

Employing GPUs to accelerate exact 3D geometric computation

Salles V. G. Magalhães¹, W. Randolph Franklin², Marcelo Menezes¹ ¹Universidade Federal de Viçosa, Brazil ²Rensselaer Polytechnic Institute, USA

The challenge

- Roundoff errors: challenge in geometric computation.
- They can be avoided with exact rational numbers.
- Big datasets:
 - Greater chance of having errors.
 - Computation with rationals: slower than native floats.
- People want exactness and performance.

Example

- 2D orientation
- 2. Can be computed with a determinant
- 3. Errors due to floating-point arithmetic. Source of the image: [2]

Interval Arithmetic (IA)

- Interval arithmetic (IA) + arithmetic filtering can accelerate exact computation.
- Each coordinate/value: represented with exact part (rationals) and an interval approximation (floats).
- Computation is done with the approximation.
 - o E.g.: [3,5] [1,2] = [3-2,5-1] = [1.0,4.0]
 - the approximation [0.9,4.1] is **ok** (**contains** [1,4])
 - the approximation [1.1,4.1] is **not ok** (does not contain [1,4])
- Interval arithmetic + IEEE-754 (rounding modes): computation can be done ensuring the interval will always CONTAIN be exact result (containment property).
- Containment property → sign of the exact result can often be inferred from the intervals:
 - Is a*b c = [1.0,4.0] positive? **Certainly** \rightarrow use this result.
- o Is a*b c = [-0.1,4.0] positive? **Maybe** \rightarrow recompute with better approximations (double, rationals, etc).
- Geometric predicates: typically computed with sign of a determinant (suitable for IA).

IA on GPUs

- IA: much faster than rationals, but slower than regular floating-point.
- GPUs: excellent for **floating-point** and intervals.
- Rounding mode can be quickly switched (on a CPU \rightarrow this would empty the pipeline).
- Example of the operator + using CUDA:

```
rounding up to the next
                                     representable float
     #define INTERVAL_FAILURE 2
     class CudaInterval {
     public:
         __device__ __host__
         CudaInterval(const double 1, const double u)
              : lb(1), ub(u) {}
         __device__
         CudaInterval operator+(const CudaInterval& v) const {
             return CudaInterval(__dadd_rd(this -> lb, v.lb),
13
                  __dadd_ru(this->ub, v.ub));
14
15
                                rounding up to the next
16
         __device__
                                  representable float
         int sign() const {
             if (this \rightarrow lb > 0) // lb > 0 implies ub > 0
                 return 1;
              if (this \rightarrow ub < 0) // ub < 0 implies lb < 0
                 return -1;
             if (this \rightarrow lb == 0 \&\& this \rightarrow ub == 0)
                  return 0;
24
             // If none of the above conditions is satisfied,
             // the sign of the exact result cannot be inferred
             // from the interval, Thus, a flag is returned
28
             // to indicate an interval failure.
             return INTERVAL_FAILURE;
31
33
     private:
         // Stores the interval's lower and upper bounds
35
         double lb, ub;
```

Intersecting red and blue triangles

- Problem: find triangles from one mesh intersecting triangles from another one.
- Applications: collision detection, boolean operations, etc.
- Goal: compute it exactly and efficiently.
- Uniform grid index employed for avoiding testing $O(N^2)$ pairs of triangles.
- IA + rationals for exactness.
- GPU is employed for performance.

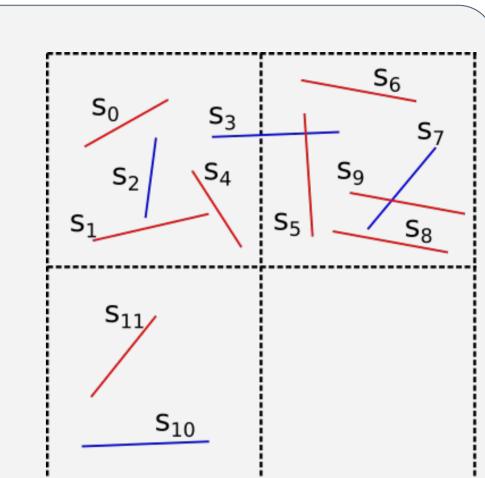
Two overlaid meshes: Blue crab and Edgar Allan

(provided by IMR 2024)

Steps of the algorithm

1 - Uniform grid indexing

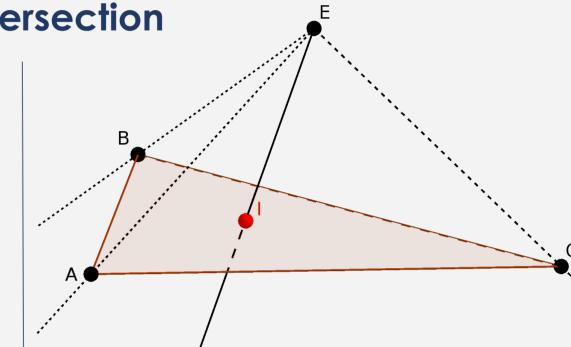
- 3D grid is created with a ragged array.
- Red and blue triangles inserted into the cells they intersect.
- For each cell c: bounding-box intersection tests are performed with the pairs of red-blue triangles in c.
- Bounding-box tests performed using two passes:
- First: count the intersections.
- Second: insert the intersecting pairs into an array.
- Each GPU thread processes some pairs.
 - Challenge: determine the pair each GPU thread will process (irregular distribution of triangles among grid cells).
- Result: array with pairs of potentially intersecting triangles.



2D example of a 2x2 uniform grid indexing red and blue segments.

2 - Triangle-triangle intersection

- For each pair of potentially intersecting triangles, intersection tests are performed.
- Uses orientation predicates implemented with IA.
- Orientation = sign of determinant: IA returns positive, negative, 0 or unknown (failure).
- Each GPU thread processes a pair of potentially intersecting triangles.
- Result is two arrays:
 - Intersections: certainly intersecting pairs of triangles.
 - o Failures: Interval failures (rarely happens) when orientation cannot be inferred using the intervals.



Intersection of a segment and a triangle can be computed with 5 3D orientations.

Intersection of a segment and a triangle → intersection of two triangles.

3 - Post-processing

- The (typically few) failures (uncertainties) are re-evaluated on the CPU with GMP rationals.
- Duplicated pairs of intersecting triangles are removed (using a GPU sort+unique implementation).

Results and conclusions

- Intel Xeon E5-2660 CPU at 2 GHz (3.2 GHz Turbo Boost), 256 GB of RAM, RTX 8000 GPU (48GB of RAM + 4608 CUDA cores).
- Datasets provided by IMR2024 and tetrahedralized with Gmsh:
 - \circ Blue Crab: 25x10⁶ triangles \rightarrow 45x10⁶ triangles in the ragged array
 - \circ Edgar Allan (poet): 33x10⁶ triangles \rightarrow 64x10⁶ triangles in the ragged array
- Uniform grid: 100³ cells, 87% are empty
- Baseline: sequential CPU implementation
- Steps:
 - o Pre-processing: access index, perform bounding-box tests and distribute work among threads (GPU version)
 - Intersection: perform intersection tests with orientation predicates
 - o **Post-processing:** remove duplicates and re-evaluate interval failures with rationals

Dataset	BlueCrab vs $EdgarPoet$		
Method:	CPU	GPUDouble	GPUFloat
		Time (s)	
Pre-processing	64.86	1.09	1.09
Intersection	325.52	11.80	0.33
Post-processing	8.08	0.11	0.63
Data transfer	-	1.75	1.97
Total time (s)	398.46	14.75	4.02
#interval failures	=	0	267,238
#bounding-box tests		$14,754.9 \times 10$)6
#intersection tests		771.5×10^{6}	
#intersections		89.5×10^{6}	

- Speedup: 993x on the intersection tests, 99x on the total time.
- Double precision: fewer (0) filter failures, but slower computation.
- Approximate floats on GPUs (where they shine) can accelerate exact geometric computation.
- Future work:
- Employ this technique for other applications.
- Higher speedups could be achieved in applications where bigger bottlenecks could be moved into the GPU (performing more computation and fewer memory transference)

Bibliography

- 1. Marcelo Menezes, Salles Magalhães, Matheus Oliveira, W. Randolph Franklin, Rodrigo Chichorro. Fast Parallel Evaluation of Exact Geometric Predicates on GPUs. Computer-Aided Design 2022; 150 2. Kettner Lutz, Mehlhorn Kurt, Pion Sylvain, Schirra Stefan, Yap Chee Keng. Classroom examples of
- robustness problems in geometric computations. Comput Geom 2008;40(1):61–78

