x-y)2=5y3
The surface between R, and R, is given by |1Gy3l12-1165,112=0, or:

4x-8+2(-(2/5) (x-2y-2)
+ V(z-1)3+y3—- v(21/5) (z—1)3+(21/25) (2x+y—4) ?)=0

or, after some operations to remove the square root signs:

25624-1024z3+(228y3+(256-128x)y-128x2+512x+1024) z2
+(-456y3+(256x-512) y+256x3-1024x)z—48y*
+(576-288)y*+(-272x2+1088x-860) y3?
+(32x7-192x3+256x) y+16x4-128x3+256x3=0

Finally, the surface between R, and R; is found to be:

-8x-4y+16+V21V5(z-1) 3+(2x+y-4) 3-V5V5(z-1) 2+(2x—y) =0
which is also transformed to a quartic omitted here for brevity.

THEOREM 3.1, Let P be a convex polygon with vertices V,,
Viveees Vn and S a point outside the plame of P, It is possible to
partition P into at most n convex regions (each completely
containing an edge of P) such that if G is later specified inside
one of these regions then the shortest path between S5 and G is via
the associated edge of this region.

Proor. We give a comstructive proof. Rotate S about the lines
defined by edges V,V,, V,V,, etc. wuntil it is coincident to the
plane of P and always on the opposite side of a particular edge
compared to the interior of P. This is basically an unfolding of
the pyramid with apex S and base P to the base plane. Thus, n image
points are obtained which will be demoted by 812, 523, etc, Draw
the Voronoi diagram of these points and clip it against the window
P. This partitions P into at most n convex regions since each
Voronoi polygon is convex. Figure 5 demonstrates this operation.
Let us denote the regions by R12' R,3, etc. It is seen that there
is a border line passing through each vertex of P. It is obvious
that if G is inside a regiomn Ri then we just comnect it to the
associated image point of this region, namely S,,, The intersection
of this line segment with the associated edge Vié‘ of this region is
the bend point X of the shortest path from S to G, X may be placed
into 3-space by folding again.

Theorem 3.1 hints an important property of the regionms R, , R
R,, namely, their intersections with the plane of W,W,W, must be

3 *
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straight limes, Returning to Example 3.1:

EXAMPLE 3.1 (continueq), To see the intersection of the
boundary between R, and R, with E (the plame of the triangle) put
z2=1 in their boundary €quation. Thig gives:

Continuing with the boundary of R, and R, we obtain the 1ipe:

~(8+2 V2I)x+16+4 V31

D S

9+ V71
Finally, for the boundary of R, and R,, we have:
(8+2 V2142 /3)x-16-4 V3]
y= e s

~4+ 5~ V27

These three lines intersect at:
16+4 V21
13+2 V21+4 V3% /103

X=( V5+1)Y/2, y=

in the z=1 Plane. Point (X,Y) has the Property that it jg possible
to go from § (origin) to (X,Y) on a shortest path touching any edge
of W, W,v,. Furthermore, it jig the only such point on E. As a fina]
note, (X,Y) can also be obtained as the intersection of the three

It is emphasized that the method ¢xemplified up to now can be
applied in the Presence of a soligd polygon too. 1Inp this case we are
required to compute all the Potential boundaries between pairs of
regions, Although conceptually easy, this wounld be a difficult when
it comes to intersect boundaries to compute their intersection

seems difficult, JIp this case, g3 very desirable property of plane
partitions around pPolygons as discovered by Franklin disappears, We
shall depict this with the aid of Figure 6a, First, a brief account
of Franklin’s approach is in order. (The reader is referred to
Franklin [1982] and Franklin—Atnan—Vbrrilli [1985] for 4 detailed
description,) Note that in the plame, once a subdivision is formed
there is only one sequence of bend points for it (provided that it
is not on a boundary curve in which case there may be more)., In
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Figure 6a, there are two obstacles (line segments) A;B, and A,B, in

the plane and & source S is given as shown. Franklin's algorithm
partitions the plane into 5 regions in this case. R, holds goal
points directly reachable from §S. R, holds points which cause a
shortest path to bend at By R, holds points which cause a shortest
path to bend at A,, The boundary between R, and R, is a portionm of
a hyperbola. R, holds points which give rise to a shortest path
bending at B,, Finally, R, describes shortest paths bending first
8t A, and then at A,. The boundary of R, and R, is also a portion
of a hyperbola. All other boundary curves are linear. A crucial
property of this diagram is as follows: "A bend point acts as a
source point for a later region.” For instance, A, acts as a souce
point for the points of R,. Similarly, B, acts as a source for the
points of R,. Thus, the source point is continuosly "pushed back”
and this is the underlying reason for the fact that all curves are
either line segments or hyperbolic sections,

In 3-space, we cannot immediately see an analogune of this
property. When we place another triangle V,V,V, in Example 3.1, the
new regions induced by this obstacle will be separated by surfaces
of order higher than four (Figure 6b). Thus, whereas the boundary
curves remain as hyperbolae in 2-space, in 3-space they would grow
with every new polygonal obstacle placed into the workspace. One
practical way to get around this problem is to approximate the
boundaries with more manageable surfaces (such as quadrics) and to
keep them as such even when new obstacles are introduced. This, we
think, is possible since the boundary surfaces are generally smooth.
The reader is referred to Figure 7 where we plotted the intersection
curves of the boundaries computed in Example 3.1 with the z=2 plane,

4. COMPLEXITY AND ALGEBRAIC ISSUES

The method outlined in Section 2 to find the shortest paths is
a brute force approach. However, this may be the only available
approach in the light of striking similarities of our problem and
the TSP, It would be interesting to determine whether there is a
heuristic for this problem 1ike Christofides’ 50-percent heuristic
for TSP (Garey-Johnson [1979]). We now give a partial complexity
analysis for Sectiom 2.

The enumeration of the permutations of positive length as
required by the algorithm takes time proportional to the factorial
of the total number of edges of the given polyhedra. Given a
permutation, finding the bend points using resultants is also a
costly process., If A and B are polynomials in variables z,,
X,.....xr and C=resultant (A,B,er then C is the sum of at most
(nrd-nr)l terms, each of which being a product of n. A coefficients

and m_ B coefficients. (A and B have degrees m_ and n_ in variable
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xr.) It can be shown that the degree of C in variable x . is

bounded above by Medegtnm _; if A and B have degrees m.q andn
in x Therefore, 2M N is seen to be an upper bound on the degree

of CII% H=nszi m, and Ntnaxi n,.

In Collins [1971], the computing time of a resul tant algorithm
is analyzed as a function of the degrees and the coefficient sizes
of its inputs. As a special case it is proved that when all degrees
are equal and the coefficient size is fixed, the computing time is

0(d°%) where d is the common degree, r is the number of variables,
and ¢ is a constant,

It can be seen that the detection of the intersections of a
polygonal path with the obstacles as required by our algorithm will
be subsumed by the previous computations. The following is a crude
argument when all P. are convex. Take a polygonal path made of k
line segments, Tasfing this against all polyhedra takes

O(n? v log? v) time in the worst case of k=0(n v) where v-mainPiI.

There are technical problems with the Euclidean FINDPATH as
stated by Papadimitriou [1977] and Garey—Graham-Johnson [1976] in
the context of ATSP, It is known that (Grunbaum [1967) and
Franklin [1983]) there exist conf igurations in the real projective
plane which are not realizable in the rational projective plane., In
the light of this, we must require infinite precision in the input
(polyhedral vertex coordinates), i.e., a symbolic rather thanm
numeric approach in inputting the coordinates. Even when one
imposes the restriction that only points with rational coordinates
be allowed as input, it is easy to end up with irrational distances
under the L, metric. This can be dealt with as long as one keeps
such distances merely as square roots and employs algebraic
manipulation algorithms. However, if we state FINDPATH as a
decision problem, i.e., "Does there exist a shortest path with
length A or less?” we suspect that FINDPATH becomes NP-complete,
This originates from the difficulty of comparing numbers
symbolically, or in other words, the identification of algebraic
numbers (Mignotte [1982]). The symbolic expression for the length
of a given shortest path on n lines may involve n+l square roots.
An attempt to compare this expression to an integer A by repeated
squaring to eliminate the square roots cam take exponential time.
An alternate way would be to evaluate each square root with
sufficient accuracy so that their sum can be compared to A. There
is a best—known upper bound on the number of operations required to

achieve that, namely, O(m 2%), cf. Garey-Graham-Johnson [1976].
Here m is the number of digits with guaranteed correctness.
Unfortunately, there is no known polynomial way to reach this
accuracy.

The drawbacks that we mentioned can be avoided if we replace
the Euclidean metric by another which closely approximates it.
Define d'(x,y)=[d(x,y)] using the regular ceiling function, It is
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trivial to show that this still is a metric satisfying the trianmgle
inequality. The loss of precision can be tolerated if in the
beginning everything is scaled by an appropriately large number.

Regarding the Voronoi approach outlined in Section 3, there are
many unanswered questions. To ounr best knowledge, point location in
3-space in the presence of curved surfaces of arbitrary complexity
is an area with not many results., Kalay [1982] considers point
location in the presence of polyhedra. Recent work reported in
Chazelle [1983], drawing inspiration from a method published by
Arnon-Collins-McCallum [1984a, 1984b] is at least conceptually
applicable to our problem. In general, Chazelle proves that given n
fized-degree r-variate polynomials with rational coefficients, after
0(n°(rJJ preprocessing time and spending polynomial space, it is
possible to determine the region including a given point in
0(2% 1og n) time. (Note, however, that c(r) is an exponential
function of r.) In fact, the mentioned work of
Arnon-Collins-McCallum has many other far—reaching applications in
algebraic geometry, ome of them being the problem of intersectimg
high—order surfaces as required by our Voromoi approach in
Section 3.
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