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Abstract.

An algorithm is presented for reconstructing visible regions from visible edge segments in object
space. This has applications in hidden surface algorithms operating on polyhedral scenes and in-
cartography. A special case of reconstruction can be formulated as a graph problem: “Determine
the faces of a straight-edge planar graph given in terms of its edges.” This is accomplished in
O(nlogn) time using linear space for a graph with n edges, and is worst-case optimal. The graph
may have separate components but the components must not contain each other. The general
problem of reconstruction is then solved by applying our algorithm to each component in the
containment relation.
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1. Introduction.

The hidden surface problem in computer graphics has been an important area
of study for the last two decades. For a somewhat dated but otherwise excellent
survey see [19]; a bibliography is provided by Griffiths [11]. The majority of
the currently used algorithms for hidden surface removal operate in image space,
the realm of (raster) display devices. When the accuracy of the output as
opposed to a particular rendering is crucial, algorithms which perform the
visibility calculations at object resolution are needed. These object space algorithms
include, but are not limited to, those by Loutrel [12], Fuchs et al. [9], Weiler
and Atherton [21], Sechrest and Greenberg [18], and Franklin [1,2]. Various
analyses of the hidden surface problem from the viewpoint of computational
complexity can be found in F. F. Yao [22], Schmitt [17], Ottmann and
Widmayer [16], and Nurmi [15].
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ECS-8351942, and by the Schlumberger-Doll Research Labs, Ridgefield, Connecticut.
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In this paper, we present an algorithm, in object space, for reconstructing the
visible regions in a polyhedral scene, ie. joining the visible edge segments
output from a hidden line program to find the visible regions. Such an
algorithm is used by e.g. the hidden surface algorithm of Franklin [2] as well
as applications in cartography where regions are reconstructed from separately
digitized boundary segments [3]. The input to the algorithm is a set of visible
edge segments computed as in [2]. This will be detailed in the sequel. The
regions output by the algorithm may be stored along with their intensities which
must be computed for later display. Although the algorithm is based on a simple
graph problem, namely, “Determine the faces of a straight-edge planar graph
given in terms of its edges,” this to our knowledge is the first published
implementation in computer graphics. Our algorithm to solve the above problem
is worst-case optimal and spends O(nlogn) time and linear space for a graph
with n edges. It is required that the graph has no separate components containing
each other. The reconstruction is done by solving the above problem for each
component in the containment relation of the graph under consideration. The
algorithm has been implemented in each of Ratfor, Franz Lisp, and Prolog. The
original version of this paper [7] gives the complete code in Prolog, a
language well-suited for computational geometry (cf. Franklin [6], Gonzales
et al. [10], and Swinson [20]).

2. Problem definition and transformation.

Given a family of polyhedra in three-dimensional Euclidean space, the
following algorithm computes a hidden surface picture assuming that the view-
point is at o0 in the positive z-direction and orthographic projections of the
polyhedra are taken in the xy-plane:

(i) Compute the intersections in the xy-plane of the projected edges of the
given polyhedra to subdivide each edge into segments (hereinafter,
segments). An edge with no intersections is just one segment. Each
segment is completely visible or else completely hidden.

(i) Compute the visibility status of each segment, ie. take the midpoint of the
segment and determine its status which necessarily is the segment’s status.

(iii) Compute the regions in the xy-plane described by the visible segments.

(iv) For each computed region, determine the face in three-dimensional space
which gave rise to it and shade the region accordingly.

Although the algorithm given in [2] is an extension of this naive algorithm
and uses an adaptive grid to reduce its complexity from quadratic worst-case to
linear expected time, it is conceptually the same [4,8]. In the above algorithm,
step (iii) where the polygons in the xy-plane corresponding to visible parts of
faces must be found from a set of visible segments is called polygon reconstruction
and will be the subject matter of this paper. For the upcoming discussion, it is
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better to cast this problem in a more abstract setting, i.e. in terms of straight-
edge planar graphs. From now on, when talking about the problem in the
visibility context we shall use the terms “segment” and “region” whereas in the
graph context we shall employ the terms “edge” and “face” respectively.

Let E be a set of edges in the xy-plane. It is assumed that the members of E
are such that they constitute a legal planar subdivision, i.e. one in which every
face is bounded save the outer ones which are infinite. If E is obtained as a
result of the above hidden surface algorithm, then the subdivision is necessarily
legal under the reasonable assumption that the polyhedral input to the hidden
surface algorithm is meaningful. Notice that the notion of legality is similar to
constructive solid geometry in the sense that we do not allow dangling edges
(Figure 1). The polygon reconstruction asks for a listing of the faces of the

Fig. 1. Dangling edges are not allowed.

planar subdivision given in terms of its edges. By listing, we mean specifying
the vertices of the faces in order (clockwise (cw) or counter-clockwise (ccw))
starting with any of them. Thus, in Figure 2(a), we are given a picture of three
polyhedra in space. The visible segments have been shown in Figure 2(b). Notice
that they are in no particular order, ie. E = {e,,e,,...,e,5}. In Figure 2(c) the
reconstructed faces have been shown. Denoting them by F, it is seen that
F = {f\, f2,-..fs}, excluding the two outer faces. It will shortly be clear why
the vertices are labeled in Figure 2(c) in that particular way.

A crucial point in Figure 2 is that the graph has two components. In this
case, the separate parts are caused by the fact that the pyramid projects
individually while the cubes overlap in projection. Our algorithm can handle
such separate components as long as they do not enclose each other, However,
it is also possible to have separate components due to holes in the given
polyhedra or due to components one of which projects inside the other. This is
demonstrated in Figure 3(a) and Figure 3(b), respectively. The problem can
be solved by finding the connected components of the graph using standard
algorithms. As long as two connected components do not enclose each other
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Fig. 2. The polygon reconstruction problem.
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2

Fig. 3a. Fig. 3b.

Fig. 3. Two separate components with containment.
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Fig. 4. A tower of separate components enclosing each other.

they can be included in the same input set to our algorithm. The question of
containment can be decided by repeated applications of standard point-location
algorithms. In particular, consider two separate components C, and C,. If one
takes any point p of C, and finds out that C, encloses p then it is seen
that C, contains C,;. Note, however, that we are still left with the problem of
specifying an order of the computed faces which must eventually be painted in
a hidden surface display. Consider the faces in Figure 4. Here we have a “tower”
of three connected components enclosing each other. The right approach is to
start the painting with the “outer” component and progress toward the
“innermost” component. In other words here we must paint the computed faces
in the following order: fi, f5,..., fio. Within each component, the order of
painting its faces can be made arbitrary. With these explanations, we assume
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that the general problem of reconstruction is solved as soon as we give our
algorithm for reconstructing a planar graph with no containment. Accordingly,
in the sequel we shall assume that we are dealing with a legal straight-edge
planar subdivision with no “holes.” Separate components are on the other hand
allowed as long as they do not violate this requirement.

Another important issue to be resolved is that of real coordinates. The fact
that one is in fact dealing with numbers output by a line intersection algorithm
makes it necessary that we take care of the small discrepancies introduced in the
way the intersections were computed and the set of visible segments were
obtained. We refer the reader to Franklin [5] for an account of such numerical
errors caused by the underlying algebra. Thus, a preconditioning step prior to
reconstruction is needed. This process will take as input a value & and will
output a new set of segments so that if there are vertices in the segment
set within é-neighborhood of each other then they are “reduced” to a single
common vertex. The proper value of é is dependent on the underlying numerical
errors. This preconditioning process is assumed in the following description. In
fact, we shall, without loss of generality, describe our polygon reconstruction
algorithm assuming that the graph vertices all have integer coordinates.

3. The algorithm

The reader may follow the example in the next section while reading this
section. The input to the algorithm consists of n edges in the xy-plane which
are specified by their endpoint coordinates

E= {[[xil\yii)’ (xi25 ¥i2)): i= ls‘w“}‘

It is emphasized that no particular order is assumed in E. As a matter of fact,
the operations of our algorithm can be carried out on the abstract data type
“set” in an environment supporting set operations efficiently,

Given E, we first obtain the graph specified by E. To do this, we create
E" = E U E' where E' is the “reverse” of E, that is

E'" = {((xi2, ¥ia)s (X310 ¥ir)) s ((Xiy, Yir): (X2, ¥i2)) € E}.
E” now corresponds to the edges of the directed graph specified by E. Next we
sort E” by the first key in lexicographic order in x and y values. Specifically,

consider an element ((x1, y1), (x2, y2)) of E”. Then the sort takes place on key
(x1,yl) and the lexicographic order < is such that

((xloyl), (x2,¥2)) = (X1, Y1) (X2, Y2) iff (x1 < X1)or (x] = X1 and y1 S Y1)

for another element ((X1, Y1),(X2, Y2)) of E’. Now, consider the elements of
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E" with the same key. (For convenience, we assume that we renamed the
vertices so that the graph is now represented by vertex names and not vertex
coordinates.) These are the edges of the planar graph which have an endpoint
(vertex) equal to their common key. We shall call the totality of the other
endpoints (vertices) of these edges a “row” and the common vertex a “pivot”
for descriptive purposes in the following algorithm. The pivot is not included in
the row. Thus the planar graph can be visualized as a table made of a family
of rows each having a different pivot. Finally, we sort the elements of each row
about their pivots in angular order. (The angle 6 of a vertex satisfies 0 < ¢ < 2.)
If the vertices are sorted in cw order then the final faces output by the algorithm
will be in ccw order (save the infinite face which will be cw). If the vertices
are sorted in ccw order then the final faces will be cw (with a cew infinite face).
In the sequel we assume that the latter approach is taken.

We shall refer to this final table as the “navigation” table since the
algorithm to be given below will navigate through this table to obtain the faces
one after another. The navigation table is similar to a date structure presented
by Muller and Preparata in [13]. Associated with each row of the table we hold
a counter which is initialized to the cardinality of the row in the beginning of
the navigation.

Algorithm Navigate
- There are m rows (and thus m pivots) in the navigation table where m = O(n).
- Initially all elements of the rows are marked as “unused.”
. We use integers instead of the vertex names (e.g. 1 means v,).
: Count field of each row has also been initialized.
CurrentPivot « 1
: Come here after outputting a face.
: Find new pivot to start with.
L1:
IF Count(CurrentPivot) = 0 THEN

CurrentPivot « CurrentPivot+ 1

IF CurrentPivot > m THEN STOP ELSE GO TO L1FI
FI
CurrentRow « CurrentPivot
CurrentVertex « First “unused” element of CurrentRow
Face « {CurrentPivot} ; Initialize the face to be output.
DO FOREVER ; This loop corresponds to the navigation.

Append CurrentVertex to Face

Mark CurrentVertex as “used”

Count(CurrentRow) « Count(CurrentRow)— 1

If CurrentVertex = CurrentPivot THEN

OUTPUT Face ; This face finished.
GO TO L1
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FI
PreviousRow «+ CurrentRow
CurrentRow « Current Vertex
CurrentVertex « The element of CurrentRow following PreviousRow
(with wrap-around)
oD
End

Correctness: The steps prior to the execution of the algorithm, ie. building the
graph, are obviously correct. The correctness of the algorithm is easy to
establish under our assumption that the graph is a legal subdivision. In
particular, we start with the first pivot and the correct handling of Count
guarantees that the right pivots are always chosen after that, As soon as Face
is output the algorithm starts anew with a partially marked navigation table.
Each clement in each row is marked “used” once and only once. The navigation
stops as soon as there are no pivots with a nonzero Count field.

Complexity : The initial sorting of E" to obtain the pivot vertices takes O(nlogn)
time. Renaming the vertices and obtaining the graph also takes this much time
since we simply take each coordinate pair and via binary search find its vertex
name (binary search on first coordinate followed by binary search on second
coordinate). Sorting in angular order around a pivot takes O(d;logd;) for pivot i
with degree d;. (The degree of a pivot is the cardinality of its associated row.)
An upper bound on the total time spent in this process is again O(nlogn)
since the sum of the degrees is 2n. Now, consider the navigation process. Assume
that we are constructing one of the faces and ‘suppose that it will eventually
have v vertices. The cost of constructing this face is then only O(vlogn) since
the only non-constant time operation in the logarithm is locating the first
“unused” element of CurrentRow and this clearly takes O(logn) time by binary
search since a row is in sorted angular order. Each vertex i of the graph will
appear in exactly d, faces, giving again a total time of O(nlogn) for all the faces
to be output. Thus, after the navigation table is built the algorithm uses O(nlogn)
time. The total space used is clearly O(n).

Optimality: We shall show that the solution is worst-case optimal by demon-
strating that a polygon reconstruction algorithm can be used to sort real numbers
Fi,72,... 1, This will give the lower bound 2(nlogn) on the complexity of the
problem. Assuming that the numbers are lying on the x-axis in the xy-plane
the following construction is made (Figure 5): For each r, include in the set of
edges to be submitted to the algorithm the edges of the triangle 4,B,C where
C=(@01), A4 =(—6,0) and B; = (r;+6,0) where & is a small positive
constant. When terminated the algorithm would have output the boundary

A\B,CA,B,C + A'B.C
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Fig. 5. Sorting via polygon reconstruction.

although not necessarily in this order where A; and B; are associated with the
ith smallest r;, From this boundary polygon one can infer in linear time the
ascending sorted order of the given numbers. Note that in this proof, we have
assumed that the polygon reconstruction algorithm always outputs the boundary
of the infinite face of the subdivision. Clearly, this boundary is not necessitated
and one can argue that there may exist an algorithm which only outputs
the proper faces. However, even an algorithm which does not output the infinite
face would require O(nlogn) time since one can easily build a single polygon
(“thicker” at C) from the triangles in Figure 5.

Before closing this section we shall briefly treat the problem of shading the
regions obtained by the algorithm above. Consider any region f found by the
algorithm. Let p be an interior point of f. Notice that since there may be
separate components enclosing each other, p must be taken very close to the
boundary of f to guarantee a correct picture. Compare p against the projections
of all faces. The algorithm in [2] does this much more efficiently via adaptive
grid but this is not the issue here. Let F be the closest face whose projection
contains p. Then f corresponds to a visible part of F and should be given an
appropriate shading value, e.g. proportional to the surface normal of F. If pis
not on any face then it corresponds to the background and is given the default
shading value.

4. An example.

We now give an example to clarify how the algorithm works. Consider the
graph shown in Figure 6. The input is

E={(24).03,4)(32),349(42),3,4).(3,2).42)),
(3,2),(2,2)),((2,2), (2,4)), (1, 3), (2,4)), ((2, 1), (3, 1)),
((2,1),(2,2)).((3,2), (3, 1)), ((1,3), (2, 2))}.
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Fig. 6. An example planar graph to illustrate the algorithm,

After “reversing” E to get E’ and uniting these two we get E”. After lexicographic
sorting we obtain the new E" as

((1,3),(2,4)), ((1, 3).(2,2)),

((2,1), (3, 1)), (12, 1), (2, 2)),

((2,2), (2,4)). (12, 2), (3.2)), (12, 2), (2, 1)), ((2,2), (1, 3)),
((2,4),(3,4)), ((2,4),(2,2)), ((2,4), (1, 3)),

(3. 1) (2,1)),((3, 1), (3,2)),

((3,2),(3,4)), ((3,2), (4,2)). ((3,2), (2,2)), ((3,2), (3, 1)),
((3,4),(2,4)),((3,4),(3.2)). (3, 4), (4, 2)),
((4,2),(3,4)),((4,2),(3,2)).

Note that we have here omitted the set signs and listed E” in such a way that
the elements in each line have the same pivot. Now we can rename the graph
vertices, i.e. deal with names instead of coordinates. The renaming is as follows:

vi=(L3) vy =(2,1); v; = (2,2); va=1(2,4);
vs = (3,1); ve = (3,2); v; = (3,4); vg = (4,2).

After angular sorting of the rows about the pivots we get the navigation table
as follows:

vy Vg, V3

Va. Vs, V3

Va: Ves Va. Vi, Va2
Vy! Vg, Vy, V3
Vs Vg, Va

V! Vg, Vg, V3, Vs
Va! Va, Vg, Vg

Vg V7, Vg
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In the table above the pivots are the first elements in each row before the column
sign. It is emphasized that there is a wrap-around for each row, e.g. in row 7

it is implicit that v, follows vg. The regions created by the navigation algorithm
are then

fi= Vi, va, vy)

J2 = (v1,v3,v3, V5, V6, Vg, V9, Vg)
f3 = (va, vy, v, vs)

Ja = (v3,v4,v3,6)

Js = (v6, v1, vg).

Note that £ is the boundary of the infinite face. Also note that all proper faces
are in cw order whereas /f, is ccw.

5. Summary and extensions.

We presented an optimal algorithm for reconstructing visible regions from a
set of visible segments output by a hidden line program. This is an important
operation in object space hidden surface algorithms operating on polyhedral
scenes and in cartography.

As pointed out to us by one of the referees, the problem can also be solved
using a plane-sweep algorithm such as the region-finding algorithm of Nievergelt
and Preparata [14]. Our algorithm is simpler and it is conceivable to generalize
it to take into account dangling edges. All one needs is to recognize the
“dangling vertices,” i.e. vertices with Count equal to 1 in Algorithm Navigate.
Similarly, it can be made to work by a suitable extension in the context of holes
and enclosing components. This would require filtering the ccw faces. We leave
these rather straightforward enhancements to the interested reader.
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