Volume 9, number 4

INFORMATION PROCESSING LETTERS

20 November 1979

PADDED LISTS: SET OPERATIONS IN EXPECTED 8(log log N) TIME *

W. Randolph FRANKLIN

Electrical and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12181, U.S.A.

Received 6 August 1979

Padded list, sorting, retrieval, searching, expected time, data structure

1. Introduction

An important problem in database processing is
the manipulation of a set of N records with keys
chosen from a key space of cardinality much greater
than N. This means that a bit map of the set is infea-
sible. Some typical operations include the following:

(1) finding the record with a given key, if it exists;

(2) finding the record with the next-higher (or
lower) key than a given record, whose location we
may or may not already know;

(3) finding all the records with keys in a certain
range;

(4) adding a record to the set and

(5) deleting a record from the set.

The data structure that we choose for our opera-
tion must efficiently perform those of the above
operations that we need. The times that various data
structures take is shown in Table 1. However, there
are also other factors to be considered:

(1) if the size of the set is changing, some struc-
tures, such as trees, can adapt, while others, such as
hash tables and sorted lists, must be reformatted;

(2) some structures, such as hash tables, have aver-
age times that are very much better than their worst
case times;

(3) some structures, such as trees, require a lot of

* This research was initially prepared for National Science
Foundation, Engineering Division, Automation, Bio-
engineering and Sensing Systems under Grant No. ENG
79-08139.

extra space for auxiliary information, like pointers.

These data structures are summarized in various
books such as [1], [2] and [4].

This paper present a new data structure, the
padded list, that does all the above operations in
expected time T = 8(log log N) if the record keys are
drawn independently from a known probability dis-
tribution. However, if the keys are selected by an
adversary, the worst case time for padded lists, like
hash tables, is T = 8(N).

Padded lists, like hash tables, allow a tradeoff
between time and space, but a reasonable amount of
extra storage used is % word per record. This com-
pares favorably with trees that use one word per
record for a pointer. The times for padded lists in
Table 1 include the cost of periodic reformatting, so
they are well adapted to sets that change greatly in
size. Finally, padded lists are much easier to imple-
ment than structures such as trees which need com-
plicated balancing. Thus padded lists are the best data
structure for sets where keys are independent.

2. Data structure
2.1. Initial creation

Assume N records, R, to Ry, that we wish to
arrange into a padded list. Letk be a small natural
number constant. It affects the time-space tradeoff.
Let M = N(1 + 1/K). The data structure consists ofiZ -
arrays, A of M words, and B of M bits. Their subscripts
range from 1 to M.

161

Volume 9, number 4

Table 1

Expected time to perform operations on different data structures

INFORMATION PROCESSING LETTERS

20 November 1979

Data structure operation Hash table Tree Sorted list 3:P) Padded list
Find record 1 log N log N log log N
Find next higher record, N log N 1)2

given location of record

Find next higher record, N log N log N log log N
not given location

Find the P records in P+N P+logN P+logN P+loglog N
given range

Add record 1 logN | N log log N
Delete record 1 log N log N lo'g log N

a) In the sorted list, the record is deleted by flagging it. Physical deletion would take time N.
b) The sorted list is assumed to use binary search. Interpolation search would make the log N to be log log N in every case.

Now these arrays A and B are logical arrays that
are physically realized as circular buffers Aland BL
The purpose is to allow elements to be assigned from
the beginning to the end of A and B as needed.
Although the initial mapping is A; = A{, after many
additions to the padded list, A might have rotated
two words, for instance to give the mapping

1
A < Ajrg

1
A Al_Mm+2

forl<i<M -2,
fori=M —1,M.

Thus the physical realization would be: Ay—1, Am,
Ay, Az, s A3, Ay—2. Certain conservation proper-
ties are always true of A and B:

(1) A; < Ay < A3 < <Ay Thisis true for all
A;, whether ornot Bj =13

(2) if the padded list has N records currently, then
exactly N of the M B; = 1. The corresponding A; are
the records. If B; = 0, the corresponding A; is a vacancy
that is there as the result of a deletion, or to allow for
future additions.

At the initial creation and after each reformatting,
one vacancy is left after every k records. That is,
B;=0fori=k+ 1,2k + 2,3k +3,....The A for

Table 2

which B; = 0 can be set to A;_; in each case.
Note that various implementation tricks are pos-

“sible, such as storing B in the sign bits of A, if the

keys are positive.

Example 1. Suppose N = 12. Let the set of records be
R =31,41, 59, 26,98, 69,60,44,01, 17, 81. Let

k = 3 so M = 16. Then the initial padded list is as
shown in Table 2. This will be used in future examples.

2.2. Locating a record

Assume that we wish to locate the record R in the
padded list, if it is there. The method is*

(1) use an interpolation search [3] on A to find
an A; = R. If none exists, then R is not in the list;

(2) if By = 1, then return i. If not, then we are at a
vacancy in A. Find the largest j <i where B; = 1. If
A; =R, then return j. Else R is not present;

(3) if there is no i < j with B; = 1, then R does not
exist.

Example 2. If R = 26, then the first probe is at i =
16X%=4.A4=26,butB4=0,sowetryi=3.

Volume 9, number 4
This gives A3 =26 and B3 = 1, so we return 3.
2.3. Locating the next higher record

To find the next higher record, first locate the
record as described above, if necessary. Assume it is
A;. Find the smallest j >iwith B; = 1 and return A;.
However if we run off the end of A first, then there
is no next higher record. The next lower record may
be found similarly.

2.4. Locating all records in a range

Locate the lower endpoint record in A. If it is not
in A, locate the next larger record. Return records
from A, increasing from this record, until the upper
end of the range is reached.

2.5. Adding a record

Assume that we wish to add record R to A. Use
the interpolation search to find i such that A;<R <
Ajsq. If A; = R, then if B; = 1, then R is already in A.
Otherwise if A; < R and B; = 0, then we have a for-
‘tuitous vacancy in A at the right place, and can set
A; =R and B; = 1. Otherwise, we have some shuffling
to do. Find the smallest j > i such that B; = 0. Shift
A; 10 Aj_; one up to occupy Ay+y to Aj. Do the same
with B; to Bj-—l‘ Then if Bj.;.]_ =0 and Aj+1 <Aj, set
Ajs1 = Aj. Repeat for Bj.s, Bj+3, ... 0 long as they
are 0. This is to keep A in order. Finally, set A; = R
and Bi. =1.

It may be that we will run off the top of B before
finding B; = 0. In that case, find the smallestj = 1
with B; = 0, move B; to B;_; up to B, to Bj, shift the
start of A and B one up (remember they are circular
buffers) so that now Ay is free, shift A; to Ay—; up
t0 Aj+y t0 Ay and similarly for B, and set A; =R and
Bi =1.

2.5.1. Reformating

After N additions have been done for some fixed
8, since the last reformatting, reformat the list so that
it has evenly spaced vacancies as described in the sec-
tion on initial creation. If N is different from when
the list was created, then a different amount of stor-
age will be required. Extra storage can be allocated at
the end of A and B, if it is available, or else they can

INFORMATION PROCESSING LETTERS

20 November 1979

" be moved to a completely new location as they are

reformatted. If they are reformatted in place, then
first move all the records in A (for which B; = 1) to
the bottom of A, and then space them out. This
moves each record twice. It is possible to equalize the
spaces in A by only moving each record once, but the
method is more complicated, and hence, probably
slower and more error-prone.

If the padded list is large and in virtual memory,
we have much more flexibility. If the next higher
page above A is not in use, we can simply use it.
Otherwise, we can allocate new space in virtual mem-
ory, transfer A and B, and stop using the old pages so
that they are swapped out and effectively cease to
exist. On some systems we can explicitly deallocate
them.

2.5.2. Examples

Suppose that we wish to add R = 75. The interpo-
lation search yields A;3 =69, B3 = 1. However
B =0, so we push A4 and A;5 up one and insert 75
(see Table 3).

Suppose that we next wish to add R = 99. There
are no vacancies after A4 =98, so we free a word at
the bottom of A, rotate the circular buffer by one,
and insert 99 (see Table 4).

Suppose that we now wish to reformat the array
in place. Since, now N = 14, if k = 3 still, we need
M = 18, so there must be some extra space at the end
of A! and B!. Note that extra space at the end of the
physical arrays A® and B! means an ext(a block of
space somewhere in the middle of the logical arrays
A and B, if they have been rotated. This does not
affect anything. In this case, the two extra words will
appear between A ;s and A ;¢ (see Table 5). Then we
shift the nonempty elements of A down to give:

A: 01,17,26,31,41,44, 54, 59,
60,69, 75.81,98,99, ~, =y =, -

Finally we shift them up, leaving a blank after every

Table 3

163

Volume 9, number 4

Table 4

INFORMATION PROCESSING LETTERS

20 November 1979

10 11 12 13 14 15 16

Table 5

10 11 12 13 14 15 16 17 18

Ay 01 17 26 31 41 44 44 54 59 60 60 69 735 81 98 - = 99
B; 1 1 1 1 0 1 1 1 0 1 1 i - - 1
Table 6

10 11 12 13 14 15 16 1e]) 18

44 44 54

v}
-

—

p—

—

o
(P8

——
B
—

third (see Table 6). Here, N(1 + 1/k) is not an integer,
so the ceiling was taken. The floor would have also
been acceptable.

2.6. Deleting a record

Assume we wish to delete R. Locate it as described
above, at A; = R. Set B; = 0. After §N deletions, since
the last reformatting for some fixed &, reformat the
padded list as described above. Again, if N is different,
it may be desirable to move the list to a different
location.

3. Timing

The worst case times to locate or add a record are
clearly T = (N). Thus this algorithm is only useful
when it is the expected time that is important.

These expected times assume that the record keys
are drawn independently from a known statistical
distribution. If it is not a uniform distribution, then
the keys can be transformed to make it so.

164

3.1. Initial creation

Initializing the M locations of A and B takes
1
T=06M)=6 (N (1 + I(—))= g(N)
since k is constant.

3.2. Locating a record

To locate a record, R, first we search for an A; = R.
If B; = 1, we have it, but otherwise we decrement i
until B; = 1. The interpolation search takes Ty =
8(log log N). There are not more than M — N+ 8N =
N(1/k + 8) vacancies in A, so the expected time to
find B;j=11is

rr=ofied) =ocn.

Thus the time to locate arecord is T =Ty + T;:

T=T, + Ty =06(oglog N).

Volume 9, number 4

3.3. Locating the next higher record
7 The time here is clearly T = 6(log log N).

3.4. Locating all records in a range

Assume that there are P records in the range,
0 <P < N. It takes 8(log log N) to find the lower
bound, and 6(P) to return all the records, for a total

T=6(P+loglogN).
3.5. Adding a record

This is the difficult case; that it can be done effi-
ciently is the central result of this'paper. We will con-
sider the case where no deletions have been made
since the last reformatting. If there have been some
deletions, then the addition will be even faster since
there will be fewer records in array A,

Initially we have an array A with N/k vacancies
separated by runs of k contiguous records. When we
add a record R that falls in a vacancy, there is nothing
else to do. On the other hand, if R falls in a run of
occupied records, we must shift up from 1 to k rec-
ords to make room for R. In either case, a vacancy is
used up.

After several records have been added it may occur
that what were formerly the first P vacancies above
R’s location are full. Then we have to use the (P + 1)°*
vacancy, and shift from Pk + 1 to (P + 1)k records
in A. Thus the time to insert R depends on the aver-
age length of the string of occupied former vacancies
after R. Since R, by hypothesis, is independently uni-
formly distributed, these vacancies will be filled ran-
domly. The k records between each original vacancy
do not affect the analysis of the problem; they only
add a constant factor to the time.

Now the whole process of finding a vacancy is
identical to the process of finding an overflow record
in hashing with linear probing [2, program L, pp.518—
521]. The equivalent size of the hash table is M — N.
The number of records in the table so far is at most
BN so Knuth’s load factor, g, is

- N

< =k .
RN

However, we are not probing to find a matching hash

INFORMATION PROCESSING LETTERS

20 November 1979

* key, but to find a vacancy. This is equivalent to an

unsuccessful hash probe. Thus the average number of
probes needed is

et ()

~l+ta+da?+2e3 + .

For example, if k=5 and § = 0.1, then the first free
vacancy is the C = 21" one, each of which requires
shifting k + 1 = 6 records. Thus the average addition
in this example requires shifting 15 records which is
quite fast with a block move operation. Since § and k
are constants, C = 6(1). Thus, in general the expected
work to add a record without reformatting of Ty =
8(log log N), for the initial find +8(1), to find a
vacancy =6(log log N).

Now the reformatting takes time 6(N) once every
BN additions for an average time of T, = 6(1). Thus
the total expected time to add a record is

T= Tl = T2 = 6(10% IGg N) +
3.6. Deleting a record

To delete R, we locate A; = R and set B; = 0. This
takes time T = 6(log log N).

4. Future extensions

One problem with padded lists is that in actual
cases, series of related operations are often performed
on a data structure, A series of additions to the same
place may take up to T =8(L) for the L*® addition.
This can be ameliorated by reformatting more often
in these cases. If the correlation between successive
keys is known, future research might tell how to
modify the data structure accordingly.

5. Summary

With periodic reformatting and preplanned gaps,
a simple array becomes a padded list that supports
the operations of location, adjacent record location,
addition, and deletion, in expected time T =
6(log log N). The extra space required is only a frac-
tion of a word per record.

165

Volume 9, number 4) . INFORMATION PROCESSING LETTERS 20 November 1979

Acknowledgment [2] D.E. Knuth, The Art of Computer Programming, Vol. 3:

Sorting and Searching (Addison-Wesley, Reading, MA,
This research was supported by the National 1973). . .)
. A . < 3 2 [3] Y. Perl, A. Itai and H. Avni, Interpolation search —
Science Foundation, Automation, Bioengineering,

i a log log N search, Comm. ACM 21 (7) (1978) 550-553.
and Sensing Systems Program, under Grant ENG [4] E.M. Reinhold, J. Nievergelt and N. Deo, Combinatorial

79-08139, and by the RPI Engineering Build Program. Algorithms: Theory and Practice (Prentice-Hall, Engle-
Their support is gratefully acknowledged. wood Cliffs, NI, 1977).
References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

166

