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Our research strategy

● Identify fundamental geometric operations
● used in higher-level systems
● that need to produce correct results.
● and should execute very fast.
● Devise new theory
● using simple data structures
● on current hardware.
● Implement
● Test.



This paper’s contribution 
● A faster solution to erroneous computations caused by 

floating point finite precision computations.
● Errors can cause predicates (conditionals)to be evaluated 

wrong.
● That can cause topological errors.
● Existing solutions are either very slow or may fail.
● We synergize three software techniques and two 

hardware platforms.
○ filter input with uniform grid on CPU, then 
○ filter survivors with interval arithmetic on GPU, finally 
○ if necessary, compute exactly with multiprecision 

rationals back on CPU.
● Result: both fast and good.
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The problem of roundoff errors
● Floating-point errors: computational geometry challenge.
● Generate topological inconsistencies: global impossibilities.

○ intersection point between two lines may not lie in 
either.

● Example: planar orientation predicate
○ Do three points p = (px, py), q = (qx, qy) and r = (rx, ry) 

make a right turn, are collinear or make a left turn?

Source: https://www.researchgate.net/figure/The-orientation-predicate-of-3-points-p-q-r-in-the-plane-right-turn-collinear-and_fig2_1959784

● Predicate = sign of the determinant:
5

https://www.researchgate.net/figure/The-orientation-predicate-of-3-points-p-q-r-in-the-plane-right-turn-collinear-and_fig2_1959784


Roundoff errors

● Evaluating the predicate using floating point arithmetic:

● Common techniques (snap rounding, epsilon tweaking, 
etc): no guarantee

Source: Kettner et al., Classroom examples of robustness problems in geometric computations
p

q
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Rationals: one roundoff error solution
● Solution for roundoff errors: exact arithmetic (e.g. GMP 

rationals), but challenges:
○ Slower than floats
○ Size is exponential in depth of computation tree, 

although that’s not a problem if the tree is shallow
○ Growing the size of a variable allocates memory on the 

global heap.
■ Total time may be superlinear in the number of 

objects, and
■ is serial,

● Apparently little prior art of working (not just proposed) 
rational number systems on GPUs
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Arithmetic filters and Interval arithmetic (IA), 1 
● Technique used in several CG implementations, e.g.: 

CGAL
● Basic idea: use exact arithmetic only when really 

necessary
● Predicate evaluation: typically “=” sign of an arithmetic 

expression
● Each value has:

○ an exact value (can be lazily computed), and
○ an approximation given by an interval [xl, xh]. 

● Predicates evaluated using the approximation
● If the sign of the exact result can be safely inferred based 

on results computed with the intervals → use that sign
● Otherwise (a.k.a. filter failure) → re-evaluate with exact 

arithmetic 8



Arithmetic filters and IA, 2

● IA used to compute the sign of an expression.
● If it reports a non-zero result, it’s guaranteed to be correct.
● Sometimes it reports a failure.  (Then we escalate.)
● Real x represented as [x,    ], where x <= x <=                   

Source of the fig: Brönnimann, H., Burnikel, C., & Pion, S. (2001). Interval arithmetic yields efficient dynamic filters for computational 
geometry. Discrete Applied Mathematics, 109(1-2), 25-47.
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Arithmetic filters and IA, 3
● An interval is a pair of floating-point numbers.
● To satisfy the containment property, the operations must 

change the way floating point values are rounded.
● IEEE-754 standard:

○ Result = exact result rounded to the next (or 
previous) representable FP number

○ Can be rounded:
■ towards -∞
■ to the closest FP (default)
■ towards  +∞

● Changing the rounding mode on a GPU is very fast (slow 
on CPU)
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Arithmetic filters and Interval arithmetic, 4
● CGAL uses arithmetic filters/IA- transparent to programmer 

but not thread safe.
● Illustration of a predicate one could implement:
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Arithmetic filters and Interval arithmetic, 5

● CGAL: arithmetic filtering can be performed 
“dynamically/automatically”

● Example: 
○ A DAG may be created to keep track of results
○ If exact evaluation necessary → lazily re-evaluate the 

values

● Challenge: not thread-safe

a = x/y
b = a + z
if(b>0) {
  ….
}
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Exact fast parallel intersection of large 3-D 
triangular meshes

● Earlier work, presented last year
● Salles Magalhaes thesis
● Intersected 3D meshes using shared-memory multi-core 

CPUs.  Combined:
○ Simulation of Simplicity
○ Arithmetic filtering/IA. “Manually” managed.
○ Parallel on multicore Intel Xeon with OpenMP
○ Big rationals.

● Today: start to incorporate GPUs.
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Idea for using exact computation and GPUs

● GPUs: 
○ excellent for floating-point arithmetic
○ however, warps of 32 threads should run same 

instruction stream on adjacent data
○ trees, hierarchical data structures, pointers are very 

inefficient.
● Implement the IA computation on the GPU
● CPU batch offloads evaluation of predicates to GPU.
● Indeterminate results are filtered and re-evaluated on the 

CPU.
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What is CUDA?

● To program Nvidia GPUs.
● C++ with small syntax extensions and library.
● nvcc compiler separates program into code for CPU host 

and code for GPU device.
● GPU architecture is complicated.

○ thousands of cores, each 1/20 as powerful as Xeon core
○ SIMT, 32 thread warp
○ several memory classes: 

■ varying speed, 
■ size (to 48GB), 
■ latency, 
■ unified VM with host.

● A range of higher level abstract layers like Thrust and 
Kokkos trade off programmer time and execution time. 15



Implementation details, 1

● Created a class, based on Collange et al., to perform the 
necessary calculations → easier usage

● The rounding modes on CUDA C are selected via 
compiler intrinsics:
○ e.g.: For addition:

■ __dadd_rd() switches the rounding mode towards -
∞

■ __dadd_ru() switches the rounding mode towards 
+∞

● These are hidden from the user through operator 
overloading

16



Implementation details, 2
Some methods in our CudaInterval class
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Implementation details, 3

● Predicates: easily implemented using class instances
● Example: 2D orientation predicate
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Fast red-blue intersection tests

● Case study: fast and exact algorithm for detecting red-blue 
intersection of line segments.

● Given two sets of segments S1 (red segments) and S2 
(blue segments) →  find pairs of red-blue intersections.

● Possible quadratic number of red-red and blue-blue 
intersections, even though few red-blue intersections.  

● So, harder than finding all segment intersections.
○ Sweep line is too inefficient here.

● Algorithm steps:
○ Uniform grid preprocessing filter on CPU identifies pairs 

of segments that may intersect
○ Interval analysis tests further filters those pairs on GPU,
○ Exact rational arithmetic back on CPU exactly tests a 

few pairs.
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● Consider the following segment sets S1 (red) and S2 
(blue):

● A uniform grid divides the domain into equally sized 
regions:

Fast red-blue intersections: Pre-processing, 1
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● Each segment (from both sets) is associated with the grid 
cells its bounding box intercepts.

● (Possible future mod would compute exactly which cells 
intersect the segment.)

Fast red-blue intersections: Pre-processing, 2
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Fast red-blue intersections: Pre-processing, 3

● For time and space efficiency, use a ragged array
○ One array containing all the elements, plus
○ Dope vector pointing to start of each cell’s contents.
○ Constant time to read cell #i element #j.

● Creation requires two passes:
○ Count the number of elements in each cell, then
○ Insert the edges into the ragged array

● Both passes parallelize - faster than dynamic sized arrays
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Fast red-blue intersections: Pre-processing, 4

● Once the uniform grid is constructed, a list of the pairs of 
red and blue segments from all the grid cells is created

● This list is generated in parallel using a strategy similar to 
the creation of the ragged-array
○ first pass to perform the count of pairs of segments
○ second pass to insert the pairs into the list

● The list can than be sent to the GPU, which will evaluate 
which of those pairs do intersect.
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Intersection testing, 1

● Consider the segments AB and CD pictured below
● Four orientation predicates are sufficient to determine if 

they intersect or not
● intersect( (A,B) , (C,D) ) = orientation(A, B, C) ≠ 

orientation(A, B, D) ⋀  orientation(C, D, A) ≠ 
orientation(C, D, B)
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● C and D have different 
orientations w.r.t. (A,B)

● → CD intersects the 
supporting line of AB

Intersection testing, 2
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● A and B have the same 
orientation w.r.t. (C,D)

● → AB does not intersect 
the supporting line of CD



Intersection testing, 3

● A CPU implementation checks one pair of segments at a 
time, evaluating the four predicates in a for loop:
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Intersection testing, 4
● List of pairs sent in one batch to GPU.
● One thread does one intersection test.
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Experiments, 1

● Environment:
○ AMD Ryzen 5 processor with 6 3.2GHz cores (12 

hyperthreads)
○ 16 GB of RAM
○ NVIDIA GeForce GTX 1070 Ti GPU

● Arbitrary precision arithmetic provided by the GMP library
● OpenMP for parallelizing the CPU code
● Cuda for the GPU side
● Compared against CGAL:

○ Sequential method for detecting intersections of dD 
Iso-oriented Boxes (pre-processing)

○ Arithmetic filtering and lazy evaluation
28



Experiments, 2
● Experiments have been performed using segments from 

four polygonal maps from two countries
● The intersection tests were made in pairs, using a 

2500x2500 resolution uniform grid:
○ BrSoil x BrCounty
○ UsCounty x UsAquifers
○ UsCounty x UsCountyRotated

● Properties of each map:
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Experiments, 3
BrSoil and BrCounty
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UsCounty and Us Aquifers



Notes on the test data

● The edge segments are very unevenly distributed.
● Most grid cells are empty, a few have many edges.
● Yet the uniform grid works well.
● Quadtrees etc are not necessary (and are slower and 

don’t parallelize well). 
● Most intersection tests fail.  
● That’s ok because they’re very fast and parallelize.
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Parallel

vs. Interval*no filtering filtering, lazy 
evaluation...
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CGAL: better pre-processing culling (but slower)
Interval*: faster culling and can be parallelized
Time not exactly proportional to number of tests (faster if pair does not intersect)
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Effect of arithmetic filtering
Filters failed in only 0.000002% to 0.0005% of the predicates 
→ Rationals rarely necessary
→ In the GPU implementation, CPU rarely had to re-evaluate with rationals.
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Pre-processing: not entirely on the CPU -- GPU computes in which cell each vertex is. 
(this is not a predicate, but can be computed with IA and filtering)
GPU pre-processing: includes copying intervals (coordinates) to the GPU.
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Inter.: 0.685s prepare + 62.992s eval. (prep. = generate (parallel) list of edges to test)
GPU : 1.149s prepare +  0.218s eval. (prep. = same as CPU + copy ids to/from GPU)
289x speedup in evaluation→Possibly better speedups in algs. w/less communication
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Conclusions and future work, 1

● Good for interactive applications (CAD, GIS, CG, ...)
● Intervals do not fail often (fail → re-evaluation)
● More efficient to keep data on the GPU and re-use

○ If coordinates will be re-used, copy to the GPU at the 
beginning of the program.

○ Use communication only for what is really necessary. 
(e.g.: for intersections, copy the ids of the pairs of the 
edges)

○ E.g.: boolean operations: detecting intersection is only 
one step → data can be kept on the GPU and re-used 
in all steps.
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Conclusions and future work, 2
● Future work: 

○ Apply to 2D/3D point location, mesh 
intersection and other CG algorithms.

○ Improve the performance of the predicates. 
○ E.g.: reduce CPU-GPU communication 

overhead (move combinatorial part of the 
algorithm to GPU, overlap 
communication/processing, etc).

● Challenges: 
○ Predicates must be evaluated in batch
○ Have to “manually” keep track of how each 

interval was generated (ok mainly when 
depth of the computation tree is small)

○ Intervals may fail more often in applications 
with deep computation trees. 38Mesh intersection
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