
Computer-Aided Design 150 (2022) 103285

p
p
e
e
b
p
o

r
w

n
r
c
d
o

s
(
r

h
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Fast Parallel Evaluation of Exact Geometric Predicates on GPUs
Marcelo de Matos Menezes a, Salles Viana Gomes de Magalhães a,∗,
Matheus Aguilar de Oliveira a, W. Randolph Franklin b,
Rodrigo Eduardo de Oliveira Bauer Chichorro a

a Universidade Federal de Viçosa, MG, Brazil
b Rensselaer Polytechnic Institute, Troy, NY, 12180, USA

a r t i c l e i n f o

Article history:
Received 31 January 2021
Received in revised form 6 November 2021
Accepted 26 April 2022

Keywords:
Geometric predicates
Parallel programming
Exact computation
Polyhedron intersection

a b s t r a c t

This paper accelerates the exact evaluation of large numbers of 3D geometric predicates with an
algorithm whose work is partitioned between the CPU and the GPU on a high-performance computer
to exploit the relative strengths of each. The test algorithm computes all the red–blue intersections
between a set of red 3D triangles and another set of blue 3D triangles. A sequence of filters is employed
that progressively eliminates more and more red–blue pairs that do not intersect, finally leaving only
the actual intersections. Initially, a uniform grid is constructed on the GPU to identify pairs of nearby
triangles. Then, these pairs are tested for intersection with single-precision interval arithmetic on the
GPU. The ambiguous cases are next filtered with double-precision interval arithmetic on the multi-
core CPU, and finally the hard cases are re-evaluated in parallel on the CPU using arbitrary-precision
rational numbers. The parallel speedup for the whole algorithm was up to 414 times. It took only
1.17 s to find the 18M intersections between two datasets containing a total of 14M triangles. The
intersection computation was sped up by up to 1936 times. The techniques that gave this excellent
performance should be useful for parallelizing other geometric algorithms in fields such as CAD, GIS,
and 3D modeling.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Addressing the errors caused by floating-point arithmetic is a
articular challenge in computational geometry. Inexact floating-
oint numbers violate most of the axioms of an algebraic field,
.g., addition is not associative. Roundoff errors lead to topological
rrors such as causing an orientation predicate to report a point to
e on the wrong side of a line segment. These errors may then
ropagate to higher-level operations, such as arise when using
rientation predicates to compute a convex hull.
While there are heuristics, such as epsilon-tweaking and snap

ounding, that try to solve this, they are not guaranteed to always
ork.
Representing coordinates with exact arbitrary-precision ratio-

al numbers guarantees that the computation will be free from
ound-off errors. However, the run-time overhead is often unac-
eptable. Indeed, the total number of digits in the numerator and
enominator of the output is typically the sum of the numbers
f digits in the operands, and so grows exponentially with the

∗ Corresponding author.
E-mail addresses: marcelo.menezes@ufv.br (M. de Matos Menezes),

alles@ufv.br (S. Viana Gomes de Magalhães), matheus.a.aguilar@ufv.br
M. Aguilar de Oliveira), mail@wrfranklin.org (W. Randolph Franklin),
odrigo.chichorro@ufv.br (R.E. de Oliveira Bauer Chichorro).
ttps://doi.org/10.1016/j.cad.2022.103285
010-4485/© 2022 Elsevier Ltd. All rights reserved.
depth of the computation tree. Likewise, the time and space cost
of each operation will grow exponentially with the computation
tree’s depth, badly degrading performance.

Some techniques have been proposed to cope. Arithmetic fil-
ters using interval arithmetic represent each exact number e as
an interval [l, h] of floating-point values containing e. The IEEE-
754 floating-point standard guarantees that, for each arithmetic
operation, a new interval guaranteed to contain the exact result
can be computed. Thus, a predicate can be initially evaluated
using intervals. If the exact result can be inferred from the bounds
of the interval, then this result is returned. Otherwise, the ex-
pression is re-evaluated, either with exact arithmetic, or with
intervals that have more precise number types. Most of the time,
computation with intervals is enough to infer the exact result [1],
and so predicates can be efficiently and exactly evaluated without
the overhead of exact computation.

The computing capabilities of desktop computers and work-
stations have recently increased due to multi-core processors and
accelerators such as GPGPUs (General Purpose Graphics Processing
Units) and MICs (Many Integrated Core Architectures). However,
many algorithms cannot take advantage of this because they are
still designed for sequential architectures

This paper proposes to combine GPUs and multi-core CPUs,
using the particular strengths of each, to accelerate the evaluation

https://doi.org/10.1016/j.cad.2022.103285
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2022.103285&domain=pdf
mailto:marcelo.menezes@ufv.br
mailto:salles@ufv.br
mailto:matheus.a.aguilar@ufv.br
mailto:mail@wrfranklin.org
mailto:rodrigo.chichorro@ufv.br
https://doi.org/10.1016/j.cad.2022.103285

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

m
s
n
l
e
t
v
f
d
u
t
a
e
i

s
b
p
p
e
f

N
t
2
t
c
p
v
t
i
t
i

F
l
T
o
u
o
a
w

s
t
n
o
s
t
p
f

c
f
t

W
b
t
S

2

2

p
n
A
m
p
s
f

s
c
l
c

p
l
d⏐⏐⏐⏐⏐
t
m
m
e
p
w
s
m
c
a
s
a
i

p

e
a

of exact predicates using arithmetic filters. Our idea is to use
the parallel processing power of the GPU to quickly evaluate a
batch of predicates using interval arithmetic. GPUs are designed
for fast floating point calculations, which makes them suitable for
interval arithmetic. The few unreliable results are detected and
re-evaluated in parallel on the CPU using exact arithmetic.

A preliminary version of this framework has been imple-
ented and tested for computing the intersections between two
ets of 2D segments [2]. This employs a uniform grid to cull the
umber of segments. The CPU traverses the grid and creates a
ist of pairs of segments, which is sent to the GPU for intersection
valuation using interval arithmetic. The results are then returned
o the CPU. They are represented with a flag with 3 possible
alues: intersection, no intersection, or uncertain result (interval
ailure). Interval failure means this intersection cannot be safely
etermined using intervals. The CPU processes each interval fail-
re by recomputing the intersection using multiple-precision ra-
ional numbers. Compared to a sequential implementation, the
lgorithm achieved speedups of up to 289 times for intersection
valuation, and up to 40 times when the entire running time is
ncluded, on an NVIDIA GTX 1070 Ti GPU.

In [3], we extended this to compute intersections between
egments and triangles in 3D. The initial version performed badly
ecause the pre-processing step, where the CPU creates a list of
airs of segments and triangles, was a bottleneck. Thus in [3] we
roposed a new method using three auxiliary arrays to associate
ach GPU thread with the (segment, triangle) pairs assigned to it
or testing.

This implementation led to a speedup of up to 17 times on a
VIDIA GTX 1070 Ti GPU, compared to a sequential implementa-
ion. Besides the fact that 3D predicates are more complex than
D, which leads to more thread divergence, another reason for
he smaller speedup of the 3D version is that a bounding-box
ulling step was added before the intersection tests. This im-
roved the performance, but the improvement in the sequential
ersion was better than in the parallel one. The problem was that
he bounding-box test increased the GPU thread divergence. The
ssue is that GPU threads are grouped by 32s into warps, and all
he threads in one warp must execute the same instruction or be
dle.

Finally, in this paper, we extend the framework in three ways.
irst, we improve the bounding-box step to increase the paral-
el speedup. Second, we create the array of pairs on the GPU.
hird, we use single-precision floating-point arithmetic, instead
f double-precision, for the intervals, because on GPUs, single is
sually several times faster. We correct for the reduced precision
f single-precision as follows. Unreliable single-precision results
re identified by using interval arithmetic. They are re-evaluated
ith double-precision, and if still unreliable, with rationals.
We evaluated these novel ideas with a new case study, de-

cribed in Section 4. It detects the pairwise intersections of 3D
riangles from two meshes. Experiments were performed on the
ewer and faster NVIDIA RTX 8000 GPU. We observed a speedup
f up to 1936 times for intersection evaluation compared to a
equential implementation. The speedup for the entire running
ime was up to 414 times. On the older GTX 1070 Ti GPU, the
arallel speedup for the intersection computation was 407×, and
or the entire running time was 158×.

The performance and correctness make this technique an ex-
ellent choice for processing large datasets, where the chance of
ailure from inexact algorithms is higher, in interactive applica-

ions such as GIS and CAD systems.

2

Fig. 1. Roundoff errors in the planar orientation problem — Geometry of
the planar orientation predicate for double precision floating point arithmetic.
Yellow, red and blue points represent, respectively, collinear, negative and
positive orientations. The diagonal line is an approximation of the segment (q, r).

hat should happen is that all the pixels above the line are blue, and all those
elow are red. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
ource: [6].

. Background

.1. Roundoff errors

Non-integers are typically approximately represented in com-
uters with floating-point values. The difference between a
on-integer and its approximation is called the roundoff error.
lthough these differences are usually small, these errors accu-
ulate as sequences of arithmetic operations are performed. The
resence of floating point errors in computer programs can have
erious consequences in diverse fields such as the failures of the
irst Ariane V rocket [4] and the Patriot missile defense system [5].

In geometry, roundoff errors can generate topological incon-
istencies causing globally impossible results. For example, the
omputed intersection of two line segments may not lie on either
ine. Kettner et al. [6] gave some examples of failures that can
ause algorithms, e.g. for computing convex hulls, to fail.
The planar orientation predicate says whether three 2D points
= (px, py), q = (qx, qy), r = (rx, ry) are collinear, make a

eft turn, or make a right turn. It is the sign of the following
eterminant:
px py 1
qx qy 1
rx ry 1

⏐⏐⏐⏐⏐
Positive, negative and zero signs mean that (p, q, r), respec-

ively, make a left turn, right turn or are collinear. Roundoff errors
ay cause the sign of this determinant to be evaluated wrongly,
is-classifying the orientation. To illustrate this problem, Kettner
t al. [6] implemented a program to apply the planar orientation
redicate (orientation(p, q, r)) to a point p = (px + xu, py + yu),
here u is the step between adjacent floating point numbers of
ize around p, and 0 ≤ x, y ≤ 255. This results in a 256 × 256
atrix containing either blue, yellow and red points, where the
olors mean that the corresponding point is computed to be
bove, on or below the line that passes through q and r . Fig. 1
hows this experiment for p = (0.5, 0.5), u = 2−53, q = (12, 12)
nd r = (24, 24). Several points have orientations computed
ncorrectly.

As shown by [6], these inconsistent results in the orientation
redicates could make algorithms that use this predicate to fail.
There are various proposed solutions. The simplest one,

psilon-tweaking, uses an ϵ tolerance, and considers two values x
nd y equal if |x − y| ≤ ϵ. However this is a formal mess because

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

a
e
o
p

t
f
c
r
c
t
s
a
b
u
s
c
n

a
a
t
t
t
e

a
t
h
i
s
f

2

m
E
t
t
a
s
t
p
s
v
e
a
r

p
a
w
f
d
t
w
n
f
b

x
a

equality is neither transitive nor invariant under scaling. Thus, in
practice, epsilon-tweaking can fail [6].

Snap rounding is another method to approximately represent
rbitrary precision segments on a fixed-precision grid [7]. How-
ver, snap rounding can generate inconsistencies, and deform the
riginal topology if applied repeatedly on the same dataset. Some
ossible solutions are presented in [8–10].
Shewchuk [11] presents the Adaptive Precision Floating-Point

echnique for exactly evaluating predicates. The evaluation is per-
ormed using the only minimum precision necessary to achieve
orrectness. That allows some efficient exact geometric algo-
ithms to be developed. Many geometric predicates reduce to
omputing the sign of a determinant. So, the precise value of
his determinant does not need to be computed as long as its
ign is correct. To determine if the sign can be trusted, the
pproximation and an error estimate are computed. If the error is
ig enough to make the sign uncertain, the values are recomputed
sing higher precision. However, this technique is not suitable for
olving all geometric problems [11]. For example, ‘‘a program that
omputes line intersections requires rational arithmetic; an exact
umerator and exact denominator must be stored’’ [11].
The proper formal way to eliminate roundoff errors and guar-

ntee algorithm robustness is to use exact computation with
rbitrary precision rational numbers [6,12–14]. Computing in
he algebraic field of rational numbers over the integers, with
he integers allowed to grow as large as necessary, allows the
raditional arithmetic operations, +, −, ×, ÷, to be computed
xactly with no roundoff error.
The cost is that the number of digits resulting from an oper-

tion is about equal to the sum of the numbers of digits in the
wo inputs. E.g., 214

433 +
659
781 =

452481
338173 . Casting out common factors

elps only to a small degree. However, this growth is acceptable
f the depth of the computation tree is small. Also, the cost can be
ignificantly reduced by employing techniques such as arithmetic
iltering with interval arithmetic, as we will discuss in Section 2.2.

.2. Arithmetic filters and interval arithmetic

One technique to accelerate algorithms based on exact arith-
etic is to employ arithmetic filters and interval arithmetic [15].
ach floating-point number is represented by an interval con-
aining the exact value. During a predicate evaluation, such as
he computation of the sign of an arithmetic expression, the
rithmetic operations are initially applied to the intervals. The re-
ulting interval is computed so as to guarantee that it will contain
he exact result of the operation (this is called the containment
roperty). Finally, if the bounds of the resulting interval have the
ame sign, so that the sign of the exact result is known, that
alue is returned. Otherwise, the predicate is re-evaluated using
xact arithmetic instead of the floating-point intervals. The term
rithmetic filter derives from the process of filtering the unreliable
esults and recomputing them with exact arithmetic.

This is possible and efficient because the IEEE-754 floating-
oint number standard defines how arithmetic operations are
pproximated: ‘‘the result of operations can be seen as if they
ere performed exactly, but then rounded to one of the nearest

loating-point values enclosing the exact value’’ [15]. IEEE-754
efines three rounding-modes, selectable at runtime: rounding
o the nearest representable floating-point value, or down to-
ards −∞ (i.e., the closest smaller representable floating-point
umber), or up towards +∞ (the closest larger representable
loating-point number). So, the interval containment property can
e maintained.
CGAL [15] illustrates this process with addition. Suppose

Interval = [x.lower, x.upper] and yInterval = [y.lower, y.upper]
re, respectively, floating-point intervals containing the exact
3

Listing 1: Using CGAL interval arithmetic framework
1 / / Returns true i f the sum of x_exact with y_exact
2 / / i s p o s i t i v e and f a l s e otherwise .
3 / / x _ i n t e r va l and y_ in t e rva l must contain ,
4 / / r e spe c t i v e l y , x_exact and y_exact .
5
6 bool predicate (mpq_class x_exact ,
7 mpq_class y_exact ,
8 CGAL : : Interval_nt <> x_interval ,
9 CGAL : : Interval_nt <> y_ interva l) {

10 try {
11 i f (x_ interva l + y_ interva l > 0)
12 return true ;
13 else
14 return false ;
15 }
16 catch (CGAL : : Interval_nt < >:: unsafe_comparison& ex) {
17 i f (x_exact + y_exact > 0)
18 return true ;
19 else
20 return false ;
21 }
22 }

values xExact and yExact . The floating-point interval [x.lower ±

y.lower, x.upper ∓ y.upper] (where ± and ∓ represent, respec-
tively, rounding towards −∞ or +∞) is guaranteed to contain
the exact value of the expression xExact + yExact .

The Computational Geometry Algorithms Library (CGAL) [16]
supports exact computation because its framework makes it easy
to develop algorithms that combine one of its number types,
arbitrary precision rational numbers, with arithmetic filters.

There are multiple types of arithmetic filters [15]. Listing 1
shows one. Here, variables with the suffix _exact were created
as GMP [17] (GNU Multiple Precision Arithmetic Library) arbitrary
precision rationals (of type mpq_class) while the ones with suf-
fix _interval use CGAL’s interval arithmetic number type. Both
types overload the arithmetic and boolean operators. If the com-
parison (line 8) cannot be evaluated safely, CGAL throws an
unsafe_comparison exception. When it is caught, that predicate
can be re-evaluated using the exact version of the respective
variables (line 14).

Evaluating a sequence of operations is challenging because we
may not know the exact value of the operands (since they were
generated by several operations). CGAL provides a more generic
and reusable type of filter that solves this by using a directed
acyclic graph (DAG) to represent the history of the operations that
generated each geometric object.

This is transparent to the user, and does not require an explicit
try... catch block as used in Listing 1. Another advantage is that
try... catch blocks sometimes execute very slowly. For example,
when testing if (a + 2 ∗ b + c < 0), intervals will be used first,
to try to avoid using rationals. If the sign of (a + 2 ∗ b + c) can
be evaluated, then we are done. Otherwise (a + 2 ∗ b + c) is
recomputed with rationals. This is possible because the associated
DAG represents the sequence of operations that computed it. This
exact re-evaluation is lazily delayed until it is really needed (‘‘as
hopefully it won’t be needed at all’’ [15]).

However these filters also have some drawbacks. The history
DAG uses a lot of memory, is hard to maintain, and is not thread-
safe. Even operations that do not modify the geometric objects,
like the ‘‘read-only’’ operations in orientation predicates, often
cannot execute in parallel [18].

2.3. High-performance computing and CUDA

Powerful multi-core CPUs and General Purpose GPUs (GPGPUs)
with thousands of cores have increased the computing capabil-
ity of inexpensive computers. For example, in 2020, a NVIDIA

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

e
p
n

p
f
r
e
t
t
m
t
t
t
n
t
C
i

c
a
a
p
t
O
m

G
d

t
r
c
o
k
f
c
a
t
i
w
t

v
g
t
a

3

a
d
c
t
J
m
o

s
o
t

w
r
m

i
z
c
p
t
i
t
c
r
a
p

t
a
p

i
i

L

GeForce 1070 Ti with 2432 cores, costing $700 USD, provides
8 TFLOPS of peak floating-point performance. It is important to
design parallel algorithms able to use this power.

High-performance computing has been employed to accel-
rate some geometric algorithms. For example, the commercial
roduct Geometric Performance Primitives (GPP) [19], performs
on-exact map overlays using GPUs.
Zhou et al. [18] and Magalhães et al. [20] have developed exact

arallel algorithms for shared-memory multi-core CPUs to per-
orm boolean operations on 3D meshes. Zhou et al. [18] use CGAL
outines (for example, to detect triangle–triangle intersections, to
valuate point–plane predicates, to perform Delaunay triangula-
ions, etc.) with an exact kernel with a lazy number type. Since
hese operations are not thread-safe, the authors have employed
utex locks to ensure correctness. Magalhães et al. [20], on

he other hand, achieved thread-safety by explicitly managing
he exact arithmetic operations. For example, they implemented
heir own orientation predicates (using CGAL’s interval arithmetic
umber type) and explicitly re-evaluated these predicates when
he intervals were not reliable enough to ensure exactness (thus,
GALs’ lazy evaluation using the history DAG was not employed
n this algorithm).

While there have been exact and parallel algorithms for pro-
essing geometric data, porting these algorithms to GPUs is still
challenge, particularly when exact arithmetic operations with
rbitrary-precision rationals are required. The algorithms em-
loyed in arbitrary-precision arithmetic ‘‘are not easily portable
o highly parallel architectures, such as GPUs or Xeon Phi’’ [21].
ne of the reasons for this is the typically non-trivial memory
anagement required by this kind of computation [22].
Thus, libraries for performing higher-precision arithmetic on

PUs (such as CAMPARI [22] and GARPREC [23]) are typically
esigned to process extended-precision floating-point numbers.
However, thanks to arithmetic filters, floating-point opera-

ions can significantly reduce the frequency that rationals are
equired [1]. In this work, we combine the parallel computing
apability of CPUs with GPUs for exactly performing geometric
perations. The exact representation of the geometric objects is
ept on the CPU, while approximate intervals (represented with
loating-point numbers) are stored on the GPU. The combinatorial
omponent of the geometric algorithms is executed on the CPU
nd the parallel evaluation of geometric predicates is offloaded
o the GPU, which returns the exact result of each one or a flag
ndicating that a given predicate could not be safely evaluated
ith the intervals. The CPU then re-evaluates (also in parallel)
he predicates that failed on the GPU.

While there has been research [24,25] on implementing inter-
al arithmetic on GPUs, these works have focused on computer
raphics applications (like ray tracing) and have not employed
his technique to accelerate exact geometric computation using
rithmetic filters.

. Implementing exact parallel predicates

As stated in Section 2.2, a correct implementation of interval
rithmetic relies on hardware compliance to the IEEE-754 stan-
ard. NVIDIA’s GPUs’ double and single precision floating point
omply, starting with compute capabilities 1.3 and 2.0, respec-
ively [26]. They adopt its newest version (IEEE-754:2008, as of
une 2019), which allows the rounding criteria to be selected per
achine instruction, completely removing the mode switching
verhead [24].
To make the interval arithmetic transparent, we created a

eparate C++ class based on Collange et al. [24]. Through operator
verloading, the predicate code remains clean and concise, and
he compiler intrinsics are hidden from the user.
4

Listing 2: Some methods of our CudaInterval class
1
2 #define INTERVAL_FAILURE 2
3
4 class CudaInterval {
5 public :
6 __device__ __host__
7 CudaInterval (const double l , const double u)
8 : lb (l) , ub(u) { }
9

10 __device__
11 CudaInterval operator+(const CudaInterval& v) const {
12 return CudaInterval (__dadd_rd (this−>lb , v . lb) ,
13 __dadd_ru (this−>ub , v . ub)) ;
14 }
15
16 __device__
17 int sign () const {
18 i f (this−>lb > 0) / / l b > 0 imp l i e s ub > 0
19 return 1;
20 i f (this−>ub < 0) / / ub < 0 imp l i e s lb < 0
21 return −1;
22 i f (this−>lb == 0 && this−>ub == 0)
23 return 0;
24
25 / / I f none of the above cond i t i ons i s s a t i s f i e d ,
26 / / the s ign of the exact r e s u l t cannot be i n f e r r ed
27 / / from the in t e rva l , Thus , a f l a g i s returned
28 / / to i nd i ca t e an i n t e r v a l f a i l u r e .
29
30 return INTERVAL_FAILURE ;
31 }
32
33 private :
34 / / S to re s the i n t e r v a l ’ s lower and upper bounds
35 double lb , ub;
36 } ;

For example [24], the sum of two intervals [a, b] and [c, d] is

[a, b] + [c, d] = [a + c, b + d]

here a + c and b + d indicate, respectively, the expression is
ounded towards −∞ and +∞. Listing 2 illustrates the imple-
entation of addition, where the CUDA C functions __dadd_rd

and __dadd_ru switch the addition double precision floating point
rounding mode to −∞ and +∞, respectively.

Our class has also the method sign, which returns 1, 0, or −1
f the interval’s sign is guaranteed to be, respectively, positive,
ero or negative. It returns a special error flag when the sign
annot be inferred from the interval’s bounds. The 2D orientation
redicate, described in Section 2.2, can be easily implemented on
he GPU side with interval arithmetic using our class, as shown
n Listing 3. However, when an interval failure occurs during
he sign evaluation, the responsibility to correctly handle the
ase is delegated to the CPU. Nonetheless, as shown by [1], and
einforced by our case study (Sections 4 and 5) interval failures
re rare and they usually do not affect the algorithms’ overall
erformance.
GPUs are SIMT (Single Instruction, Multiple Threads) devices;

his can be exploited by applying the same operation (for ex-
mple, evaluating orientation predicates) on multiple triples of
oints in parallel.
Even though this example is focused on 2D orientation pred-

cates, it can be extended to other geometric operations using
nterval arithmetic.

isting 3: Orientation predicate on GPU
1 struct CudaIntervalVertex {
2 CudaInterval x , y ;
3 } ;
4
5 __device__ int or ientat ion (

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

4

g
G

i
i
h
T
a
i

g

6 const CudaIntervalVertex∗ p ,
7 const CudaIntervalVertex∗ q ,
8 const CudaIntervalVertex∗ r) {
9 return ((q−>x − p−>x) ∗ (r−>y − p−>y) −

10 (q−>y − p−>y) ∗ (r−>x − p−>x)) . sign () ;
11 }

. Fast red–blue intersection tests

We evaluated these ideas by implementing a fast exact al-
orithm for detecting red–blue intersections of triangles in 3D.
iven T1 red triangles and T2 blue triangles, our objective is to

find all the cases where a red triangle intersects a blue triangle.
One application is to perform a quick interference cull between
a red object and a blue object, each represented by a union of
overlapping triangles. Most possible red–blue pairs of objects do
not interfere with each other (or intersect). We wish to quickly
eliminate most of the impossibilities, and then spend time on the
few hard cases.

In this application, the red object will have many red–red
intersections, and the blue object many blue–blue intersections,
even if there are no red–blue intersections at all. That is a prob-
lem for the classic plane-sweep algorithms. They intersect the
datasets with a plane and maintain a data structure describing
what objects that plane intersects, and their adjacencies in that
plane. This is used to compute future intersections.

As the plane sweeps up through the data, it stops at each
vertex and future intersection, and updates its description to
reflect adjacency changes and compute more future intersections.
It is necessary to stop at all intersections, including the red–red
and blue–blue ones, in order to update that description.

Even if there are no red–blue intersections, the plane sweep
might need to do quadratic work. Our algorithm does not have
this problem.

It executes the following series of culls, with each step reduc-
ing the number of remaining potential red–blue intersections:

• First, the triangles are indexed using a uniform grid. That is,
we iterate over the triangles. For each triangle, all the grid
cells that it intersects are determined, and that information
is stored with each such cell.

• Then we integrate over the cells. In each cell, we iterate over
all the red–blue pairs of triangles, and cull the pairs with a
fast bounding-box test. The possible results of each such test
are definitely do not intersect, or do not know.

• The remaining pairs are next tested with a triangle–triangle
intersection algorithm using geometric predicates imple-
mented with interval arithmetic. The possible results of each
such test are definitely intersect, definitely do not intersect, or
do not know.

• Finally, the unknown cases are re-evaluated using exact
arithmetic.

Details about each step will be presented in the next subsections.

4.1. Uniform Grid Indexing

To avoid testing each triangle from T1 against each one from
T2, which would require quadratic time in the number of trian-
gles, we index the sets using a uniform grid. This data structure
is typically employed in computational geometry to cull a com-
binatorial set of pairs of objects, generating a smaller subset
with elements that are more likely to coincide [27]. If the input
is uniformly independent and identically distributed (i.i.d.), the
expected size of the resulting subset is linear on the size of the
input plus the output [28–30].

This holds even though some cells might be much more pop-
ulated than others, while many cells remain empty. Indeed, the
5

number of triangles per cell is a Poisson random variable. [28–
30] work this out in detail; it is also observed experimentally. A
summary goes as follows.

Let g = r3 be the number of grid cells and n be the number
of triangle–cell incidences. An incidence is one occurrence of a
triangle intersecting (or overlapping) one cell. Assume that the
triangles are uniformly and independently distributed over the
grid. Although there will be local exceptions to this, as g, n → ∞

this is reasonable.
Let p be the probability that a given incidence occurs in a

given cell. p = 1/g . The expected number of incidences in a
given cell is n/g . Let L be the random variable for the number
of incidences in any given cell. L is an example of combinatorial
selection without replacement. Let l be a particular value of L.
P[L = l] =

(n
l

)
pl(1 − p)n−l. Since E[L] = n/g ≪ n, an excellent

approximation is the Poisson distribution with parameter λ =

E[L].
If there are l triangles in a cell, the number of pairs of triangles

is
(l
2

)
=

l2
2 −

l
2 . Since for a Poisson distribution, the variance is

the square of the mean, the expected number of pairs of triangles
in the cell, which is the time to process the cell, is on the order
of the square of the mean number of incidences in the cell. With
a typical choice of r , the time to process one cell is constant or
slowly growing. We might pick r to keep E[L] constant, or some-
times, we might let E[l] grow slowly with dataset size to reduce
the space. Then, the time per cell also grows slowly [28–30].

The uniform grid implementation goes as follows. Given the
sets of triangles T1 and T2, a grid G with resolution r and contain-
ing r × r × r cells is created covering a box that bounds T1 and T2
together. Next, each triangle t from either of the two input sets
is inserted into all the grid cells that t ’s bounding-box intersects.
Then we iterate over the cells c in G, testing all the pairs of red
and blue triangles from each c for intersection. This intersection
test is the multistep process described earlier. That finds all the
pairs of intersecting triangles.

We implement the uniform grid with a ragged array, similarly
to Magalhães et al. [20]. This stores a collection of arrays in
a contiguous block of memory b, by using a dope vector d to
keep track of each array’s initial position. The jth element of the
ith array is bj+di . Since a ragged array stores the entire grid in
contiguous memory [27], it is more cache friendly and uses less
space than storing one dynamic array per cell. It is also easier to
transfer the grid to the GPU. Finally, it parallelizes better than a
dynamic array.

The ragged array is created as follows. First, the triangles are
read, the cells intersecting each triangle are computed, and an
array k containing the total number of triangles intersecting each
cell is accumulated.

Then k is transformed into the dope vector d with a parallel
prefix-sum, also known as an exclusive scan operation. That is,
di =

∑i−1
j=0 kj and d0 = 0. This can be computed in parallel in

O(log r) elapsed time, although it is already so fast, that it does
not matter.

Finally, the array b is allocated, and the triangles are inserted
nto it. A counter is kept of the number of triangles that have been
nserted so far into each cell. That can be stored in cells of b that
ave not been used so far. This can mostly be done in parallel.
he counter for the number of triangles in each cell has to be read
nd incremented atomically. However, when the number of cells
s much more than the number of threads, collisions are rare.

Fig. 2 illustrates the indexing of a mesh using a 2D uniform
rid built with a dynamic array 2(a), and a ragged array 2(b).

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

s
n
a
r

a
s
t
t
i
t
c
t
v
t

c
a
f
w
a
e

4

d
i

Fig. 2. Dynamic array versus ragged array - 3 × 3 uniform grid using dynamic arrays (a) versus ragged array (b). Only the memory related to the first row of the
grid is shown.
Source: [27].
4.2. Bounding-box Culling

For large datasets, depending on r , there may be many tri-
angles in each cell. In each cell, we will doubly iterate through
the red and the blue triangles, testing each red–blue pair for
intersection. Before the exact test, we use a bounding box cull,
since it is much faster than the exact test, and it eliminates many
pairs that do not intersect.

Doing this correctly requires care. However that is necessary
because an incorrectly determined intersection might cause topo-
logical errors when this algorithm is a subroutine in a bigger
algorithm such as determining all the intersection information
about intersecting two meshes, in addition to just the intersecting
triangles. The key is that, whenever a coordinate of a bounding
box is approximated, to round it in the direction of making the
box bigger.

The bounding-box filtering can be done on the GPU with two
passes. In the first pass, the number of pairs whose bounding-
boxes intersect each other is counted. Each thread is responsible
for checking one pair of triangles. If their bounding-boxes over-
lap, the thread increments a counter (stored in the GPU global
memory) via an atomic add operation (atomicAdd). We will
how in the experiments that the synchronized operation does
ot impose a significant performance overhead. If this step were
bottleneck, it could be improved with a more sophisticated

eduction operation using a faster memory from the hierarchy.
The counter is returned to the CPU, which then allocates an

rray to hold all the pairs whose bounding-boxes do overlap, and
o have to be tested for intersection. The algorithm then proceeds
o the second pass, and the GPU is now responsible for populating
his array. Each thread processes again one pair of triangles, and
f their bounding-boxes overlap, the thread inserts its pair into
he array. The insertion is performed by employing another global
ounter (initially set to 0), which is also incremented employing
he thread-safe atomicAdd operation. This operation returns the
alue of the variable, and then increments it. This ensures each
hread will insert a triangle into a different position of the array.

To perform these passes, the pairs that each thread will pro-
ess have to be carefully selected. Traversing the grid to create
n array of pairs so that each GPU thread would be responsible
or processing a pair can be unfeasible, as shown in our previous
ork [3]. In order to avoid this costly pre-processing step, an
pproach for implicitly associating a thread with a pair will be
mployed.

.3. Implicit Thread Association

In [3] we presented three techniques for delegating work to be
one by the GPU threads when there are many pairs of objects

n a uniform grid. The focus of that work was on intersecting

6

segments against triangles, but this delegation strategy can also
be applied for the current problem.

In this paper we will employ the method with the best per-
formance to launch the threads in the two bounding-box filtering
passes on the GPU. This subsection will describe this technique
(details are available in [3]).

The idea is to launch the thread blocks such that threads in
the same block will always process the same uniform grid cell.
Let T1c and T2c be the number of triangles in meshes T1 and
T2, respectively that are contained in the uniform grid cell c. If
the algorithm is configured to launch Tc threads per CUDA block,
⌈
T1c×T2c

Tc
⌉ blocks will have to be launched to completely process

the pairs of triangles in c .
The following three arrays are created in order for each thread

to determine which pair of triangles it is responsible for process-
ing. For simplicity, these arrays are initially created on the CPU
and then copied to the GPU:

• Cell[b]: is the uniform grid cell being processed by block b.
• Firstpair [b] and Lastpair [b] : represent the index of, respec-

tively, the first and last pair of triangles being processed by
block b.

To determine which pair P (within the cell Cell[b]) of triangles
the thread with id tid in block b will process, the following
expression is employed: P = tid + Firstpair [b]. Given a pair P
being processed by a CUDA block b in cell C = Cell[b], then this
pair contains the triangles with indices P%T2c[C] in mesh T2, and
P/T2c[C] in mesh T1.

The following examples (adapted from [3]) illustrate how
threads are associated with the triangles they are processed:

Table 1 shows the distribution of triangles from two meshes
in a uniform grid with 4 cells. For example, cell 0 has 3 triangles
from mesh T1c and 4 triangles from cell T2c , and so, 12 pairs of
triangles will have to be evaluated for intersection in that cell.

If each CUDA block has 4 threads, then 3 blocks will be re-
quired to process cell 0 and 2 blocks will be required to process
the 6 pairs of triangles in cell 1. Therefore, 7 blocks will be
required to process all the pairs.

Table 2 presents the arrays Cell, Firstpair and Lastpair created
for the uniform grid from Table 1. For example, a thread in
block 1 will process the pairs 4, 5, 6, 7, and thus, the third thread
within that block will evaluate pair 6 for intersection (consisting
of triangles 6/4 = 1 from mesh T1 and 6%4 = 2 from mesh T2).

This strategy balances the amount of work performed by each
thread block, since all blocks (except possibly the last) are con-
figured to process the same number of pairs of triangles.

The strategy presented in this subsection is employed to effi-
ciently launch the kernels that count the number of bounding-box
overlaps, and also that create the array of pairs to be tested for
intersection.

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

s
w

t
(
b
B
T
f

w
a
i
H
p

-
p

i
b

s

Table 1
Uniform grid cells.
Source: [3].
Cell 0 1 2 3

T1c 3 2 1 3
T2c 4 3 1 1
Blocks 3 2 1 1

Table 2
GPU blocks of threads.
Source: [3].
Block 0 1 2 3 4 5 6

Cell 0 0 0 1 1 2 3
Firstpair 0 4 8 0 4 0 0
Lastpair 3 7 11 3 5 0 0

The other strategies evaluated in [3] presented challenges
uch as load unbalancing. For example, if each CUDA thread
as configured to process one triangle t from T1 and test it for

intersection against triangles from T2 in the same uniform grid
cells as t , the varying number of triangles in each cell could create
thread divergence and load unbalance.

4.4. Intersection evaluation

The main step of the algorithm is evaluating intersection pred-
icates with interval arithmetic. After the uniform grid indexing
and bounding-box culling, the result is an array (already located
on the GPU) of potentially intersecting triangle pairs. These pairs
are then tested for intersection.

Two additional arrays are allocated in the GPU (with the same
size as the array of pairs) in order to store the pairs of triangles
that intersect, and also the ones that resulted in interval failures.

After the arrays are allocated, a GPU kernel is launched to test
the pairs for intersection. Each thread evaluates the intersection
of a pair of triangles (t1, t2), using five 3D orientation predicates in
order to verify if any edge of t1 intersects t2 (and vice-versa) [31].

The intersecting pairs (and the ones whose intersections re-
sulted in interval failures) are inserted into the resulting arrays
by employing a global counter for each array, using thread-safe
atomicAdd operations.

A triangle may overlap, and so be inserted into, two or more
different uniform grid cells. Therefore one pair of triangles may
be tested for intersection more than once, causing duplicates in
the intersections array. These duplicates are removed in the next
step.

4.5. Eliminating Duplicates and Performing Exact Re-evaluation

The resulting arrays of intersecting pairs of triangles and inter-
val failures are sorted on the GPU with a parallel radix-sort, and
then the duplicates are removed. This uses sort and unique from
he Thrust library [32]. (When the sort key is a plain old datatype
POD), the radix sort takes time linear in the number of records
eing sorted. It also reads and writes in a predictable pattern.
oth properties contrast favorably to the widely used quicksort.)
he sorted arrays are then copied back to the CPU for possible
uture use by other algorithms.

In the next step, the array containing the pair of triangles
hose intersection computation resulted in interval failures is ex-
ctly re-evaluated on the CPU in parallel using OpenMP. Each pair
s evaluated using the same predicates that were used on the GPU.
owever this time, the computation is performed with arbitrary
recision rational numbers instead of floating-point intervals.
If the intervals are implemented using single-precision floating

oint numbers, the post-processing time can be reduced by
7

re-evaluating the arithmetic failures with double-precision, and
then using the rationals only for the predicates that also led to
failures with doubles. This idea of re-evaluating predicates with
increasing precision in geometric predicates has been previously
applied, for example, by Shewchuck [11].

The intersections detected in this step are then appended to
the ones detected on the GPU.

4.6. Algorithm complexity

The complexity of the bounding-box culling step is O(r3 + Bt),
where r3 is the number of cells (for a uniform grid resolution r)
and Bt is the total number of bounding-box tests in all grid cells.

From Section 4.1, Bt is expected to be linear in the size of
the input plus the number of intersecting bounding-boxes. Thus,
Bt = O(T1 + T2 + I), where T1 and T2 are the number of triangles
n the input meshes and I is the number of intersecting bounding
oxes in all grid cells.
In the worst case, the intersection tests and post-processing

teps will have a time complexity O(I) since the parallel sort in
the post-processing step is linear complexity, and the number of
operations performed on each pair of triangles is constant.

Therefore, the total time and space complexity of the algo-
rithm are both O(r3 +T1 +T2 + I). The resolution of the grid (r) is
a small constant tuned by the user to achieve a small number of
triangles per cell while keeping the number of duplicate bounding
boxes in the grid small. That way, I is linear on the number of
unique intersecting bounding boxes.

An adversary could create hard test cases where all the trian-
gles in the two input meshes are equal, or every bounding-box
intersects every cell. Then each triangle will be in all r3 cells, and
thus, I = O(r3×T1×T2), while the number of unique intersections
is O(T1 × T2). However, bad test cases could also be created for
other algorithms, such as the plane-sweep. Finally, this does not
affect our parallel speedup, since the number of intersection tests
would be equal to the one in the sequential algorithm.

5. Experiments

The fast algorithm for intersecting triangles was implemented
in C++ and CUDA. It was evaluated on a dual Intel Xeon E5-2660
CPU at 2 GHz (3.2 GHz Turbo Boost), with 256 GB of RAM and
a NVIDIA Quadro RTX 8000 GPU. Arbitrary-precision arithmetic
was provided by the GMP library [17].

We always used a uniform grid of size 100 × 100 × 100.
However, there are heuristics for automatically choosing a grid
resolution basing on statistics of the input datasets [27,33], such
as choosing the grid size make the expected number of edges
per cell a constant. As shown by Magalhães et al. [27], the range
of grid configurations with reasonable performance optimum is
broad. This follows because a finer grid causes one part of the
algorithm to run more quickly and another part to run more
slowly.

We performed experiments on meshes from two public repos-
itories. The Armadillo mesh was downloaded from the Stan-
ford repository [34] and the other ones were downloaded from
Thingi10K [35]. These meshes were first tetrahedralized using
GMSH [36]. Table 3 describes the dataset and Fig. 3 illustrates it.
These datasets’ sizes ranged from 600K to 8M triangles. Fig. 4
shows the interior of mesh OpenToys after tetrahedralization,
and Fig. 5 shows two overlaid pairs of meshes employed in the
experiments.

In contrast to CPUs, GPUs typically have significantly more
single-precision floating point units than double-precision (since
they focus on applications where the lower precision of floats

is acceptable) [37]. For example, the RTX 8000 GPU employed

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285
Fig. 3. Meshes employed in the experiments.
Table 3
Number of vertices and triangles in the meshes employed in the experiments.
The mesh id can be used to locate the ones downloaded from the Thingi10K
website.
Mesh name Mesh id # vertices # triangles

OpenToys 914686 66166 605279
GreatSkull 260537 67265 664101
Pegasus 68380 106955 1066547
Armadillo — 340043 3377086
Lampan 518092 603116 5937604
BioInteractive 461112 841883 8494878

in these experiments has a peak single and double-precision
performance of, respectively, 16 TFLOPS and 0.5 TFLOPS. Thus
we also implemented a version of the GPU code employing
8

intervals with single-precision floats. As described in Section 4.5,
the single-precision arithmetic failures were re-evaluated with
double-precision intervals, and finally only if necessary were
re-evaluated with rationals.

The following listing contains the 3 implementations evalu-
ated in the experiments:

• CPU: sequential CPU implementation employing arithmetic
filters using double-precision intervals (provided by the
CGAL Interval_nt class [16]). This is the baseline implemen-
tation.

• GPUDouble: parallel GPU implementation using
double-precision intervals implemented as described in this
paper.

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

i
S

5

t
i
m

t

i
t
p
(

a

Table 4
Times (in seconds) spent by the intersection tests between meshes GreatSkull vs OpenToys and Pegasus vs OpenToys.
Speedup shows the speedup of the corresponding GPU version of the algorithm when compared against the CPU
one.
Dataset GreatSkull vs OpenToys

Method: CPU GPUDouble GPUFloat

Time (s) Time (s) Speedup Time (s) Speedup

Pre-processing 1.13 0.05 25 0.05 25
Intersection 55.59 1.09 51 0.04 1496
Post-processing 0.89 0.02 51 0.03 30
Data transfer - 0.14 — 0.14 —
Total time 57.62 1.29 45 0.25 232

#bounding-box tests 109.1 × 106

#unique bounding-box tests 33.5 × 106

#intersection tests 59.5 × 106

#intersections 2.2 × 106

Dataset Pegasus vs OpenToys

Method: CPU GPUDouble GPUFloat

Time (s) Time (s) Speedup Time (s) Speedup

Pre-processing 1.73 0.07 24 0.07 25
Intersection 81.59 1.63 50 0.05 1579
Post-processing 1.40 0.04 31 0.04 33
Data transfer - 0.25 — 0.24 —
Total time (s) 84.71 2.00 42 0.41 208

#bounding-box tests 152.1 × 106

#unique bounding-box tests 44.2 × 106

#intersection tests 88.6 × 106

#intersections 3.2 × 106
Fig. 4. Mesh OpenToys (left). The right figure illustrates its tetrahedralized
nterior.
ource: [27].

• GPUFloat: the same implementation as GPU double, but with
single-precision floats in the intervals.

.1. Experiments on the RTX 8000 GPU

Tables 4 and 5 present the results of intersecting pairs of
riangles from the input meshes. We assume the uniform grid
ndex is already created as a ragged-array and loaded in the CPU
emory.
Separate times were measured for pre-processing, intersec-

ion, post-processing, and data transfer.
The pre-processing includes accessing the index and perform-

ng bounding-box tests to cull the number of triangles actually
ested for intersection. For the GPU implementation, the time for
rocessing the uniform grid to distribute the work to the threads
as described in Section 4.3) is also included (see Section 4.3).

The intersection is the time spent evaluating pairs of tri-
ngles for intersection using interval arithmetic. In the current
9

implementation, our algorithm only reports nondegenerate inter-
sections.

Special cases (such as two triangles intersecting at a single
point), which happen when at least one of the orientation pred-
icates returns 0, could be handled by flagging these cases and
re-evaluating them on the CPU during the post-processing. In-
deed, interval arithmetic would typically lead to interval failures
in these cases because the sign of the interval of a determinant
that is equal to 0 cannot be reliably determined (since floating-
point errors will usually cause its bounds not to be both 0). This
is not a limitation of the proposed technique for two reasons:
first, this affects other algorithms based on interval arithmetic,
and second, as will be shown in the experiments, the number
of intersection tests is typically much larger than the number of
intersections.

Post-processing includes sorting the pairs of intersecting tri-
angles to remove duplicates, and then re-evaluating, on the CPU,
the computations whose intervals failed.

The data transfer is the total time for transferring the input,
intermediate and output data between the CPU and GPU.

Finally, the last four rows of each table include the number of
bounding-box tests performed by the algorithm (including dupli-
cates), the number of unique bounding-box tests , the number
of intersection tests (i.e., the number of pairs of triangles whose
bounding-boxes do intersect) and the number of intersections.

In the CPU version of the algorithm, the bottleneck in all cases
was testing pairs of triangles for intersection using interval arith-
metic. In this step, GPUDouble achieved a speedup ranging from
50× to 63×, while GPUFloat achieved up to 1936× of speedup.
This performance difference is consistent with the difference in
the peak single and double precision floating-point computing
powers of the RTX 8000 GPU.

The good performance of the GPU algorithms in this step can
be explained because they are compute-intensive, using 3D vector
operations such as subtraction and mixed-product.

In all tests with GPUFloat, the bottleneck was the data transfer.
More than 80% of the total data transfer time was used for
initially sending the uniform grid, the triangles and the auxiliary

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

f
e
s
w

A

d
b

Fig. 5. Examples of pairs selected for intersection tests. (a) Armadillo (red) and ArmadilloTranslated (white) (b) GreatSkull (red) and OpenToys (white).
Table 5
Times (in seconds) spent by the intersection tests between meshes Armadillo vs ArmadilloTranslated and BioInteractive
vs Lampan. Speedup shows the speedup of the corresponding GPU version of the algorithm when compared against
the CPU one.
Dataset Armadillo vs ArmadilloTranslated

Method: CPU GPUDouble GPUFloat

Time (s) Time (s) Speedup Time (s) Speedup

Pre-processing 2.48 0.14 18 0.14 18
Intersection 67.49 1.33 51 0.03 1936
Post-processing 1.05 0.06 17 0.06 18
Data transfer - 0.32 — 0.33 —
Total time (s) 71.03 1.86 38 0.56 127

#bounding-box tests 339.0 × 106

#unique bounding-box tests 215.0 × 106

#intersection tests 72.8 × 106

#intersections 6.8 × 106

Dataset BioInteractive vs Lampan

Method: CPU GPUDouble GPUFloat

Time (s) Time (s) Speedup Time (s) Speedup

Pre-processing 7.11 0.28 25 0.28 25
Intersection 474.56 7.56 63 0.32 1462
Post-processing 1.33 0.02 72 0.05 25
Data transfer - 0.56 — 0.51 —
Total time (s) 482.99 8.42 57 1.17 414

#bounding-box tests 655.9 × 106

#unique bounding-box tests 273.9 × 106

#intersection tests 505.4 × 106

#intersections 5.3 × 106
arrays used for the implicit thread association to the GPU. Indeed,
excluding the data transfers, the best total speedup would have
been 731× instead of 414×. Thus, applications not requiring
requent data transfer between the CPU and GPU could benefit
ven further from our method. Also, if processing many datasets
imultaneously, one job’s data transfer could occur concurrently
ith another job’s computation, perhaps using CUDA streams.
The worst total speedup of GPUFloat was 127×, with the

rmadillo datasets. This step had the lowest percentage of pairs
of triangles (selected by the index) whose bounding-boxes do
intersect. Indeed, only 21% of the pairs of bounding-boxes filtered
by the uniform grid do intersect, as opposed to 55%, 58% and 77%
(the best total speedup) in the other test cases. As a result, in
this dataset 21% of the pairs of triangles selected at the indexing
step reached the intersection computation step (the most time-
consuming one in the CPU and the one with the best parallel
speedup), which reduces the total speedup.

The two GPU implementations had similar performance in the
ata transfer and pre-processing steps (in the worst case GPUDou-

le was 10% slower than GPUFloat). The higher post-processing

10
time of GPUFloat can be explained because of the lower precision
of floats, which leads to more interval failures, requiring more
intersections to be re-evaluated with doubles and rationals on the
CPU.

In the experiments intersecting meshes BioInteractive and
Lampan, for example, the post-processing time of 0.05 s for GPU-
Float was composed of 0.011s for sorting the resulting intersec-
tions and removing duplicates, 0.003 s for filtering the pairs of
triangles whose intersection computations had interval failures
and 0.039 s for re-evaluating the interval failures with doubles.
In this experiment, only 0.01% of the intersection tests led to
failures and the results with double precision were computed
successfully (thus, rationals were not necessary). GPUDouble and
CPU, on the other hand, had no filter failures and, thus, only spent
time sorting the results to remove duplicates.

The number of pairs of bounding-boxes evaluated for intersec-
tion was from 1.6 to 3.4 times larger than the number of unique
pairs. These duplicates are not removed at the beginning of the
algorithm because, as mentioned in Section 4.3, the list of pairs is
implicitly created by the threads. Since the performance bottle-

neck is data transfer and these duplicates are never transferred

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285

m
t

w
i
b
a
i
t
i

5

a
3
t
t
t
c
t
d
t

e
d
s
t
c

6

o
p
t

Table 6
Times (in seconds) spent by the different versions of the algorithms for
intersecting a particular pair of meshes. The methods labeled with * do not
employ a bounding-box culling. GPUD. and GPUF. represent, respectively, the
GPUDouble and GPUFloat methods.
Dataset GreatSkull vs OpenToys

Method CPU CPU* GPUD. GPUD.* GPUF. GPUF.*

Pre-processing 1.13 1.14 0.05 0.04 0.05 0.04
Intersection 55.59 100.50 1.09 2.03 0.04 0.05
Post-processing 0.89 0.90 0.02 0.02 0.03 0.04
data transfer — — 0.14 0.14 0.14 0.14
Total time 57.62 102.54 1.29 2.22 0.25 0.26

Table 7
Times (in seconds) spent by the different versions of the algorithms for
intersecting a particular pair of meshes. The GPU algorithms were evaluated on
a GeForce GTX 1070 Ti GPU. Speedup shows the speedup of the corresponding
GPU version of the algorithm when compared against the CPU version.
Dataset Pegasus vs OpenToys

Method: CPU GPUDouble GPUFloat

Time (s) Time (s) Speedup Time (s) Speedup

Pre-processing 1.24 0.09 14 0.10 13
Intersection 82.24 2.62 31 0.20 407
Post-processing 1.39 0.04 32 0.04 31
Data transfer — 0.19 — 0.19 —
Total 84.86 2.94 29 0.54 158

to the CPU, this did not significantly affect the efficiency of the
algorithm.

Over all the experiments, in the worst case (intersection of
eshes Pegasus and OpenToys), only 0.001% of the intersection

ests had to be performed with rationals.
Table 6 compares the 3 implementations against versions

ithout the bounding-box culling. As can be seen, detecting
ntersections was 80%, 86% and 25% slower when no bounding-
ox filtering was performed in, respectively, the CPU, GPUDouble
nd GPUFloat methods, while there was no significative difference
n the other steps. As shown in Tables 4 and 5, in this test case,
he number of intersection tests when no bounding-box filtering
s employed was 83% larger (109 × 106 versus 59.5 × 106).

.2. Experiments on a lower-end computer

We also performed experiments on another computer with
n NVIDIA 1070 Ti GPU (8 GB of RAM), AMD Ryzen 5 1600 CPU
.2 GHz (12 hyperthreads), 16 GB of RAM in order to evaluate
he proposed technique on a lower-end GPU. Table 7 presents
he results for a pair of meshes. The biggest difference was in
he intersection step, whose time increased from 0.05 s to 0.20s
ompared to the time on the RTX 8000 GPU. Because of the data
ransfer operations and sequential steps of the algorithm, the
ifference in the total running-time (for GPUFloat) is smaller (the
otal time increased from 0.41 s to 0.54 s on the lower-end GPU).

Even though, as expected, the running-time on the lower-
nd GPU is higher than on the RTX 8000 GPU, the performance
ifference when compared against the CPU implementation is
till high. For example, GPUFloat achieved speedups of, respec-
ively, 407× and 158× for the intersection and total times when
ompared against CPU.

. Conclusions and future work

We proposed the use of GPUs to accelerate the evaluation
f exact geometric predicates filtered with intervals of floating-
oint numbers. The idea is to evaluate the predicates using in-
erval arithmetic on the GPU. The few results that could not be
11
guaranteed to be correct are then re-evaluated on the CPU using
arbitrary-precision rationals.

As a proof of concept, a parallel algorithm for detecting inter-
sections of red and blue triangles has been implemented. Because
of the high computing power of the GPU for processing floating-
point numbers, a speedup of up to 1936 times (when compared
against the sequential version) was obtained in the evaluation of
the predicates. The speedup of the algorithm was up to 414 times
if the total running-time was considered.

Even though the time analysis assumed i.i.d input, the algo-
rithm’s good performance on the decidedly nonuniform test cases
demonstrates its general utility.

This performance and exactness make this technique applica-
ble for interactive applications, e.g., in CAD, GIS, computational
geometry, and 3D modeling.

In the future, we intend to apply this technique to other prob-
lems such as convex hull computation, 2D and 3D point location
and boolean operations on meshes. Applications whose bottle-
neck is the evaluation of predicates could particularly present a
better speedup.

Also, we intend to further improve the performance of the
predicates. For example, the communication between the CPU
and the GPU causes a significant overhead. Moving the combi-
natorial part of the algorithms to the GPU might help. Unified
memory, where the GPU automatically migrates the data where
needed, might be useful.

Finally, testing this technique on other architectures would
also be useful: for example, high-end Xeon processors are MIMD
(Multiple Instruction, Multiple Data) processors (making it easier
to port the combinatorial components of the algorithms to them).
At the same time, these devices have a high parallel computing
power for processing floating-point numbers (thanks to wide Sin-
gle Instruction, Multiple Data - SIMD instructions in the individual
cores). Thus, we believe both algorithms and exact geometric
predicates could be accelerated on these devices using these
instructions (keeping both in the same device would reduce the
communication overhead).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research was partially supported by CAPES, FAPEMIG and
FUNARBE, Brazil.

References

[1] Brönnimann Hervé, Burnikel Christoph, Pion Sylvain. Interval arithmetic
yields efficient dynamic filters for computational geometry. Discrete Appl
Math 2001;109(1–2):25–47.

[2] de Matos Menezes Marcelo, Magalhães Salles Viana Gomes,
Franklin W Randolph, de Oliveira Matheus Aguilar, Chichorro Rodrigo
EO Bauer. Accelerating the exact evaluation of geometric predicates
with GPUs. In: Shontz Suzanne, Peiró Joaquim, Viertel Ryan, editors.
28th international meshing roundtable. Buffalo, NY, USA; 2019,
http://dx.doi.org/10.5281/zenodo.3653101.

[3] Menezes Marcelo, V. G. Magalhães Salles, Aguilar Matheus,
Franklin W Randolph, Coelho Bruno. Employing GPUs to accelerate
exact geometric predicates for 3D geospatial processing. In: Krumm John,
editor. 2nd ACM SIGSPATIAL international workshop on spatial gems.
ACM; 2020, URL https://www.spatialgems.net/.

[4] European Space Agency. Ariane 501 inquiry board report. 2015, Retrieved
on 06/15/2015 URL.

[5] Skeel Robert. Roundoff error and the Patriot missile. SIAM News

1992;25(4):11.

http://refhub.elsevier.com/S0010-4485(22)00061-6/sb1
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb1
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb1
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb1
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb1
http://dx.doi.org/10.5281/zenodo.3653101
https://www.spatialgems.net/
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb5
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb5
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb5

M. de Matos Menezes, S. Viana Gomes de Magalhães, M. Aguilar de Oliveira et al. Computer-Aided Design 150 (2022) 103285
[6] Kettner Lutz, Mehlhorn Kurt, Pion Sylvain, Schirra Stefan, Yap Chee Keng.
Classroom examples of robustness problems in geometric computations.
Comput Geom 2008;40(1):61–78. http://dx.doi.org/10.1016/j.comgeo.2007.
06.003.

[7] Hobby John D. Practical segment intersection with finite precision output.
Comput Geom 1999;13(4):199–214.

[8] de Berg Mark, Halperin Dan, Overmars Mark. An intersection-sensitive
algorithm for snap rounding. Comput Geom 2007;36(3):159–65.

[9] Hershberger John. Stable snap rounding. Comput Geom 2013;46(4):403–
16.

[10] Belussi Alberto, Migliorini Sara, Negri Mauro, Pelagatti Giuseppe. Snap
rounding with restore: An algorithm for producing robust geometric
datasets. ACM Trans Spatial Algorithms Syst 2016;2(1):1:1–36. http://dx.
doi.org/10.1145/2811256.

[11] Shewchuk Jonathan Richard. Adaptive precision floating point arith-
metic and fast robust geometric predicates. Discret Comput Geom
1997;18(3):305–63.

[12] Li Chen, Pion Sylvain, Yap Chee Keng. Recent progress in exact geometric
computation. J Log Algebr Program 2005;64(1):85–111. http://dx.doi.org/
10.1016/j.jlap.2004.07.006.

[13] Hoffman Christoff M. The problems of accuracy and robustness in
geometric computation. Comput 1989;22(3):31–40.

[14] Yap Chee Keng. Towards exact geometric computation. Comput Geom
1997;7(1–2):3–23.

[15] Pion Sylvain, Fabri Andreas. A generic lazy evaluation scheme for exact
geometric computations. Sci Comput Program 2011;76(4):307–23.

[16] The CGAL Project. Cgal, computational geometry algorithms library. 2015,
http://www.cgal.org (Retrieved on 10/19/2017).

[17] Granlund Torbjorn, the GMP development team. GNU MP: The GNU
multiple precision arithmetic library, 6th ed.. 2014, http://gmplib.org/
(Retrieved on 10/19/2017).

[18] Jacobson Alec, Panozzo Daniele, et al. Libigl: A simple c++ geome-
try processing library. 2016, http://libigl.github.io/libigl/ (Retrieved on
10/18/2017).

[19] Audet Samuel, Albertsson Cecilia, Murase Masana, Asahara Akihiro. Robust
and efficient polygon overlay on parallel stream processors. In: Proc.
21st ACM SIGSPATIAL int. conf. advances geographic information systems.
SIGSPATIAL’13, New York, NY, USA: ACM; 2013, p. 304–13. http://dx.doi.
org/10.1145/2525314.2525352.

[20] Magalhães Salles VG, Franklin W Randolph, Andrade Marcus VA. Fast exact
parallel 3D mesh intersection algorithm using only orientation predicates.
In: Proceedings of the 25th ACM SIGSPATIAL international conference on
advances in geographic information systems. ACM; 2017, p. 44.

[21] Popescu Valentina. Towardss fast and certified multiple-precision librairies.
(Ph.D. thesis), Université de Lyon; 2017.

[22] Joldes Mioara, Muller Jean-Michel, Popescu Valentina, Tucker Warwick.
CAMPARY: CUDA multiple precision arithmetic library and applications.
In: International congress on mathematical software. Springer; 2016, p.
232–40.
12
[23] Lu Mian, He Bingsheng, Luo Qiong. Supporting extended precision on
graphics processors. In: Proceedings of the sixth international workshop
on data management on new hardware. ACM; 2010, p. 19–26.

[24] Collange Sylvain, Daumas Marc, Defour David. Chapter 9 - interval arith-
metic in CUDA. In: mei W. Hwu Wen, editor. GPU computing gems jade
edition. Applications of GPU computing series, Boston: Morgan Kaufmann;
2012, p. 99–107. http://dx.doi.org/10.1016/B978-0-12-385963-1.00009-5.

[25] Collange Sylvain, Flórez Jorge, Defour David. A GPU interval library based
on boost.interval. In: 8th conference on real numbers and computers. 2008,
p. 61–71.

[26] Whitehead Nathan, Fit-Florea Alex. Precision & performance: Float-
ing point and IEEE 754 compliance for NVIDIA GPUs. Rn (A+ B)
2011;21(1):18749–9424.

[27] Magalhães Salles VG, Franklin W Randolph. Exact and parallel intersection
of 3d triangular meshes. (Ph.D. thesis), Rensselaer Polytechnic Institute,
USA; 2017.

[28] Akman V, Franklin Wm Randolph, Kankanhalli Mohan,
Narayanaswami Chandrasekhar. Geometric computing and the uniform
grid data technique. Comput Aided Des 1989;21(7):410–20.

[29] Franklin Wm Randolph, Chandrasekhar Narayanaswami, Kankanhalli Mo-
han, Seshan Manoj, Akman Varol. Efficiency of uniform grids for
intersection detection on serial and parallel machines. In: Magnenat-
Thalmann Nadia, Thalmann D, editors. New trends in computer graphics.
Berlin, Germany: Springer-Verlag; 1988, p. 288–97.

[30] Hopkins Sara, Healey Richard G. A parallel implementation of Franklin’s
uniform grid technique for line intersection detection on a large transputer
array. In: Brassel Kurt, Kishimoto H, editors. 4th int. symp. spatial data
handling. Zürich; 1990, p. 95–104.

[31] Segura Rafael Jesús, Feito Francisco R. Algorithms to test ray-triangle
intersection. Comparative study. In: The 9-Th int. conf. central europe
comput. graph., visualization comput. vision’2001. 2001, p. 76–81.

[32] Hoberock Jared, Bell Nathan. Thrust: A parallel template library. 2010,
http://thrust.github.io/ (Retrieved on 10/19/2017).

[33] Audet Samuel, Albertsson Cecilia, Murase Masana, Asahara Akihiro. Robust
and efficient polygon overlay on parallel stream processors. In: Proceedings
of the 21st ACM SIGSPATIAL international conference on advances in
geographic information systems. ACM; 2013, p. 304–13.

[34] The Stanford 3D Scanning Repository. ‘‘The stanford 3D scanning repos-
itory". 2016, URL http://graphics.stanford.edu/data/3Dscanrep/ (Retrieved
on 10/19/2017).

[35] Zhou Qingnan, Jacobson Alec. Thingi10k: A dataset of 10,000 3D-printing
models. 2016, arXiv preprint arXiv:1605.04797.

[36] Geuzaine Christophe, Remacle Jean-François. Gmsh: A 3-D finite element
mesh generator with built-in pre-and post-processing facilities. Int J Num
Methods Eng 2009;79(11):1309–31. http://dx.doi.org/10.1002/nme.2579.

[37] Sun Yifan, Agostini Nicolas Bohm, Dong Shi, Kaeli David. Summarizing
CPU and GPU design trends with product data. 2019, arXiv preprint
arXiv:1911.11313.

http://dx.doi.org/10.1016/j.comgeo.2007.06.003
http://dx.doi.org/10.1016/j.comgeo.2007.06.003
http://dx.doi.org/10.1016/j.comgeo.2007.06.003
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb7
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb7
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb7
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb8
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb8
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb8
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb9
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb9
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb9
http://dx.doi.org/10.1145/2811256
http://dx.doi.org/10.1145/2811256
http://dx.doi.org/10.1145/2811256
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb11
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb11
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb11
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb11
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb11
http://dx.doi.org/10.1016/j.jlap.2004.07.006
http://dx.doi.org/10.1016/j.jlap.2004.07.006
http://dx.doi.org/10.1016/j.jlap.2004.07.006
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb13
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb13
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb13
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb14
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb14
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb14
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb15
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb15
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb15
http://www.cgal.org
http://gmplib.org/
http://libigl.github.io/libigl/
http://dx.doi.org/10.1145/2525314.2525352
http://dx.doi.org/10.1145/2525314.2525352
http://dx.doi.org/10.1145/2525314.2525352
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb20
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb21
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb21
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb21
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb22
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb23
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb23
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb23
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb23
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb23
http://dx.doi.org/10.1016/B978-0-12-385963-1.00009-5
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb25
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb25
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb25
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb25
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb25
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb26
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb26
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb26
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb26
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb26
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb27
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb27
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb27
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb27
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb27
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb28
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb28
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb28
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb28
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb28
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb29
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb30
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb31
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb31
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb31
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb31
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb31
http://thrust.github.io/
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://refhub.elsevier.com/S0010-4485(22)00061-6/sb33
http://graphics.stanford.edu/data/3Dscanrep/
http://arxiv.org/abs/1605.04797
http://dx.doi.org/10.1002/nme.2579
http://arxiv.org/abs/1911.11313

	Fast Parallel Evaluation of Exact Geometric Predicates on GPUs
	Introduction
	Background
	Roundoff errors
	Arithmetic filters and interval arithmetic
	High-performance computing and CUDA

	Implementing exact parallel predicates
	Fast red–blue intersection tests
	Uniform Grid Indexing
	Bounding-box Culling
	Implicit Thread Association
	Intersection evaluation
	Eliminating Duplicates and Performing Exact Re-evaluation
	Algorithm complexity

	Experiments
	Experiments on the RTX 8000 GPU
	Experiments on a lower-end computer

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

