
Accelerating the exact evaluation of
geometric predicates with GPUs

Marcelo de Matos Menezes
Salles Viana Gomes Magalhães, UFV/RPI

W. Randolph Franklin, RPI
Matheus Aguilar de Oliveira, UFV

Rodrigo E. O. Bauer Chichorro, UFV

Rensselaer Polytechnic Institute, Troy
NY USA

Universidade Federal de Viçosa, MG,
Brazil

RPI UFV

Our Team
● Marcelo de Matos Menezes, UFV: master's student since 2018;

interests are Computer Graphics, Computational Geometry and
High-Performance Computing, long-term goal to apply the ideas
described on this paper to other CG algorithms.

● Salles Viana Gomes Magalhães, RPI PhD grad, UFV prof
● W. Randolph Franklin, RPI prof.
● Matheus Aguilar de Oliveira, UFV: CS undergrad since 2018;

interests are Computational Geometry and Competitive
Programming.

● Rodrigo E. O. Bauer Chichorro, UFV: CS undergrad since 2017;
interests are Competitive Programming, Computational
Geometry and Artificial Intelligence

Our research strategy

● Identify fundamental geometric operations
● used in higher-level systems
● that need to produce correct results.
● and should execute very fast.
● Devise new theory
● using simple data structures
● on current hardware.
● Implement
● Test.

This paper’s contribution
● A faster solution to erroneous computations caused by

floating point finite precision computations.
● Errors can cause predicates (conditionals)to be evaluated

wrong.
● That can cause topological errors.
● Existing solutions are either very slow or may fail.
● We synergize three software techniques and two

hardware platforms.
○ filter input with uniform grid on CPU, then
○ filter survivors with interval arithmetic on GPU, finally
○ if necessary, compute exactly with multiprecision

rationals back on CPU.
● Result: both fast and good.

4

The problem of roundoff errors
● Floating-point errors: computational geometry challenge.
● Generate topological inconsistencies: global impossibilities.

○ intersection point between two lines may not lie in
either.

● Example: planar orientation predicate
○ Do three points p = (px, py), q = (qx, qy) and r = (rx, ry)

make a right turn, are collinear or make a left turn?

Source: https://www.researchgate.net/figure/The-orientation-predicate-of-3-points-p-q-r-in-the-plane-right-turn-collinear-and_fig2_1959784

● Predicate = sign of the determinant:
5

https://www.researchgate.net/figure/The-orientation-predicate-of-3-points-p-q-r-in-the-plane-right-turn-collinear-and_fig2_1959784

Roundoff errors

● Evaluating the predicate using floating point arithmetic:

● Common techniques (snap rounding, epsilon tweaking,
etc): no guarantee

Source: Kettner et al., Classroom examples of robustness problems in geometric computations
p

q

6

Rationals: one roundoff error solution
● Solution for roundoff errors: exact arithmetic (e.g. GMP

rationals), but challenges:
○ Slower than floats
○ Size is exponential in depth of computation tree,

although that’s not a problem if the tree is shallow
○ Growing the size of a variable allocates memory on the

global heap.
■ Total time may be superlinear in the number of

objects, and
■ is serial,

● Apparently little prior art of working (not just proposed)
rational number systems on GPUs

7

Arithmetic filters and Interval arithmetic (IA), 1
● Technique used in several CG implementations, e.g.:

CGAL
● Basic idea: use exact arithmetic only when really

necessary
● Predicate evaluation: typically “=” sign of an arithmetic

expression
● Each value has:

○ an exact value (can be lazily computed), and
○ an approximation given by an interval [xl, xh].

● Predicates evaluated using the approximation
● If the sign of the exact result can be safely inferred based

on results computed with the intervals → use that sign
● Otherwise (a.k.a. filter failure) → re-evaluate with exact

arithmetic 8

Arithmetic filters and IA, 2

● IA used to compute the sign of an expression.
● If it reports a non-zero result, it’s guaranteed to be correct.
● Sometimes it reports a failure. (Then we escalate.)
● Real x represented as [x,], where x <= x <=

Source of the fig: Brönnimann, H., Burnikel, C., & Pion, S. (2001). Interval arithmetic yields efficient dynamic filters for computational
geometry. Discrete Applied Mathematics, 109(1-2), 25-47.

9

Arithmetic filters and IA, 3
● An interval is a pair of floating-point numbers.
● To satisfy the containment property, the operations must

change the way floating point values are rounded.
● IEEE-754 standard:

○ Result = exact result rounded to the next (or
previous) representable FP number

○ Can be rounded:
■ towards -∞
■ to the closest FP (default)
■ towards +∞

● Changing the rounding mode on a GPU is very fast (slow
on CPU)

10

Arithmetic filters and Interval arithmetic, 4
● CGAL uses arithmetic filters/IA- transparent to programmer

but not thread safe.
● Illustration of a predicate one could implement:

11

Arithmetic filters and Interval arithmetic, 5

● CGAL: arithmetic filtering can be performed
“dynamically/automatically”

● Example:
○ A DAG may be created to keep track of results
○ If exact evaluation necessary → lazily re-evaluate the

values

● Challenge: not thread-safe

a = x/y
b = a + z
if(b>0) {
 ….
}

12

Exact fast parallel intersection of large 3-D
triangular meshes

● Earlier work, presented last year
● Salles Magalhaes thesis
● Intersected 3D meshes using shared-memory multi-core

CPUs. Combined:
○ Simulation of Simplicity
○ Arithmetic filtering/IA. “Manually” managed.
○ Parallel on multicore Intel Xeon with OpenMP
○ Big rationals.

● Today: start to incorporate GPUs.

13

https://link.springer.com/chapter/10.1007/978-3-030-13992-6_20
https://link.springer.com/chapter/10.1007/978-3-030-13992-6_20

Idea for using exact computation and GPUs

● GPUs:
○ excellent for floating-point arithmetic
○ however, warps of 32 threads should run same

instruction stream on adjacent data
○ trees, hierarchical data structures, pointers are very

inefficient.
● Implement the IA computation on the GPU
● CPU batch offloads evaluation of predicates to GPU.
● Indeterminate results are filtered and re-evaluated on the

CPU.

14

What is CUDA?

● To program Nvidia GPUs.
● C++ with small syntax extensions and library.
● nvcc compiler separates program into code for CPU host

and code for GPU device.
● GPU architecture is complicated.

○ thousands of cores, each 1/20 as powerful as Xeon core
○ SIMT, 32 thread warp
○ several memory classes:

■ varying speed,
■ size (to 48GB),
■ latency,
■ unified VM with host.

● A range of higher level abstract layers like Thrust and
Kokkos trade off programmer time and execution time. 15

Implementation details, 1

● Created a class, based on Collange et al., to perform the
necessary calculations → easier usage

● The rounding modes on CUDA C are selected via
compiler intrinsics:
○ e.g.: For addition:

■ __dadd_rd() switches the rounding mode towards -
∞

■ __dadd_ru() switches the rounding mode towards
+∞

● These are hidden from the user through operator
overloading

16

Implementation details, 2
Some methods in our CudaInterval class

17

Implementation details, 3

● Predicates: easily implemented using class instances
● Example: 2D orientation predicate

18

Fast red-blue intersection tests

● Case study: fast and exact algorithm for detecting red-blue
intersection of line segments.

● Given two sets of segments S1 (red segments) and S2
(blue segments) → find pairs of red-blue intersections.

● Possible quadratic number of red-red and blue-blue
intersections, even though few red-blue intersections.

● So, harder than finding all segment intersections.
○ Sweep line is too inefficient here.

● Algorithm steps:
○ Uniform grid preprocessing filter on CPU identifies pairs

of segments that may intersect
○ Interval analysis tests further filters those pairs on GPU,
○ Exact rational arithmetic back on CPU exactly tests a

few pairs.
19

● Consider the following segment sets S1 (red) and S2
(blue):

● A uniform grid divides the domain into equally sized
regions:

Fast red-blue intersections: Pre-processing, 1

20

● Each segment (from both sets) is associated with the grid
cells its bounding box intercepts.

● (Possible future mod would compute exactly which cells
intersect the segment.)

Fast red-blue intersections: Pre-processing, 2

21

Fast red-blue intersections: Pre-processing, 3

● For time and space efficiency, use a ragged array
○ One array containing all the elements, plus
○ Dope vector pointing to start of each cell’s contents.
○ Constant time to read cell #i element #j.

● Creation requires two passes:
○ Count the number of elements in each cell, then
○ Insert the edges into the ragged array

● Both passes parallelize - faster than dynamic sized arrays

22

Fast red-blue intersections: Pre-processing, 4

● Once the uniform grid is constructed, a list of the pairs of
red and blue segments from all the grid cells is created

● This list is generated in parallel using a strategy similar to
the creation of the ragged-array
○ first pass to perform the count of pairs of segments
○ second pass to insert the pairs into the list

● The list can than be sent to the GPU, which will evaluate
which of those pairs do intersect.

23

Intersection testing, 1

● Consider the segments AB and CD pictured below
● Four orientation predicates are sufficient to determine if

they intersect or not
● intersect((A,B) , (C,D)) = orientation(A, B, C) ≠

orientation(A, B, D) ⋀ orientation(C, D, A) ≠
orientation(C, D, B)

24

● C and D have different
orientations w.r.t. (A,B)

● → CD intersects the
supporting line of AB

Intersection testing, 2

25

● A and B have the same
orientation w.r.t. (C,D)

● → AB does not intersect
the supporting line of CD

Intersection testing, 3

● A CPU implementation checks one pair of segments at a
time, evaluating the four predicates in a for loop:

26

Intersection testing, 4
● List of pairs sent in one batch to GPU.
● One thread does one intersection test.

27

Experiments, 1

● Environment:
○ AMD Ryzen 5 processor with 6 3.2GHz cores (12

hyperthreads)
○ 16 GB of RAM
○ NVIDIA GeForce GTX 1070 Ti GPU

● Arbitrary precision arithmetic provided by the GMP library
● OpenMP for parallelizing the CPU code
● Cuda for the GPU side
● Compared against CGAL:

○ Sequential method for detecting intersections of dD
Iso-oriented Boxes (pre-processing)

○ Arithmetic filtering and lazy evaluation
28

Experiments, 2
● Experiments have been performed using segments from

four polygonal maps from two countries
● The intersection tests were made in pairs, using a

2500x2500 resolution uniform grid:
○ BrSoil x BrCounty
○ UsCounty x UsAquifers
○ UsCounty x UsCountyRotated

● Properties of each map:

29

Experiments, 3
BrSoil and BrCounty

30

UsCounty and Us Aquifers

Notes on the test data

● The edge segments are very unevenly distributed.
● Most grid cells are empty, a few have many edges.
● Yet the uniform grid works well.
● Quadtrees etc are not necessary (and are slower and

don’t parallelize well).
● Most intersection tests fail.
● That’s ok because they’re very fast and parallelize.

31

Parallel

vs. Interval*no filtering filtering, lazy
evaluation...

32

CGAL: better pre-processing culling (but slower)
Interval*: faster culling and can be parallelized
Time not exactly proportional to number of tests (faster if pair does not intersect)

33

Effect of arithmetic filtering
Filters failed in only 0.000002% to 0.0005% of the predicates
→ Rationals rarely necessary
→ In the GPU implementation, CPU rarely had to re-evaluate with rationals.

34

Pre-processing: not entirely on the CPU -- GPU computes in which cell each vertex is.
(this is not a predicate, but can be computed with IA and filtering)
GPU pre-processing: includes copying intervals (coordinates) to the GPU.

35

Inter.: 0.685s prepare + 62.992s eval. (prep. = generate (parallel) list of edges to test)
GPU : 1.149s prepare + 0.218s eval. (prep. = same as CPU + copy ids to/from GPU)
289x speedup in evaluation→Possibly better speedups in algs. w/less communication

36

Conclusions and future work, 1

● Good for interactive applications (CAD, GIS, CG, ...)
● Intervals do not fail often (fail → re-evaluation)
● More efficient to keep data on the GPU and re-use

○ If coordinates will be re-used, copy to the GPU at the
beginning of the program.

○ Use communication only for what is really necessary.
(e.g.: for intersections, copy the ids of the pairs of the
edges)

○ E.g.: boolean operations: detecting intersection is only
one step → data can be kept on the GPU and re-used
in all steps.

37

Conclusions and future work, 2
● Future work:

○ Apply to 2D/3D point location, mesh
intersection and other CG algorithms.

○ Improve the performance of the predicates.
○ E.g.: reduce CPU-GPU communication

overhead (move combinatorial part of the
algorithm to GPU, overlap
communication/processing, etc).

● Challenges:
○ Predicates must be evaluated in batch
○ Have to “manually” keep track of how each

interval was generated (ok mainly when
depth of the computation tree is small)

○ Intervals may fail more often in applications
with deep computation trees. 38Mesh intersection

Thank you!

Acknowledgement:

p
q

39

