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5.1 Introduction
This gempresents several different data structures to represent a geometric object.
They facilitate efficient parallel computation of mass properties, especially when
the object is the result of an intersection, union, or overlay. The object might be a
polygon or polyhedron and may have multiple nested or disjoint components. It
may be a partition of a polygon or polyhedron, such as a 2D and 3D triangulation.
2D triangulations are also known as planar graphs and Geographic Information
Science (GIS)maps. These ideas have been validated with several implementations
in Computer-Aided Design and GIS and tested on large datasets.

Each data structure is simply a set of objects of some fixed-size type. The set has
no extra structure, that is, it is unordered. The element object type is a (ordered)
tuple or a (unordered) set. This gem first reviews some classic data structures such
as representing a polygon 𝒫 as a set of edges, where each edge is an ordered pair
of its vertices. Then it presents several original data structures, created by the first
author unless otherwise specified.

Each data structure is designed to optimize some operation. For example, with
the above data structure, 𝒫 ’s area is easily computable by summing the areas of
the triangles subtended by each edge at the origin. Each operation is expressible
in the map-reduce form and parallelizes quite well. We have implementations of a
number of these in OpenMP on a multicore Intel Xeon.

Other operations include testing point inclusion in 2D and 3D, computing the
volume of the union of many isothetic cubes, and computing the areas of all
the nonempty intersections of the faces of two overlapping planar graphs. These
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ideas are particularly suitable for computing mass properties of Boolean com-
binations because they require only incomplete information about the Boolean
combination, and so are easier to implement and run faster. Nevertheless, the
computation is exact, apart from the usual floating point roundoff (apart from our
implementations that compute exactly with big rationals).

These data structures have no pointers or trees. Explicitly storing global infor-
mation like loops of edges and shells of faces is not necessary (although that
information could be deduced if another application needed it).

These techniques can often reduce the storage needed to represent geometric
objects, compared to representations that store complete topologies with many
pointers from each element to all its adjacent elements. Since a good laptop com-
putermay have 32GB ormore ofmainmemory, and a good workstation 256GB, one
might reasonably ask, what’s the point? The answer is that the datasets are also get-
ting larger. There is an enormous speed advantage to being able to store the dataset
in real memory instead of in virtual memory or on another node of a cluster. On
modern supercomputers, the cost of accessing data often dominates the cost of
processing it. Reductions in storage lead directly to reductions in total wall-clock
time. Efficient, compact data structures improve performance considerably.

Minimizing space usage is especially true when the target platform is a Graph-
ics Processing Unit (GPU). GPUs are not just for gamers; as of June 2021, six of the
ten fastest known supercomputers [Top500 2019] have NVIDIA GPUs. The fastest
of these and the second fastest overall is the Summit, which has 27,648 NVIDIA
Volta V100 GPUs [Oak Ridge National Lab 2019]. So, for maximum performance,
we need to target GPUs. Although the Summit has over 10PB of memory, most of
it is relatively slow to access. Each GPU has only up to 96KB of fast shared mem-
ory for each of its 14 streaming multiprocessors [NVIDIA 2017]. Data too large for
the fast shared memory must spill over to the main memory on the GPU, which
is 100 times slower. A similar situation obtains when the platform is a network of
processing nodes programmedwith theMessage Passing Interface. Accessing data
over the network is orders of magnitude slower than accessing local data.

These ideas were partly motivated by the philosophy that a designer knows he
has achieved perfection not when there is nothing left to add but when there is
nothing left to take away, and as a reaction to representations storing every pos-
sible topological relation. Some of these ideas could well date to the invention of
analytic geometry, although we are unaware of such prior art.

5.2 Representing One Polygon
Here are several representations for one polygon 𝒫 . 𝒫 need not be simply con-
nected, and nested holes and islands are allowed (see Figure 5.1(a)). Nonmanifold
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(a) (b) (c)

Figure 5.1 General polygon figures. (a) Polygon with holes and island. (b) Jordan curve point
inclusion testing on set of unoriented edges. (c) Areas subtended by edges.

vertices, which have more than two edges, are also allowed if they are considered
to be several vertices whose coordinates coincide.

5.2.1 Unoriented Edges
Here, 𝒫 is represented as the set 𝒰 = {ui} where each ui =

{
(xi0, yi0), (xi1, yi1)

}

is one unoriented edge of 𝒫 , represented as the set of its endpoints. For exam-
ple, the triangle with vertices (0, 0), (1, 0), (0, 2) would be represented as the set{
{(0, 0), (1, 0)}, {(0, 0), (0, 2)}, {(1, 0), (0, 2)}

}
. Which side of ui is on the inside of 𝒫

is not stored. Since 𝒰 is a set, its elements are not ordered.
The set of unoriented edges suffices to uniquely represent 𝒫 . From a point-set

view, it determines the points contained in 𝒫 . If the more global topology of 𝒫 is
required, such as the edge loops, then the two edges with a common vertex can
be determined, so we can walk around each loop by traversing edge–vertex–edge–
vertex.... The set of loops can be determined with a union–find algorithm or by
repeating the previous traversal until every edge has been used. The hierarchical
nesting of loops, such as shown in Figure 5.1(a), can be determined by inclusion
testing of a sample vertex of each loop against each other loop. More efficient algo-
rithms are available if speed is a problem. However, the point of this gem is that
we usually don’t need this information.

This representation supports testing whether a query point q is included inside
𝒫 . Using the classic Jordan curve theorem [Jordan 1887], first implemented in
Shimrat [1962], we test whether q is below each ui. It runs a semi-infinite ray up
from q and computes what edges it intersects. q is inside 𝒫 iff the number of inter-
sections is odd; see Figure 5.1(b), where the green point is inside but the red points
outside.
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5.2.2 Oriented Edges
Here, 𝒫 is represented as the set ℰ = {ei}, where each ei = ((xi0, yi0), (xi1, yi1))
is one oriented edge of 𝒫 , represented as the ordered pair of its two endpoints.
For example, the triangle with vertices (0, 0), (1, 0), (0, 2) would be represented as
the set

{
((0, 0), (1, 0)), ((0, 2), (0, 0)), ((1, 0), (0, 2))

}
. The two vertices of each edge

are ordered so that when traveling from the first vertex to the second the inside
of the polygon is on the left. The edge ((0, 2), (0, 0)) is different from the edge

((0, 0), (0, 2)).
This representation supports computing mass properties of 𝒫 such as area by

summing the signed areas subtended by each edge and the origin. See Figure 5.1(c).
With oriented edges, point inclusion becomes a little easier if the order of the

edges intersecting the ray drawn up from the query point q toward y = ∞ is known,
or alternatively, all the edges intersecting closer than a certain distance, or the
closest intersecting edge, are known. This can be determined with, for example,
a uniform grid, often in constant expected time. By inspecting which side of the
closest inspecting edge that q is on, we immediately know whether q is inside 𝒫 .

This can also be used to locate a point in a planar graph, that is, to compute
which face (aka polygon) of a planar graph contains q. That is a subroutine of
OVERPROP [Franklin et al. 1994] and in 3D of PinMesh [Magalhães et al. 2016a].
The expected preprocessing time is linear in the number of vertices; the expected
query time constant.

5.2.3 Augmented Axis-aligned Vertices
This is the special case of a polygon whose edges are all horizontal or vertical.
It motivates the more general case to follow. The set of vertices is insufficient to
uniquely define a polygon. However, augmenting each vertex with a little extra
information suffices. For axis-aligned edges, as in Figure 5.2(a), one additional bit
of information is sufficient to compute mass properties such as area.

(a) (b) (c)

Figure 5.2 Axis-aligned and diamond polygons. (a) Axis-aligned polygon. (b) The eight cases of s.
(c) Diamond polygon.
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Define an augmented vertex as a = (x, y, s), where (x, y) is the vertex’s coordi-
nates and s is a property of that vertex’s local geometry. There are eight cases; s
is +1 for four and −1 for the other four, as shown in Figure 5.2(b). Then the area
is ∑ xiyisi, summed over the augmented vertices of the polygon. For example, the
area of Figure 5.2(a) is

1 ⋅ 1 ⋅ 1− 1 ⋅ 4 ⋅ 1+ 1 ⋅ 4 ⋅ 2− 1 ⋅ 2 ⋅ 2+ 1 ⋅ 2 ⋅ 3− 1 ⋅ 1 ⋅ 3 = 5

Testing whether point q is inside is possible by computing which quadrant of
each vertex includes q, combining that with that vertex’s s to form a characteris-
tic function of 𝒫 , and summing. (The characteristic function 𝜒𝒫 (q) = 1 iff q is
contained in 𝒫 and 0 otherwise.)

5.2.3.1 Implementation Considerations
Although this data structure is provided for pedagogical purposes as a simple
demonstration of the concepts, efficiently storing that extra bit per vertex may be
of interest. First, we might use a separate bit vector for all the vertices’ bits. This is
easy and efficient with modern languages. Alternatively, if the vertex coordinates
don’t need the full precision of, say, a four-byte int, we might steal one bit from a
coordinate field, reducing its precision to only 31 bits.

5.2.4 Augmented Diagonal Vertices
This is a similar special case of polygons whose edges all have slopes of ±1 (see
Figure 5.2(c)). As before, we supplement each vertexwith one additional bit of infor-
mation, used to computemassproperties such as area.Define an augmented vertex
as a = (x, y, s), where (x, y) is the vertex’s coordinate and s is defined similarly to in
Figure 5.2(b).

There is also a whole class of area functions:

∀𝛼∀𝛽∀𝛾∀𝛿 A = ∑
i

(𝛼x2i + (1− 𝛼)y2i + 𝛽xi + 𝛾yi + 𝛿)si.

Special cases include A = ∑i x
2
i si and A = ∑i y

2
i si.

5.2.5 Augmented General Vertices, aka Vertex Neighborhoods
A similar algorithm exists for general polygons. Since the set of vertices is insuffi-
cient to uniquely represent a polygon, we will augment each vertex V with informa-
tion on its local neighborhood by including a generalization of the above s. This
will abstract the information about the directions that the edges leave the vertex
and which sector is interior to the polygon.
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(a) (b) (c)

Figure 5.3 Vertex neighborhood for general polygons. (a) 𝜒 function for a vertex with 𝜃 < 𝜋. (b)
𝜒 function for a vertex with 𝜃 > 𝜋. (c) The characteristic function of a triangle by
summing 𝜒 for each vertex.

Specifically, for each vertex, v, define 𝜒v : E2 → ℜ, that is, a scalar function
on all points in the plane depending on how they relate to v’s neighborhood, as
illustrated in Figure 5.3(a). For 𝜃 < 𝜋:

𝜒v(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

− 𝜃

2𝜋
if p is in the angle between the two rays

− 𝜃

2𝜋
if p is in the other two wedges

1
4

− 𝜃

2𝜋
if p is on either ray, but not on v

0 if p = v

.

For 𝜃 > 𝜋:

𝜒v(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜃

2𝜋
− 1
2

if p is in the angle between the two rays as shown in Figure 5.3(b)

𝜃

2𝜋
if p is in the other two wedges

𝜃

2𝜋
− 1
4

if p is on either ray, but not on v

0 if p = v

𝜃 = 𝜋 does not occur since it would be a straight line with no vertex.
Adding the 𝜒 functions for all the vertices of a polygon gives a characteristic

function for the polygon. Figure 5.3(c) shows an example of a triangle. This can be
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extended to all polygons, including concave with multiple components and holes.
Other formulae are presented in Franklin [1983, 1987] and Franklin et al. [1990].
With this characteristic function, we can do point inclusion tests.

In spirit, this slightly resembles Green’s theorem. However, while Green’s the-
orem computes a polygon’s area by integrating along its boundary edges, this
formula uses only the boundary vertices.

5.2.6 Vertex–Edge Direction Adjacencies, or Cusps
We can get even simpler than the above representation by splitting each vertex into
two pieces called cusps, one for each adjacent edge. Note that we do not know the
complete edge but only its angle andwhich side is inside. See Figure 5.4(a). Let v be
the vertex’s position. It is convenient to represent the extra info as two unit-vectors,
t and n. t is a unit tangent vector along the edge, and n is a unit vector normal to
t pointing to the inside side of the edge. n adds only one bit of new info. So, 𝒫 is
now

{
(v, t, n)

}
. A k-gon will have 2k set elements.

(a)
(b)

(c)

Figure 5.4 Cusps and half-spaces. (a) 2D cusp. (b) One 3D cusp of a cube. (c) Polygon defined by
half spaces of the edges.
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Then the polygon’s area is

1
2
∑
i

(vi ⋅ ti)(vi ⋅ ni),

where ⋅ is the scalar vector product here. The perimeter (boundary) length is

−∑
i

(vi ⋅ ti).

For example, consider a rectangle with vertices (0, 0), (2, 0), (2, 3), (0, 3). (0, 0) has
two adjacent edges. The edge from v = (0, 0) to (2, 0) has tangent vector t = (1, 0)
and normal vector n = (0, 1). The edge from v = (0, 0) to (0, 3) has tangent vector
t = (0, 1) and normal vector n = (1, 0). So the two cusps created from vertex (0, 0) are
((0, 0), (1, 0), (0, 1)) and ((0, 0), (0, 1), (1, 0)). Those two cusps contribute 0⋅0+0⋅0 = 0
to the area and 0+ 0 = 0 to the length.

5.2.7 Halfplanes
If we extend each edge of 𝒫 to an infinite line and then to a halfplane of the inside
side, then we may represent 𝒫 ’s interior, in Constructive Solid Geometry (CSG)
style, as a conjunctive normal form Boolean expression of them, with each line
used only once [Dobkin et al. 1988]. See Figure 5.4(c), for example, where

𝒫 = abc(d + e+ f )(g + h+ i) + jkl

may be used to test point inclusion. In more detail, a, for example, represents a
half plane defined by that edge extended to infinity, with the half plane interior on
the inside side of the edge. In the above formula, + means union and an omitted
multiplication operator, intersection.

This concept does not extend to E3; the formula may have to use some lines
more than once. Also, computing volume is an open question.

5.3 Representing One Polyhedron
This section presents several data structures to represent a 3D polyhedron 𝒫 . A
complete description would include the loops of edges and shells of faces, with
many explicit adjacency relations such as pointers from each face to its adja-
cent vertices and edges. However, that is unnecessary for the computation of
many properties, and not storing it saves a lot of space. To simplify the following
descriptions, assume that the faces of 𝒫 are triangles.
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5.3.1 Unoriented Faces
To test whether 𝒫 contains a test point q, it suffices to run a semi-infinite ray up
from q and count how many faces of 𝒫 it crosses (the Jordan curve algorithm).
When testing q against a face of 𝒫 , we do not need to know which side of the face
is on the interior of 𝒫 . That is, the set of unoriented faces suffices.

5.3.2 Oriented Faces
The volumeof𝒫 canbe computedbydecomposing𝒫 into tetrahedra and summing
their signed volumes. Each tetrahedron is defined by one face of 𝒫 and the coordi-
nate origin (or any other fixed point). The volume of a tetrahedron is a determinant
whose entries are simple expressions of the tetrahedron’s vertices. The volumemay
be negative. This algorithm requires knowing the inside side of each face, that is,
the faces are oriented.

5.3.3 Axis-aligned Faces
Perhaps the faces of 𝒫 are all parallel with one of the xy, xz, or yz planes. This may
not be that common, but when it does happen the volume formula is particularly
simple. The vertices of such a polyhedronmay be either convex or concave andmay
open out in any of eight directions, making 16 possible types of vertices. Each type
of vertex is assigned a type bit, s, in a 3D version of Figure 5.2(b). Then the volume
of 𝒫 is∑i xiyizisi, summed over all the vertices.

5.3.4 Vertex Neighborhoods
For v, a trihedral vertex in E3, 𝜒v(p) is defined using the vertex angles of the adja-
cent faces. Let the three faces be f1, f2, and f3, and their angles at v be 𝛼, 𝛽, and 𝛾,
respectively. Then

𝜒v(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝜋 − 𝛼 − 𝛽 − 𝛾

4𝜋
if p is inside all three face planes.

𝛼 − 𝛽 − 𝛾

4𝜋
if p is outside f1 but inside f2 and f3.

− − − etc. for two similar cases.

𝛼 + 𝛽 − 𝛾

4𝜋
if p is outside f1 and f2 but inside f3.

− − − etc. for two similar cases.

𝛼 + 𝛽 + 𝛾 − 2𝜋
4𝜋

if p is outside all three face planes.
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5.3.5 Cusps
We can also represent polyhedron𝒫 as a set of 3D cusps, where each cusp is an adja-
cency relation between a vertex, an edge, and a face. However, neither the complete
edge nor the face is stored—only the definitions of the infinite lines or planes that
include them plus a face’s inside side. Specifically, v is a vertex’s coordinates, t is
a unit tangent vector from v along an edge, and n is a unit vector normal to t in
the plane of a face of 𝒫 that points into the interior of that face. (Unlike in 2D, n
adds more than one bit of information.) Define also one more unit vector, b, per-
pendicular to both n and t, pointing into the interior of 𝒫 . b adds only one bit of
information. 𝒫 is represented as the set of its cusps. For example, a cube has 48
cusps since each of eight vertices is incident on three edges, each of which is inci-
dent on two faces (see Figure 5.4(b)). In general, a vertex incident on k faces will be
part of 2k cusps.

Some mass properties may be computed as follows.

∙ The total edge length, L = − 1
2 ∑i vi ⋅ ti. The 1

2 is needed because each edge is
counted twice.

∙ The surface area, A = 1
2 ∑i(vi ⋅ ti) (vi ⋅ ni).

∙ The volume V = − 1
6 ∑i(vi ⋅ ti) (vi ⋅ ni) (vi ⋅ bi).

The volume, area, and length formulae may be derived by dropping a perpen-
dicular from 𝒪 onto each face and onto each edge and joining 𝒪 to each vertex.
All these edges, plus the faces joining them, partition 𝒫 into one simplex for each
cusp. The volume of each simplex is one term of the volume formula for 𝒫 .

5.4 Don’t We Always Know the Edges?
One might argue that, in practice, we always know the edges, and so, vertex-based
representations are pointless.

However, perhaps the polygon is the output of a function, such as the Boolean
intersection of two other polygons. One application is computing whether two
polygons interfere or collide with each other, which happens iff their intersection
area is nonzero. In this case, computing only the output vertices and their neigh-
borhoodsmay bemuch easier than computing the output edges. Indeed, there are
two types of output vertices here: (a) some input vertices and (b) some intersections
of input edges. Since each output vertex must be inside an input polygon, we filter
the candidate output vertices with a point inclusion function. Note that this appli-
cation requires the input polygons’ edges; its output is a different representation
from its input.
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Additionally, computing the output edges would require partitioning the input
edges at their intersections with each other, requiring sorting the intersections
along each edge and then testing whether to include each resulting segment. That
is much more work and also harder to express in a map-reduce form.

5.5 Applications
The above representations permit certain problems to be solved much more effi-
ciently, and in parallel, such as computing mass properties of geometric intersec-
tions and unions. Here are two example problems, for which we have designed,
implemented, and tested algorithms on large datasets. The current implemen-
tations are on multicore Intel Xeons, but the techniques would be even more
useful on manycore NVIDIA GPUs. Smaller test implementations are now being
developed on that platform.

5.5.1 Volume of Union of Cubes
The problem is to compute the volume of the union of tens of millions of identi-
cal isothetic cubes; the idea is shown with 30 cubes in Figure 5.5(a). The algorithm
optimizes the composition of the union and the volume operations so that it is not
necessary to compute the explicit output union polyhedron. It is sufficient to com-
pute only the set of output vertices together with their neighborhoods. A vertex’s
neighborhood consists of the directions of any adjacent edges and faces, and for a
face, which side is interior. The neighborhood does not include the other vertices
on those adjacent edges and faces. Not needing to compute that is a considerable
simplification. Components of the algorithm include finding all the face–face–
face intersections and edge–face intersections among the input cubes. If the input
is independently and identically distributed uniform random, then there is an
equation for the expected output volume, and it agrees with what is computed.
Theoretical analysis and implementation and test results are in Franklin [2004,
2005].

5.5.2 Overlay
From Franklin and de Magalhães [2019],

Suppose that a polygon 𝒫 has been meshed, or partitioned, into smaller
faces, in two different ways, M0 and M1 for two different applications. Each
mesh is optimal for some application andwould be suboptimal for the other
application. Assume that the faces ofM0 have some property, such as mass,
that would be useful for the faces of M1. (If the density varies, then the
mass is not simply the area.) One quick approximation for the mass of f ′,
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(a) (b)

Figure 5.5 Applications. (a) Union of many cubes. (b) Overlaying state and isothermmaps.

a face of M1. is a weighted sum of the masses of the overlapping faces of
M0, with the weights being the areas of the intersections of f ′ with the over-
lapping faces of M0. The compute-bound component is to identify all the
nonempty intersections of any face ofM0 with any face ofM1, and compute
their areas. Parover2 is an algorithm and preliminary parallel implementa-
tion for that, whose execution time is linear in the number of intersections,
which is generally linear in the number of faces. Parover2 uses local topo-
logical formulae to compute the areas of the output faces (aka outfaces) from
their vertices and half-edges.

This builds on ideas and implementations first described in Franklin et al.
[1994] and Franklin and Wu [1987]. Figure 5.5(b) illustrates overlaying maps (pla-
nar graphs) for US coterminous states and July isotherms. Magalhães et al. [2015]
reports on using EPUG-Overlay to intersect the surface drainage system of the
United States (21,652,410 vertices, 21,060,354 edges, and 219,831 faces) with the
2010 United States Census block groups (32,762,740 vertices, 32,103,306 edges,
and 518,837 faces). Computing the overlaid planar graph, excluding I/O, took 322
elapsed seconds on the dual 8 core Xeon. The parallel speedup was a factor of 11.
This also used multiprecision rational numbers to avoid roundoff errors.

Franklin et al. [2018] reports on intersecting two 3D meshes using these algo-
rithms, in addition to big rationals and other techniques. Extensions that add one
or more of 3D, rational numbers to avoid roundoffs, and Simulation of Simplic-
ity to handle geometric degeneracies include Franklin and Wu [1987], Franklin
[1990, 1992], Franklin and Sivaswami [1990], Wu and Franklin [1990], Franklin
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and Kankanhalli [1993], Audet et al. [2013], Magalhães and Franklin [2014], Mag-
alhães et al. [2015, 2016b], Franklin et al. [2017a, 2017b, 2018], and Franklin and de
Magalhães [2019].

5.6 Checking Polytope Validity
All these formulae require that 𝒫 be a legal polytope; otherwise, the volume is not
even defined. Indeed, in that case, the computed volume will vary with respect to
many rigid transformations. Therefore, wemay test𝒫 ’s legality with aMonte Carlo
algorithm as follows. Perform several random transformations, such as transla-
tions, scalings, or rotations, whose effect on 𝒫 ’s volume is known. If 𝒫 ’s volume
does not always change correctly, then 𝒫 is illegal. Otherwise, 𝒫 probably does not
have any errors such as missing facets. However, this does not detect errors such
as 𝒫 ’s boundary, including a double loop.

5.7 Summary
These equations are reductions; they sum a function applied to each element of
a set. Therefore, they are easily parallelizable. One concern is that, especially if
𝒪 is well outside 𝒫 , many significant digits may be lost from summing offsetting
positive andnegative terms. Therefore, double precision, at least, is recommended.

Determining the explicit edges and faces from any of these representations is
similar to determining those properties of a polytope represented as a CSG tree.

Extensions to higher Ed and also extensions to curved facets appear feasible.
For example, the key to the cusp representation is that either vertex and tangent of
an edge uniquely determine the infinite line, including the edge. There is a unique
point on the line, the foot of a perpendicular dropped from 𝒪, which is used to
partition the edge into two pieces, and hence to partition 𝒫 into simplices. Any
point that is a property only of the infinite line would serve as well as the foot of
the perpendicular. For curved lines, it suffices to define a mapping from each line
to a unique point on the line, and the rest of the theory follows. These minimal
representations have many advantages.

Simplicity: A set of tuples is a much leaner representation than representing a
hierarchy of nested face shells and edge loops.

Ease of computing the data: If𝒫 is being computed as the output of a Boolean opera-
tion, determining these local data structures is easier than determining 𝒫 ’s global
information. We save perhaps half the lines of code, and time, and reduce the
number of special cases.
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Fewer special cases: Multiple disconnected or nested components are automatically
handled without ever recognizing their existence. Therefore, there is also a smaller
opportunity for erroneously handling the special cases, increasing reliability.

Faster to code: This means that fewer lines of code are necessary, reducing cod-
ing time and allowing more time for debugging and testing. Also, the data struc-
tures are fixed size and don’t use pointers. This avoids slowmemory management
operations, which also fragment memory.

Faster to execute, especially on parallel machines: The simplicity and regular data
structures allow faster execution on both serial and parallel machines. Virtual
memory is not thrashed. Current data structures are too complex for easy paral-
lelization, which prefers simple regular data structures, such as structures of arrays
of plain old datatypes. If the platform is an NVIDIA GPU, then warps of 32 threads
are required to execute the same instruction (or be idle). Ideally, the data used by
adjacent threads is adjacent inmemory. That disparages pointers, linked lists, and
trees.

Efficient operations when intersecting planar graphs: Instead of processing each face
separately, the fact that two adjacent faces share an edge is utilized.
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