22nd Allerton Conference, October 1984

SHORTEST PATHS BETWEEN SOURCE AND GOAL POINTS
LOCATED ON/AROUND A CONVEX POL YHEDRON

¥. Randolph Franklin and Varol Akman
Electrical, Computer, and Systems Engineering Dept.
Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT

Determining the minimal free paths between two given points inside a 3-D
workspace cluttered with rigid polyhedra is an outstanding open problem
in Robotics. In this paper, we solve three simple instances of this
problem which is commonly known as “Findpath,” Our instances always
treat the case of a single convex polyhedron with two points located
on/around it. The solution of the third instance comsists of an
extension of Voromoi diagrams to the surface of a polyhedron. Thus,
given several fixed points on the polyhedron, we wish to preprocess the
surface so that we can find both the «closest fixed point, and the
minimal path, to a new point specified on the surface. This extemsion
arises naturally from a consideration of minimal paths in 3-D where
there are many polyhedral obstacles, Such a path will travel
alternately through free space, and along a polyhedron’s surface.

1. PROBLEM STATEMENT

A regular duty of 2 robot arm inside a 3-D "workspace” W (an imaginary
bounding box in which several polyhedral objects reside) is to transfer,
if possible, a given polyhedron from a given location to another while
evading clashes with the other polyhedra (commonly termed as
"obstacles”), This is known in Artificial Intelligence as the
"Findpath” problem [Brooks 1983]. In this paper we solve three very
specific instances of Findpath which currently stands as a very hard
problem to conquer in its full generality [Schwartz and Sharir 1983;
Hopecroft et al, 1984].

For the instances we treat here, we will compute the minimal (under the
Euclidean metric) "free” (obstacle—avoiding) paths between two points
assuming that only one point (normally chosen as the fingertip of the
robot arm) is being moved in the presence of omnly ome convex obstacle.
It is noted that there exists a well-kmown method to shrink a moved
(strictly speaking, translated) object to a point while simultaneously
enlarging all the obstacles in W [Lozano-Perez and Wesley 1979;
Lozano-Perez 1983]. Thus a reduction of a "Polyhedron Findpath” problem
to a "Point Findpath” problem of the sort presented here is validated
for a broad class of practical problems.

- Recently, there has been much work on related problems in the
computational geometry of motion—planning in additiom to those mentioned
above. The reader is referred to [Akman 1984] for a relatively rich set
of references, Among these, especially [Donald 1983; O'Dunlaing and
Yap 1983; Spirakis and Yap 1983; Sharir and Schorr 1984] are relevant
to our work. Sharir and Schorr’s work is especially interesting im that
it mentions many useful results on the nature of minimal paths on a
convex polyhedron. The crux of their paper is the following result

RE

which is arrived after employing complex (and thus hard to program) data
structures and algorithms: :

"Given a convex polyhedron P with n vertices and a point s on it, P
can be preprocessed in 0(n® log n) time to produce a data structure
(taking O(n2) space) with the help of which one can find in 0O(n)
time the minimal path along the surface of P from s to any other
specified point g."

2. INSTANCES

Let P be a convex polyhedron and s and g ("source” and "goal”) two
points in the 3-D Euclidean space. Assume that s, g ¢ Ext(P) U On(P)
throughout this paper. (On(P), Int(P), and Ext(P) demote the surface,
the interior points, and the exterior points of P, respectively.) 1In
the sequel, we first present algorithms to compute the minimum—length
s—to—g (or vice versa) paths which do not interfere with P (i.e., at
most touch P but never intersect it) for the following two instances of
Findpath:

[FP1] s, g ¢ On(P) and both points are givem; and
[FP2] s and/or g & Ext(P) and both points are given,

Finally, as a third and more interesting instance, we solve the
following "Single Source-Many Goals” version of Findpath. Let s be
fixed and g be varied inside W, This corresponds to a manipulator
consuming a pile of objects by continuously moving them to different
locations inside W. (The symmetric case of a manipulator picking wup
objects from several piles in order to assemble them in a fixed location
is transformable to this instance by simply trading the roles of s and
g.) Assume that s and the particular face Fg of P on which g is
guaranteed to be 1located are given, (It is emphasized that the exact
location of g on F; is not known yet.) Clearly, the aim is to do some
preprocessing using this limited informatiom (i.,e,, P, s, and Fs) SO as
to compute the s—to-g minimal paths efficiently for specified "query”
points which will generically be demoted by g. In our terminology:

[FP3] s, g & On(P); s is given while g is not (but Fg, the face of
P that g belongs, is known),. We are allowed to preprocess to
quickly answer later queries that specify many g ¢ Fs and ask for
the s—to-g minimal paths,

3. ALGORITHMS

In the following, @,, a,, and a, denote the number of vertices, edges,
and faces of P, respectively. We reserve the terms "edge,"” "vertex,"
and "path” only for polygons and polyhedra; for graphs we use the less
common terms "link," "node,” and "sequence” in order to avoid potential
confusions.

3.1. Solution of FP1

Throughout this paper, we assume that the line segment [sg] is not the
shortest path since there is a very fast algorithm to detect this, that
is, to intersect a line segment with a convex polyhedron P [Chazelle

1980]. This algorithm works in time O(log? a,),

In the following, we summarize a simple but useful fact about the
shortest paths on a dihedral angle.

Lemma 1.1 (Dihedral Principle): If s and g are on different faces of a
dihedral angle D, then the shortest path between them is [sx] U [xg]
where x is a point on the common line c¢c’ of the faces such that
{sxc = {c'xg where "{" denotes a planar anmgle,.

Proof: Trivial., Algorithmically, x is found as follows. Rotate g
about cc’ until it touches to the plane of s (but specifically to the
half-plane (described by cc’) not including s), Thus g is transformed
to g This is called a "development” of D into the plane, Draw [sg’]
and intersect it with cc’ to find x, When we fold the faces back to
their original position the minimal path is placed into three dimensions

on D again. O

To solve FP1 we will develop a partly geometric and partly
graph—theoretic machinery. By its definition, a polyhedron is a figure
in space formed by a finite number of polygomns situated in a certain
mutual relationship. This can be represented by a system of polygons
("evolvent” or "planar polygonal schema”) in the plane [Frechet and Fan
1967].

Given a polyhedron P, we associate & polygom with each of its faces,
this polygon being subject to the single condition of having the same
metrical form as the associated face of P. We thus obtain a finite
number of polygons im the plane each of which is separated from the
others. We will couple the edges of these polygons in pairs in such a
way that two ’coupled” edges in the plane lead to the same edge of P.
Now denote each coupled edges in the plane by the same letter, This
does not yet suffice to describe the mutual relationship of the faces of
P. To make it precise, each edge in the plane must be oriented by
placing an "arrow” om it in an arbitrary sense, except that for two
coupled edges the heads of the two arrows on them coincide when they are
identified in forming the corresponding edge of P.

The evolvent A of P, obtained as described above, defimes the intrinsic
geometry of P in the sense that for a given A it is possible to
determine the minimal paths between two points on P [Aleksandrov 1958].
In our solution of FP1l, A is the main geometric tool, It is noted that
A satisfies the following conditions:

i) the coupling ("gluing” in Aleksandrov's terminology) of polygonms
may occur either at edges or vertices;

ii) if two polygons F; and F; are glued at vertex v, then they are
either glued together along edges containing v, or there exists a
sequence of polygons, starting at F; and ending at Fj. which are
glued to one another along edges containing v; and

iii) each edge is glued to exactly ome edge.

In addition to A, we need another simple tool. Define the '"face
adjacency” (or shortly, face) graph 2 = (V, E) as an undirected graph
with unit links where V = {v | Fy is a face of P} and E = {(v;, v,) |
Fy1 and Fyy are adjacent along an edge of P}. Now let t be a minimal

path on P from s to g. The faces that t touches while going from s to g
define the "face visit sequence,” Fg,..., Fg, where each face im this
sequence is adjacent to (shares an edge with) its preceding amnd
following neighbors.

Lemma 1.2: A face visit sequence in 0 associated with a minimal path on
P is "simple” (loop—free).
Proof: After recalling the fact that each face of P is also convex, ome

would further shorten the portion(s) of the path corresponding to the
cyclic sequence(s). But them the given path is not minimal. [J

Lemma 1.3: There may be O(n!) simple sequences between two specified
nodes of an undirected graph with n nodes,

Proof: In the worst—case the graph is complete, (But see the argument
below.) DO

The number of links in @ is much less than the nummber of 1links in a
complete graph with the same number of nodes, This is due to the
observation that the surface of a convex polyhedron has the structure of
a planar graph; hence it can have only a linearly growing number of
links in terms of its mnodes. This O(n) factor of reduction in the
number of links renders less freedom in moving from one node to another
and helps reduce the number of simple sequences considerably.

Before we present our algorithm for FP1 we emphasize that A is a
geometric data structure. Hence it is possible, for instance, to obtain
from A such information as "F, and F, share edge e,” or "F, and F, are
disjoint.” With these examples, a convenient intermal representation
for storing am evolvent should be self-evident (cf. [Abelson and
DiSessa 1982], for example). On the other hand, Q contains only
topological information; that is, it is less informative of shape.

After above preparations we can now present our algorithm for FP1:

ALGORITHM A1l.

1. Given s and g, find the faces Fg and Fg holding them, Assume
that they are different; otherwise we are finished with path [sgl.
2. Mark these two faces in @ and enumerate all simple sequences
between these nodes in any order,

3. For each sequence (which may be thought as a face visit
sequence) compute the associated development of the relevant faces.
This is accomplished using the information provided by A,

4. For each development compute the minimal path between the
images of s and g and finally choose the smallest one(s) among
them.

END Al1.

In Figures 1, 2, and 3 we demonstrate this algorithm on a cube. Figure
1 depicts the evolvent and the face graph of the given cube. Figure 2
lists first few simple face visit sequemces, Finally, Figure 3 shows
the corresponding developments for the sequences given in Figure 2.

To the best of our knowledge, counting the number of simple sequences
between two nodes of a graph is a difficult problem. This is due to the
fact that given graph G = (V, E), [Vl = a, |E| = m, length 1(e) & Z* for

each e ¢ E, specified nodes s, g € V, and positive integers B and K, it
is stated in [Garey and Johnson 1979] that the problem "Are there K or
more distinct simple paths from s to g in G, each having total length B
or less?” is NP-hard. Although this problem is not known to be in NP,
the corresponding enumeration problem is #P-complete [Valiamt 1979]. It
is emphasized that #P-completeness still holds even when G is planar.

In [Yen 1971], an O(En3) time algorithm is given to enumerate the
sequences in increasing path length. Recently, [Katoh et al, 1982]
gave a new improved algorithm which works in time O(Kc(m, m)) if the
shortest sequences from one node to all the other nodes are obtained in
¢(n, m) time. Since c(n, m) is at most min(O(n3?), O(m log n)) this
algorithm is more efficient than Yen's,

3.2, Solution of FP2

When s and/or g are outside a convex polyhedron we obtain the instance
FP2. In this case, it is still possible to apply the method summarized
in Section 3.1 but only after a simple transformatiomn of P to another

polyhedron P’ which now has s and g necessarily om its surface. The
transformation step is given as follows:

ALGORITHM A2.

1. Compute the two visible outlines (silhouettes) Z; and Zg of P
from the viewpoints s and g, respectively, These are generally
nonplanar polygons which have as edges some edges of P,

2. Construct a new polyhedron P' which is the combination of three
polyhedra, P' = Q U P U Qg. Here Qg is the pyramid having s as
apex and Zg as its base outlime, and Qg is the pyramid having g as
apex and Zg as its base outline. Note that these pyramids have
generally concave bases consisting of the visible faces of P from s
and g, respectively.

END A2.

The correctness of Algorithm A2 follows from the following properties:

Lemma 2.1: The respective planar projections of Zg and Zg from s and g
are convex polygons.

Proof: Due to fact that a convex polyhedron casts a convex shadow when
illuminated by a point source, [J

Lemma 2.2: P’ is also a convex polyhedron.
Proof: Take two points x and y inside P‘, If x e Int(Qg) and
y & Int(P) then [xy] is always inside Qg U P for y will always be inside
the infinite pyramid originating from s. A similar argument shows that
the union of Qg and P is also convex., The only unproved case is when
X e Qg and y e Qg. Let us check the dihedral angles of P' where Qg and
P, and Qg and P are joinmed., Clearly, those angles are all nonreflex
implying that [xy] must be totally contained imside P'., [J

The following result shows that after the problem-reduction step (i.e.,
the computation of P’ from P) the complexity of this instance is the
same as with FP1,

Lemma 2.3: Size(P') = 0(Size(P)).

Proof: The "size” of a polyhedron can be defined as the number of its
vertices, edges, or faces depending on choice. In the case of a comvex
polyhedron they are all asymptotically equivalent since a convex
polyhedron can be embedded in the planme as a graph and since a; is at
most equal to 3a, - 6§ in a planar graph. Hence, choose a; as the size
measure., From Lemma 2.2, Qg and Qg may contribute O(a,) new edges in
the worst—case. [J

How fast can we compute Zg and Zg? Below we summarize the computation
of Zg; Zg is computed similarly, Find a point cj inside every face of
P. Compute, using Chazelle’'s method, the intersections of P and [sc;],
i=1, a,, If the intersection corresponding to a particular c¢j is null
then F; is visible from s; else it is obstructed by other faces of P.
In this manner all visible faces of P from s are found, This clearly
takes O(a, log? ae), or equivalently O(a, log? a,) time, Make a list of
the edges of these visible faces to compute Zg, Any edge which appears
twice in this list cannot belong to Zg, Thus, the edges of Zg are
determined in O(a, log a,) time via sorting this list and eliminating
both elements of duplicate pairs. To get Zg with ordered edges from
this unordered set, take any point q inside any of the visible faces and
sort the vertices of this set of edges anglewise about g. As soon as we
find Zg, we know all the faces of Qg. Once we have Qg and Qg, P’ can be
easily constructed (Figure 4).

3.3. Solution of FP3

To solve FP3, we follow a Voromoi-based strategy [Franklin 1982;
Franklin et al, 1983; Guibas and Stolfi 1983]. We want to partition
the face F; into subregions via a planar subdivision made of straight
edges such that if & query point g is discovered to be belonging to a
particular subregion of this subdivision, it must be possible to 1list
the face visit sequence that should be taken by an s—to—g minimal path.
The following algorithm accomplishes this:

ALGORITHM A3 .

I. PREPROCESSING:

1. Develop onto the plane of Fg all simple visit sequences in
between nodes Fg (the face of P holding s) and Fg using A. At the
end of this process, one obtains, using the Dihedral Principle, a
set of points in the plane which are the "images"” of s under given
visit sequences.

2. Store with each image point, the visit sequence to arrive it.
3. Using standard algorithms construct the Voromoi diagram V which
has these images as Voromoi centers [Guibas and Stolfi 1983].

4, "Clip"” V against F;, This simply means finding the subset v’
of V included within the polygon Fg.

II. QUERYING:

1. Given a new query point g, first make sure that g & Fg,,

2. Using standard point location algorithms locate the subregion R
including g in subdivision V' [Lee and Preparata 1977].

3. Using the stored sequence in the Voronoi center corresponding
to R develop the faces specified by this sequence and find the
minimal path with straightforward application of the Dihedral
Principle.

END A3,

Once we preprocess the given sceme for a given s and F,, for each goal g
we must determine which region of the subdivision V' it belongs to.
Assume that V' has y edges. In [Lee and Preparata 19771, an elgorithm
is given which, after O(y log y) preprocessing time, requires 0(log? y)
search time. A faster algorithm that is based on triangulating the
planar graph has the same preprocessing time but O(log y) search time
[Kirkpatrick 1983],

The size y of V' depends on two things: the number of simple visit
sequences between F; and F, in 0, and the shape and relative location of
Fg. If Fg is very big, then it will probably include most of V. If it
is almost coincident with the most crowded parts of V then V'’ will again
have many subregions, Similarly, if there are many visit sequences then
the Voromoi diagram V will have many edges. In general, the complexity
of comstructing V on the surface of P for many specified source points
will depend on the average number of regions that each face is
partitioned into,

In Figure 5, we demonstrate this preprocessing method for a2 cube. The
lists written next to each image of s in this figure specify the order
of unfolding applied to arrive that point. Not all images of s are
shown. Notice that if g is found to be inside the vertically hatched
subregion then the minimal path is via the unfolding of simple sequence
(3,2,6). On the other hand, it is via the unfolding of (3,6) when g is
inside the horizontally hatched subregion.

A dynamizing technique which would allow good insertion time for an
incoming point in the Voromoi diagram proves very useful in this
context. Thus, we start with only a few image points (commonly
corresponding to the first few short simple sequences in the face graph)
and work our way to an "incomplete” Voromoi diagram easily. When we
want to see the effect of another image point (not yet tried) we use a
dynamic data structure to imsert it. In [Gowda et al. 1983], it is
proved that this is achievable in O(y) time if the Voromoi diagram has y
points prior to insertionmn,

ACKNOWLEDGMENT

This material is based upon work supported by the Nationmal Science
Foundation under Grants No. ECS-8021504 and ECS-8351942,

REFERENCES

ABELSON, H., AND DISESSA, A. 1982, Turtle Geometry: The Computer as a
Medium for Exploring Mathematics, MIT Press, Cambridge,_ﬁass. me of
AKMAN, V. 1984, Findminpath algorithms for task-level (model-based)
robot programming. Manuscript, Electrical, Computer, and Systems Eng.
Dep., Rensselaer Polytechnic Inst., Troy, N.Y. (Mar.)

ALEKSANDROV, A. D. 1958. Eonvexe Polyeder (German, translated from
Russian), Akademie-Verlag, Berlin. :

BROOKS, R. A. 1983. Solving the Findpath problem by good
representation of free space, IEEE Trans, on Systems, Man, and
Cybernetics 13, 3 (Mar.), 190-197.

CHAZELLE, B. M. 1980. Computational geometry and convexity. Ph.D.
dissertation, Computer Science Dep., Yale Univ,, New Haven, Conn,

DONALD, B. R. 1983. The Mover's problem in automated structural
design. In Proc. of the Haryard Computer Graphics Conf., Cambridge,
Mass. (July)

FRANKLIN, V. R. 1982. Partitioning the plame to calculate minimal
paths to amy goal around obstructions. Tech. Rep., Image Processing
Lab, Rensselaer Polytechnic Inst., Troy, N.Y. (Nov.)

FRANKLIN, ¥. R., AKMAN, V., AND VERRILLI, C. 1983. Voromoi diagrams
with barriers and on polyhedra, Tech. Rep., Image Processing Lab,
Rensselaer Polytechnic Inst., Troy, N.Y. (Dec.)

FRECHET, M., AND FAN, K. 1967. Initiation to Combimatorial Topology
(translated from French), Prindle, Weber, and Schmidt, Inc.,
Complementary Series in Mathematics, Vol. 7, Boston, Mass,

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman, San Framsisco,
Calif.

GOWDA, I. G., KIRKPATRICK, D. G., LEE, D. T., AND NAAMAD, A, 1983.
Dynamic Voronoi diagrams. IEEE Trans., on Information Theory 29, 5
(Sep.), 724-731.

GUIBAS, L., AND STOLFI, J. 1983. Primitives for the manipulation of
general subdivisions and the computation of Voromoi diagrams. In Proc.
of the 15th ACM Symp. on the Theory of Computing (Apr.), 221-234.
HOPCROFT, J. E., SCHWARTZ, J. T., AND SHARIR M. 1984, On ~ the
complexity of motion planning for multiple independent objects: PSPACE
hardness of the "Warehouseman’s Problem.” Tech. Rep., Courant Inst.
of Mathematical Sciences, New York Univ,, New York (Feb.)

EATOH, N., IBARAKI, T., AND MINE, H. 1982, An efficient algorithm for
k shortest simple paths. Networks 12, 411-427,

KIRKPATRICEK, D. G. 1983. Optimal search in planar subdivisions. SIAM
Journal on Computing 12, 1 (Feb.), 28-35.

LEE, D. T., AND PREPARATA, F, P, 1977. Location of a point in a planar
subdivision and its applications, SIAM Journal on Computing 6, 3
(Sep.). 594-606. '
LOZANO-PEREZ, T. 1983. Spatial planning, a configuration space
approach. IEEE Trans., on Computers 32, 2 (Feb.), 108-120.

LOZANO-PEREZ, T., AND WESLEY, M, A. 1979. An algorithm for planmning
collision-free paths among polyhedral objects. Comm. of the ACM 22, 10
(Oct.), 560-570.

O'DUNLAING, C., AND 7YAP, C. K. 1983. The Voronoi diagram method of
motion planning I: the case of a disc. Tech. Rep., Courant Inst. of
Mathematical Sciences, New York Univ., New York.

SCHWARTZ, J. T., AND SHARIR, M, 1983. On the Piano Mover's problem I:
the case of a two-dimensional rigid polygonal body moving amidst
polygonal barriers, Comm. on Pure and Applied Mathematics 36, 3 (May),
345-398, '
SHARIR, M., AND SCHORR, A. 1984. On shortest paths in polyhedral
spaces. In Proc. of the 16th ACH Symp. onm the Theory of Computing,
144-153.

SPIRAKIS, P., AND YAP, C, K. 1983, On the combinatorial complexity of
motion coordimationm, Tech. Rep., Courant Inst, of Mathematical
Sciences, New York Univ., New York (Apr.)

VALIANT, L. G. 1979. The complexity of enumeration and reliability
problems. SIAM Journal om Computing 8, 3 (Aug.), 410-421.

YEN, J. Y. 1971. Finding the k shortest loopless paths in a network.
Management Science 17, 712-716.

Fz = s“"-‘“3{-“:.'{'«;-;;m-ls'l'nii:
Fs $
E E il
-:.~s K
F3 F| """ F5 Fc
Fa
T
Figure 1
g R
© O FO—E—®
BE—R—m—®
Figure 2
F3 es £
R 'I 559\‘ A Fy Se £ Il‘
F 6
E ! ¥ B ¥
: s Fs °3 556 % 5
. Es gl T 3
P i . 5 |- :
3 F5 Fe Fa FS 3 § Fa

Figure 3

-

xfrom s from g -
Visible lines of P

a pyramid

Figure 4

[—
I "
¥ 1
0 1

(325,18

t
1 I
| i
1 1

"
i O
'

6.5,2,16)! (3,52,6) | |

! ° ! e '] |

- e izt foeomeed

Fa & il‘s,z.S,‘-,‘:}i FS §(3°,2,¢) E
£ E.C’.'?.".in‘l»:_ ________ R | ¢ :-------_-.E

F3 = ! ° i i @ ° i
L (3,5.1.6), ; (3,6)!

NoTE. se Fq , q€F3 s L e up N
(35,1,4.8) ; | (3,4,6)

;(3.5,4, L4)i(3.,5,4.6)! (3,4,1,6)!

1 N i | ° :

|
! 1 '

- et - =

Figure 5

