
An efficient and exact parallel algorithm for intersecting
large 3-D triangular meshes using arithmetic filters

Abstract

We present 3D-EPUG-OVERLAY, a fast, exact, parallel, memory-efficient, al-
gorithm for computing the intersection between two large 3-D triangular meshes
with geometric degeneracies. Applications include CAD/CAM, CFD, GIS, and
additive manufacturing. 3D-EPUG-OVERLAY combines 5 techniques: multiple
precision rational numbers to eliminate roundoff errors during the computations;
Simulation of Simplicity to properly handle geometric degeneracies; simple data
representations and only local topological information to simplify the correct pro-
cessing of the data and make the algorithm more parallelizable; a uniform grid to
efficiently index the data, and accelerate testing pairs of triangles for intersection or
locating points in the mesh; and parallel programming to exploit current hardware.
3D-EPUG-OVERLAY is up to 101 times faster than LibiGL, and comparable
to QuickCSG, a parallel inexact algorithm. 3D-EPUG-OVERLAY is also more
memory efficient. In all test cases, 3D-EPUG-OVERLAY’s result matched the
reference solution. It is freely available for nonprofit research and education at
[CITATION REMOVED].

Keywords: CAD, Boolean operations, Parallel programming, Exact computation,
Polyhedron intersection

1. Introduction

The classic problem of intersecting two 3-D meshes has been a foundational
component of CAD systems for some decades. However, as data sizes grow, and
parallel execution becomes desirable, the classic algorithms and implementions
now exhibit some problems.

1. Roundoff errors. Floating point numbers violate most of the axioms of an
algebraic field, e.g., (a+b)+ c 6= a+(b+ c). These arithmetic errors cause
topological errors, such as causing a point to be seen to fall on the wrong
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side of a line. Those inconsistencies propagate, causing, e.g., nonwatertight
models. Heuristics exist to ameliorate the problem, and they work, up to a
point. Larger datasets mean a higher probability of the heuristics failing.

2. Special cases (geometric degeneracies). These include a vertex of one object
incident on the face of another object, coincident vertices, coincident edges,
etc. In principle, simple cases could be enumerated and handled. However,
some widely available software fails, for several reasons.

First, The number of special cases grows exponentially with the dimension.
When intersecting a 2-D infinite line l with a polygon, (at least) the following
cases occur with respect to the line’s intersection with a finite edge e of the
polygon: l crosses e’s interior, l is coincident with e, and l is incident on a
vertex v of e, and the other edge e′ incident on v is either coincident with
l, on the same side of l as e, or on the opposite side of l as e. In 3-D, the
problem is much worse, so that a complete enumeration may be infeasible.

Second, one technique is to reduce the number of cases by combining them.
E.g., when comparing point p against line l, the three cases of above, on,
and below may be combined into two: above or on and below. The problem
is to do this in a way that results in higher level functions that call this as a
component executing correctly. E.g., does intersecting two polylines, where
a vertex of one is coincident with a vertex of the other, still work?

3. Another problem is that current data structures are often too complex for easy
parallelization, Audet [2]. Efficient parallelization prefers simple regular
data structures, such as structures of arrays of plain old datatypes. If the
platform is an Nvidia GPU, then warps of 32 threads are required to execute
the same instruction (or be idle). Ideally, the data used by adjacent threads is
adjacent in memory. That disparages pointers, linked lists, sweep lines, and
trees.

Some components of 3D-EPUG-OVERLAY have been presented earlier, [CI-
TATIONS REMOVED]. This paper extends [CITATIONS REMOVED]. with more
details, such as about symbolic perturbation, and newer experiments.

1.1. Background
Kettner et al [23] studied geometric failures caused by roundoff errors, showing

situations where epsilon-tweaking failed. (That uses an ε tolerance to consider two
values x and y to be equal if |x−y| ≤ ε .) Snap rounding arbitrary precision segments
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into fixed-precision numbers, Hobby [19], can also generate inconsistencies and
deform the original topology. Variations attempting to get around these issues
include de Berg et al [6], Hersberger [18], and Belussi et al [3]. Controlled
Perturbation, Melhorn [27], slightly perturbs the input to remove degeneracies
such that the geometric predicates are correctly evaluated even using floating-point
arithmetic. Adaptive Precision Floating-Point, Shewchuk [34], exactly evaluates
predicates using the minimum necessary precision.

Frey and George [15] contains a comprehensive description of spatial data
structures. Common algorithms for computing intersections include plane sweep
and quad or octrees [6, 32]. According to Audet [2], “the plane sweep strategy
does not parallelize efficiently, rendering it incapable of benefiting from recent
trends of multicore CPUs and general-purpose GPUs”.

The formally proper way to effectively eliminate roundoff errors and guarantee
robustness is to use exact computation based on rational numbers with arbitrary
precision [20, 23, 25]. We present algorithms that are efficient enough to computate
using arbitrary precision rationals.

Computing in the algebraic field of the rational numbers over the integers, with
the integers allowed to grow as long as necessary, allows the traditional arithmetic
operations, +,−,×,÷, to be computed exactly, with no roundoff error. The cost
is that the number of digits in the result of an operation is about equal to the sum
of the numbers of digits in the two inputs. E.g., 214

433 +
659
781 = 452481

338173 . This behavior
is acceptable if the depth of the computation tree is small, which is true for our
algorithm.

During the evaluation of predicates, arithmetic operations are applied to the
intervals. If the result (typically the sign of a determinant) can be inferred based
on the the bounds of the interval, its value is returned. Otherwise, the predicate is
re-evaluated using exact arithmetic.

1.2. Current freely available implementations:
One technique for overlaying 3-D polyhedra starts by converting the data to a

volumetric representation (voxelization), perhaps using an octree, Meagher [26].
While the intersection is trivial and the representation robust, it is usually inexact.
For example, oblique surfaces cannot be represented exactly, affecting fluid flow
and visualization. Pavić et al. [30] present an efficient algorithm for performing
this kind of overlay.

For exactly computing overlays, a common strategy is to use indexing to
accelerate operations such as computing the triangle-triangle intersections. For
example, Franklin [12] uses a uniform grid to intersect two polyhedra, Feito et al
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[11] and Mei et al [28] use octrees, and Yongbin et al [36] use Oriented Bounding
Boxes trees (OBBs) to intersect triangulations. Although those algorithms do not
use approximations, robustness cannot be guaranteed because of floating point
errors. For example, Feito et al [11] use a tolerance to process floating-point
numbers, but this is error-prone.

Another algorithm that does not guarantee robustness is QuickCSG, Douze et
al [8], which is designed to be extremely efficient. QuickCSG employs parallel
programming and a k-d-tree index. It does not handle geometric degeneracies
(it assumes vertices are in general position), and does not handle the numerical
non-robustness from floating-point arithmetic, Zhou et al [37]. To reduce errors
caused by special cases, QuickCSG allows the user to apply random numerical
perturbations to the input, but this has no guarantees.

Some small errors might be acceptable, but they accumulate when several
inexact operations are performed in sequence, which is common in CAD and GIS.
For use when exactness is required, Hachenberger et al [17] presented an algorithm
for computing the exact intersection of Nef polyhedra. A Nef polyhedron is a finite
sequence of complement and intersection operations on half-spaces. Although
dating from the 1970s, only in the 2000s were concrete algorithms developed,
and then embodied into CGAL [4]. One application is SFCGAL [29], which uses
CGAL to allow the PostGIS DBMS to perform exact computation. Although
exact, they are slow, Leconte et al [24]. Also, in most cases, the data must first be
converted into the Nef format.

Recently, Zhou [37] presented an exact and parallel algorithm for performing
booleans on meshes. The key is to use the concept of winding numbers to disam-
biguate self-intersections on the mesh. Their algorithm first constructs an arrange-
ment with the two (or more) input meshes, and then resolves the self-intersections
in the combined mesh by retesselating the triangles such that intersections happen
only on common vertices or edges. The self-intersection resolution eliminates
not only the triangle-triangle intersections between triangles of the different input
meshes, but also between triangles of the same mesh. As a result, their algorithm
can also eliminate self-intersections in the input meshes, repairing them. Finally, a
classification step is applied to compute the resulting boolean operations.

That algorithm is freely available and distributed in the LibiGL package, Jacob-
son et al [21]. Its implementation employs CGAL’s exact predicates. The triangle-
triangle intersection computation is also accelerated using CGAL’s bounding-
box-based spatial index. LibiGL is not only exact, but also much faster than
Nef Polyhedra. However, it is still slower than fast inexact algorithms such as
QuickCSG.
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2. Our techniques

Our solution to the above problems combines the following five techniques.

2.1. Big rational numbers
The classic technique of representing a number as the quotient of two integers,

each represented as an array of groups of digits has implementation challenges.
C++ usually constructs new objects on a global heap, assuming that cost to be
negligible. That is false for parallel programs (which serialize modifications to the
heap) processing large datasets.

Therefore we carefully construct our code to minimize the number of times
that a rational variable needs to be constructed or enlarged, including minimizing
the number of necessary temporary variables.

Furthermore, we employ arithmetic filters and interval arithmetic [31] to accel-
erate the exact computation. This uses an interval of two floats containing each
exact value. During a predicate evaluation (typically an expression’s sign), the
operations are initially applied to the intervals. After each operation the result (an
interval) is adjusted to guarantee that it will still contain the exact result of the
operation. Then if that interval does not contain 0, its sign is returned. Otherwise,
the predicate is re-evaluated using exact arithmetic.

2.2. Simulation of Simplicity
Simulation of Simplicity (SoS), Edelsbrunner et al [10], addresses the problem

that, “sometimes, even careful attempts at capturing all degenerate cases leave
hard-to-detect gaps”, Yap [35].

Figure 1 is a challenging example arising in 2D point location. The lower
apparent triangle is really a quadrilateral with the top two edges collinear, and
joined at c, which is also a vertex of the upper triangle.

Given a set of polygons and a query point q, the polygon containing q can be
found by extending a vertical ray r from q, and finding the first edge e intersecting
r. Here, edge dc is the first to intersect r, and thus, q is in the polygon on the
negative side of dc. However, locating q′ is a challenge since the ray r′ intersects
edges ac, bc, dc and c f at the same point. Edges bc and ac don’t even bound the
polygon containing q′. RCT gets a 3D version of this problem wrong; PINMESH is
correct because of SoS, which ensures a vertical ray from a query point will never
intersect a vertex or a vertical triangle from the polyhedral mesh, Magalhães et al
[7].
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Figure 1: Difficult test case for 2-D point location.

SoS symbolically perturbs coordinates by adding infinitesimals of different
orders to destroy any coincidences. E.g., three points are never collinear. A positive
infinitesimal, ε , is smaller than any positive real number (but greater than zero).
That violates the Archimedean property for the real field, but we don’t need this
independent axiom. A second order infinitesimal, ε2, is smaller than any first order
infinitesimal, etc. Linear combinations of reals and infinitesimals work. In 1-D,
SoS can be realized by indexing all the input variables of both input objects, and
then modifying them thus:

xi → xi + ε
(2i) (1)

A coordinate’s perturbation depends on its index. The efficient implementation
of SoS examines its effects on each predicate and then recodes the predicate to
have the same effect, but without using infinitesimals. E.g.,

xi ≤ x j → (xi < x j)∨ ((xi = xi)∧ (i > j)) (2)

To intersect two meshes M0 and M1, we perturb M1 thus:

v j → (v jx + ε,v jy + ε
2,v jz + ε

3) (3)

Now, no vertex from M0ε can coincide with any vertex from M1ε . The following
lemmas present properties of the perturbed meshes (the proofs have been removed
because of space limitations).

Lemma 2.1. If aε is a vertex from mesh Miε (i is 0 or 1) and tε is a triangle from
mesh M1−iε , then aε and tε are not coplanar.
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Lemma 2.2. Given an edge e1ε = aεbε (aε 6= bε ), i.e., the endpoints are aε and
bε , from mesh Miε and another edge e2ε = cεdε (cε 6= dε ) from mesh M1−iε such
that e1ε and e2ε are not parallel, then e1ε and e2ε do not intersect.

Lemma 2.3. Given two distinct vertices aε and bε from mesh Miε and another
vertex cε from mesh M1−iε , then aε , bε and cε are not collinear.

Corollary 2.4. An edge eε from mesh Miε cannot intersect a parallel edge fε from
M1−iε .

Lemma 2.5. If an edge eε from a mesh Miε intersects a triangle tε from M1−iε ,
then this intersection happens in the interior of tε .

Lemma 2.6. If eε is an edge from mesh Miε and tε is a triangle from mesh M1−iε ,
then eε and tε are not coplanar.

Lemma 2.7. If tiε and t(1−i)ε are triangles belonging to, respectively, meshes Miε
and M1−iε , then tiε and t(1−i)ε are not co-planar.

A consequence of the previous lemmas is that there will be no coincidence
when triangles from one mesh intersect triangles of the other one. E.g., a triangle
from one mesh is never coplanar w.r.t. a triangle of the other one, the intersection
of triangles from the two meshes is always either empty or an edge, etc.

We developed two versions of each geometric function, one focused on effi-
ciency, and the second using SoS. We always execute the first version. Only if it
detects a coincidence, do we call the second version.

2.3. Minimal topology
The minimal explicit topology required for computing some property of an

object depends on the desired property. E.g., testing for point location in a polygon
requires only the set of unordered edges. That is still true for multiple and nested
components. A sufficient representation of a 3-D mesh comprises the following:

1. the array of vertices, (vi), where each vi = (xi,yi,zi).

2. the array of tetrahedra or other polyhedra, ti, used solely to store properties
such as density, and

3. the array of augmented oriented triangular faces ( fi), where fi =(vi1,vi2,vi3, ti1, ti2).
The tetrahedron or polyhedron ti1 is on the positive side of the face fi =
(vi1,vi2,vi3); ti2 on the negative.
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It is unnecessary to store any further relations, such as from face to adjacent
face, from vertex to adjacent face, edge loops, or face shells.

Note that there are no pointers or lists; we need only several structures of arrays.
If the tetrahedra have no properties, then the tetrahedron array does not need to
exist, so long as the tetrahedra, which we are not storing explicitly, are consistently
sequentially numbered. The goal is always to minimize what types of topology
need to be stored.

2.4. Uniform grid
The uniform grid, Akman et al [1], Franklin et al [13, 14] is used as an initial

cull so that, when two objects are tested for possible intersection, then the probabil-
ity of intersecting is bounded below by a positive number. Therefore, the number
of pairs of objects tested for intersection is linear in the number that intersect. Thus
the expected execution time is linear in the output size. The basic algorithm goes
as follows.

1. Choose a positive integer g for the grid resolution as a function of the
statistics of the input data. Typically, 10 ≤ g ≤ 1000. The goal is for each
grid cell, as described later, to contain an expected constant number of
intersections with input objects.

2. Superimpose a 3-D grid of g×g×g cells on the input data.

3. There will be an abstract data structure, the cell intersection set, of the set of
input objects intersecting each cell.

4. For each input object, determine which cells it intersects, and insert it into
each of those cells’ intersection sets.

A careful concrete implementation of the cell intersection set is critical. We
tested several choices; details are in [CITATION REMOVED]. We also tested an
octree, but our uniform grid implementation is much faster. We also used a second
level grid for some cells. This allowed us to use an approximation to determine
which faces intersected each cell: enclosing oblique faces with a box and then
marking all the cells intersecting that box, which is more cells than necessary.

2.5. OpenMP
Our simple regular data structures are easily parallelizable with OpenMP.
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3. 3-D mesh intersection

3D-EPUG-OVERLAY exactly intersects 3-D meshes. Its input is two triangular
meshes M0 and M1. Each mesh contains a set of 3-D triangles representing a set
of polyhedra. The output is another mesh where each represented polyhedron
is the intersection of a polyhedron from M0 with another one from M1. The key
is the combination of five techniques previously mentioned. Extra details are in
[CITATION REMOVED].

3.1. Data representation
The input is a pair of triangular meshes in 3-D (E3). Both meshes must be

watertight and free from self-intersections. The polyhedra may have complex and
nonmanifold topologies, with holes and disjoint components.

There are two types of output vertices: input vertices, and intersection vertices
resulting from intersections between an edge of one mesh and a triangle of the other.
Similarly, there are two types of output triangles: input triangles and triangles
from retesselation. The first contains only input vertices while the second may
contain vertices generated from intersections created during the retesselation of
input triangles.

An intersection vertex v is represented by the pair (e,t), where v is the intersec-
tion of the edge e with the triangle t. For speed, its coordinates are cached when
first computed. If during the evaluation of a predicate a coincidence is detected,
this predicate is re-evaluated using Simulation of Simplicity.

3.2. The mesh intersection algorithm:
This method uses only local information. The algorithm has 3 basic steps and

a uniform grid is employed to accelerate the computation:

1. Intersections between triangles of one mesh and triangles of the other mesh
are detected and the new edges generated by the intersection of each pair of
triangles are computed.

2. A retesselated mesh containing the triangles from the two original meshes is
created and the original triangles are split (retesselated) at the intersection
edges. I.e., if a pair of triangles in this resulting mesh intersect, then this
intersection will happen necessarily on a common edge or vertex.
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3. A classification is performed: triangles that shouldn’t be in the output are
removed and the adjacency information stored in each triangle is updated to
ensure that the new mesh will consistently represent the intersection of the
input.

Figure 2 illustrates the intersection computation. In Figure 2(a), we have two
meshes representing one tetrahedron each: the brown mesh (mesh M0) bounds the
exterior region and region 1 while the yellow mesh (mesh M1) bounds the exterior
region and region 2.

After the intersections between the triangles are computed, the ones from one
mesh that intersect triangles from the other one are split into several triangles,
creating meshes M′

0 and M′
1 (for clarity, these two meshes are displayed separately

in Figures 2(b) and (c), respectively). The only triangle from mesh M0 that
intersects mesh M1 is BCD. Since BCD intersects three triangles from M1, it
was split into seven triangles when M′

0 was created (triangles LMN, CLN, CBN,
BDN, DMN, DLM and CDL). Similarly, each of the three triangles from M1
intersecting M0 was split into three smaller triangles. Figure 2(d) illustrates the
classification step, where triangles contained in a region of the other mesh are
selected to be in the resulting mesh.

Some details about each step are presented in the next subsections.

3.2.1. Detecting the intersections
A two-level 3-D uniform grid is used to accelerate the detection of triangle

intersections and point location. The intersections between a pair of triangles is
detected using Segura et al.’s algorithm [33], which computes five 3D orientations
in order to verify if there is an intersection between each edge of one of the triangles
and the other triangle.

3.2.2. Retesselating the triangles
The next step is to split them where they intersect (creating the retesselated

meshes M′
0 and M′

1), so that after this process all the intersections will happen
only on common vertices or edges. This process is performed by creating a
graph G in each triangle t (where the edges are the original edges of t and the
ones resulting from the intersections between t and other triangles) and using the
algorithm presented in [22] to extract the faces from G. These faces are then
triangulated using the ear-clipping algorithm [9], which has a time complexity
quadratic in the number of vertices in the faces. That time is acceptable because
the expected size of a face is small. If it were a problem, more efficient polygon

10



(a) (b)

(c) (d)

Figure 2: Computing the intersection of two tetrahedra - (a): input meshes, (b) and (c): retesselated
meshes, (d): classifying the triangles to generate the output.

triangulation algorithms exist, using as little as linear time in the face size, at the
cost of considerable complexity.

Since the retesselation is a 2D process, the triangle t being processed is
projected onto one of the planes (x = 0, y = 0 or z = 0) with which t is non-
perpendicular and then processed. The predicates employed by the retesselation
(for example, to check if a vertex is convex, to sort the vertices along an edge, to
check if a triangle contains a point, etc) can all be implemented using orientation
predicates.

3.2.3. Triangle classification
As illustrated in Figure 2, after the intersections are detected and all the triangles

that intersect other triangles are split at the intersection points, two new meshes M′
0

and M′
1 are created such that each new mesh M′

i will have the following two kinds
of triangles:

• Triangles from the original mesh: if triangle t from Mi did not intersect any
triangle from the other mesh (or if this intersection was located on a vertex
or edge), then t will be in M′

i .
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• New triangles: if triangle t from Mi intersects one or more triangles from the
other mesh (and this intersection is not located on a common vertex or edge),
then t will be partitioned into smaller triangles that will be inserted into M′

i .

It is clear that each mesh M′
i will exactly represent the same regions that Mi

represents. Thus, computing the intersection between M′
i and M′

(1−i) is equivalent
to computing the intersection of Mi with M(1−i).

The process of classifying the triangles to create the output mesh consists in
processing each triangle t from the meshes M′

i (i = 0,1), determining in what
region of M′

(1−i) t is (each triangle will be entirely contained in a region since the
meshes have been retesselated at the intersection edges) and, then, updating the
information about the regions t bounds such that we will have a consistent mesh.

If a triangle t is in the exterior of the other mesh, in the resulting mesh the two
regions t bounds will be the exterior region. To maintain the mesh consistency, the
triangles bounding only the exterior region can be ignored and not stored in the
output mesh.

Figure 2(d) illustrates the classification step. All the intersections happen at
common edges, and the only triangle from M′

0 that is completely inside region 2 (of
M′

1) is triangle LMN. Since LMN bounds region 1 and the exterior region in M′
0,

in the resulting intersection LMN will bound region 1∩2 and the exterior region.
All the other triangles from M′

0 are in the exterior region of M′
1 and, thus, they will

only bound the exterior region in the resulting intersection (therefore, they will be
ignored when the output mesh is computed). Similarly, in M′

0 the only triangles
that are inside region 1 of M′

0 are triangles EMN, ELM and ELN. These three
triangles will also bound the exterior region and region 1∩2 in the resulting mesh.

The process of locating triangles of one mesh in the other one can be performed
using a point location and a flood-fill algorithm. Suppose triangles of mesh M′

i are
being located. If two adjacent triangles t and t ′ share an edge that was not generated
by an intersection with M′

(1−i), then these triangles are in the same region of M′
(1−i).

If t and t ′ share an edge that was generated by an intersection with triangle t ′′ of
mesh M′

(1−i), then t and t ′ are in different regions of the other mesh. Since the
regions t ′′ bound are known, it is possible to determine the location of t and t ′ once
the location of at least one of these two triangles is known.

Thus, the location of all triangles in each connected component of triangles
can be performed by locating one of the triangles as a seed and using a traversal
algorithm to locate the other ones. We use as seed a triangle containing an input
vertex. Since the location of an input vertex is the same of the triangles containing
it, the seed is located by locating one of its input vertices.
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The point location process is performed with PinMesh [7], which uses a uniform
grid to locate points in expected constant time. Pinmesh also uses SoS.

3.3. Experiments:
3D-EPUG-OVERLAY was implemented in C++ and compiled using g++ 5.4.1.

For better parallel scalability, the Tcmalloc memory allocator, was employed.
Parallel programming was provided by OpenMP 4.0, multiple precision rational
numbers were provided by GNU GMPXX and arithmetic filters were implemented
using the Interval_nt number type provided by CGAL for interval arithmetic. The
experiments were performed on a workstation with 128 GiB of RAM and dual
Intel Xeon E5-2687 processors, each with 8 cores and 16 hyper-threads, running
Ubuntu Linux 16.04. Unless otherwise noted, experiments were performed using
32 threads.

We evaluated 3D-EPUG-OVERLAY, by comparing it against three state-of-
the-art algorithms:

1. LibiGL [37], which is exact and parallel,

2. Nef Polyhedra [4], which is exact, and

3. QuickCSG [8], which is fast and parallel, but not exact, and does not handle
special cases.

Our experiments showed that 3D-EPUG-OVERLAY is fast, parallel, exact,
economical of memory, and handles special cases.

3.3.1. Datasets:
Experiments were performed with a variety of non self-intersecting and water-

tight meshes; see Figure 3 and Table 1. The ones with suffix tetra were tetrahedral-
ized with GMSH [16]. The sources of the data are as follows: Barki (Clutch2kf,
Casting10kf, Horse40kf, Dinausor40kf, Armadillo52kf, Camel69kf, Cow76kf),
AIM@SHAPE (Camel, Bimba, Kitten, RedCircBox, Ramesses, Vase, Neptune),
Stanford (Armadillo), Thingi10K (461112, 461115, 226633), Thingi10k+GMSH
(914686Tetra, 68380Tetra, 518092Tetra, 461112Tetra), and Stanford+GMSH (Ar-
mad.Tetra).

Table 2 presents the pairs of meshes used in the intersection experiments, the
number of input triangles, the number of triangles in the resulting meshes and the
uniform grid size.

Figure 4 shows one test, which took 0.2 seconds.
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Figure 3: Some test meshes.

(a) Visually overlaid (b) Intersection

Figure 4: Intersecting Casting10kf with Clutch2kf
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3.3.2. Arithmetic filters and other optimizations:
To evaluate the effect of different optimizations, we profiled two key steps: the

creation of the uniform grid, and the detection of intersections between pairs of
triangles. Two important optimizations concern the uniform grid construction and
the use of interval arithmetic. We tested the following algorithm versions using a
uniform grid with first level resolution 643 and second level resolution 163. The
datasets were Neptune and Neptune-translated.

Vector: Each level of the uniform grid is created by performing a single-pass
through the triangles, using dynamic STL vectors to store the triangles in
the grid cells.

Ragged: This reduces the number of memory allocations. Each level of the
uniform grid is created with two passes through the data: first to count the
amount of triangles that will go into each cell in order to allocate a ragged
array of just the needed size, followed by a second pass to insert the triangles.

NoAlloc: This is the ragged version, plus: Temporary memory allocation is
avoided by reusing rational numbers and by rewriting the arithmetic ex-
pressions in order to avoid creating temporary rationals.

Interval: This is the NoAlloc version, plus: Interval arithmetic is employed to
minimize operations with rationals.

We also compared the default glibc memory allocator to the GPerftools Tc-
malloc allocator (abbreviated to Tcm. in the table). Table 3 presents the measured
times (in seconds).

Creating the 3D uniform grid has several steps. (i) The grid cell containing
each vertex is computed (row Comp. grid cell), which is computationally intensive
step when using rationals. (ii) A first pass (row First pass) through the triangles is
performed. If the uniform grid uses STL vectors to store the triangles, then that
happens now. Otherwise, if using a ragged array, the number of triangles in each
cell is counted, and the triangles are inserted during the second pass (row Second
pass). (iii) A second level grid is created (row Refinement). These three last steps
are more memory intensive.

Intersection detection goes as follows. (i) The uniform grid is traversed, and
a list of pairs of triangles to be tested for intersection is created (row List pairs
of tri.). (ii) Each pair of triangles is tested for intersection (row Detect inters.).
Table 3 also presents the total times spent creating the grid (row total time grid)
and detecting intersections (row total time inter.).

15



The ragged array version constructs the uniform grid 32% faster than the vector
version because it is more parallelizable, has better locality of reference, and has
fewer memory allocations.

Besides employing better memory allocators (Tcmalloc), minimizing memory
allocations can also improve savetime. For example, in the NoAlloc version the
two computationally intensive steps mentioned above perform better than in the
Ragged version.

Since computing the grid cell containing each vertex and detecting intersections
are the only steps directly dealing with rationals, they were the only steps that
benefited from the use of interval arithmetic. The best results were observed in
the intersection detection, which improved 357 times when interval arithmetic was
employed.

While the first versions of the algorithm lead to only marginal improvements
in the total running time of the algorithm (since operations with rationals dominate
the time), these optimizations are important because the last version (with interval
arithmetic) significantly reduces this domination. Indeed, while in the first ver-
sion of the algorithm 98% of the time was spent detecting intersections between
triangles, this step used 31% of the time in the Interval version.

3.3.3. The importance of the uniform grid:
This accelerates the detection of pairs of intersecting triangles. To evaluate

this idea, we compared it against an implementation using the CGAL method
for intersecting d-D Iso-oriented Boxes. Both algorithms are exact and employ
arithmetic filters with interval arithmetic. Indeed, this CGAL algorithm is employed
by LibiGL’s mesh intersection.

The CGAL method is sequential, and employs a hybrid approach composed
of a sweep-line and a streaming algorithm to detect intersections between pairs of
Axis Aligned Bounding Boxes. Pairwise intersections of triangles can be detected
by filtering the pairs of intersecting bounding-boxes, and then testing the triangles
for intersection. Since the CGAL exact kernel was not thread-safe, even the
triangle-triangle intersection tests were performed sequentially.

Table 4 presents these comparative experiments, performed on 6 pairs of
meshes. The number of intersections detected is not necessarily the same in the
two algorithms because our algorithm implements Simulation of Simplicity. E.g.,
co-planar triangles never intersect.

CGAL is better at culling pairs of non-intersecting bounding-boxes and so
performs fewer intersection tests. However, since the uniform grid is lightweight
and parallelizes well, its pre-processing time is much smaller (up to 134 times
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faster, which is much more than the degree of parallelism), and this difference is
never recaptured.

The only situation where the intersection detection time was much larger than
the pre-processing time was in the intersection of the Armadillo mesh with itself.
In the uniform grid implementation this test case leads to many coincidences,
triggering the SoS predicates, which have not been optimized yet. In this situation
the uniform grid was still faster than CGAL for two reasons: first, the number of
intersection tests performed by the two methods was similar. Second, the uniform
grid detects intersections in parallel.

3.3.4. Comparing 3D-EPUG-OVERLAY to other methods:
We compared 3D-EPUG-OVERLAY against other three algorithms using the

pairs of meshes presented in Table 2. The resulting running times (in seconds,
excluding I/O) are presented in Table 5. Since the CGAL exact intersection
algorithm deals with Nef Polyhedra, we also included the time it spent converting
the triangulating meshes to this representation and to convert the result back to a
triangular mesh (it often takes more time to convert the dataset than to compute the
intersection). Both times are reported to let the user choose.

3D-EPUG-OVERLAY was up to 101 times faster than LibiGL. The only test
cases where the times spent by LibiGL were similar to the times spent by 3D-
EPUG-OVERLAY were during the computation of the intersections of a mesh with
itself (even in these test cases 3D-EPUG-OVERLAY was still faster than LibiGL).
In this situation, the intersecting triangles from the two meshes are never in general
position, and thus the computation has to frequently trigger the SoS version of
the predicates, which we haven’t not optimized yet. In the future, we intend to
optimize this.

However, LibiGL also repairs meshes (by resolving self-intersections) during
the intersection computation, which 3D-EPUG-OVERLAY does not attempt.

Because of the overhead of Nef Polyhedra and since it is a sequential algorithm,
CGAL was always the slowest. When computing the intersections, 3D-EPUG-
OVERLAY was up to 1,284 times faster than CGAL. The difference is much higher
if the time CGAL spends converting the triangular mesh to Nef Polyhedra is taken
into consideration: intersecting meshes with 3D-EPUG-OVERLAY was up to
4,241 times faster than using CGAL to convert and intersect the meshes.

While 3D-EPUG-OVERLAY was faster than QuickCSG in most of the test
cases (mainly the largest ones), in others QuickCSG was up to 20% faster than
3D-EPUG-OVERLAY. The relatively small performance difference between 3D-
EPUG-OVERLAY and an inexact method (that was specifically designed to be very
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fast) indicates that 3D-EPUG-OVERLAY presents good performance allied with
exact results. The * in some of the test cases in Table 5 indicates that QuickCSG
reported errors during the computation.

Finally, we also performed experiments with tetra-meshes. Each tetrahedron
in these meshes is considered to be a different object and, thus, the output of
3D-EPUG-OVERLAY is a mesh where each object represents the intersection of
two tetrahedra (from the two input meshes). These meshes are particularly hard to
process because of their internal structure, which generates many triangle-triangle
intersections.

To the best of our knowledge, LibiGL, CGAL and QuickCSG were not designed
to handle meshes with multi-material and, thus, we couldn’t compare the running
time of 3D-EPUG-OVERLAY against them in these test cases.

We also evaluated the peak memory usage of each algorithm. 3D-EPUG-
OVERLAY was: almost always smaller than LibiGL, with the difference increas-
ing as the datasets became larger; smaller than QuickCSG in every case where
QuickCSG returned the correct answer; and much smaller than CGAL. A typical re-
sult was the intersection of Neptune (4M triangles) with Ramesses (1.7M triangles):
3D-EPUG-OVERLAY used 2.6GB, LibiGL used 6.7GB, and CGAL 84GB. The
largest example that 3D-EPUG-OVERLAY processed, 518092Tetra (6M triangles)
with 461112Tetra (8.5M triangles) used 43GB. [CITATION REMOVED] contains
detailed results.

3.3.5. Correctness evaluation:
3D-EPUG-OVERLAY was developed on a solid foundation (i.e., all computa-

tion is exact and special cases are properly handled using Simulation of Simplicity)
in order to ensure correctness. However, perhaps its implementation has errors?
Therefore, we performed extensive experiments comparing it against LibiGL as
a reference solution. We employed the Metro tool, Cignoni et al [5], to compute
the Hausdorff distances between the meshes being compared. Metro is widely
employed, for example, to evaluate mesh simplification algorithms by comparing
their results with the original meshes.

Since Metro is not exact (all the computation is performed using double preci-
sion floats), we use the distance between meshes only as evidence that our imple-
mentation is correct. In every test, the difference between 3D-EPUG-OVERLAY

and LibiGL was reported as 0. In some situations the difference between Li-
biGL and CGAL was a small number (maximum 0.0007% of the diagonal of
the bounding-box). We guess this is because the exact results are stored using
floating-point variables, and different strategies are used to round the vertices to
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Figure 5: Intersection of the Bimba and Vase meshes computed by 3D-EPUG-OVERLAY and
QuickCSG, showing only 3D-EPUG-OVERLAY computing a region correctly.

floats and write them to the text file.
QuickCSG, on the other hand, generated errors much larger than CGAL: in the

worst case, the difference between QuickCSG output and LibiGL was 0.13% of
the diagonal of the bounding-box). [CITATION REMOVED]

3.3.6. Visual inspection:
We also visually inspected the results using MeshLab. Even though small

changes in the coordinates of the vertices cannot be easily identified by visual
inspection (and even the program employed for displaying the meshes may have
roundoff errors), topological errors (such as triangles with reversed orientation,
self-intersections, etc) often stand out.

Even when QuickCSG did not report a failure, results were frequently inconsis-
tent, with open meshes, spurious triangles or inconsistent orientations.

Figure 5 shows the intersection of Bimba and the Vase. The first part is
the complete overlay mesh, as computed by 3D-EPUG-OVERLAY. The second
is a detail of an error-prone output region, computed correctly by 3D-EPUG-
OVERLAY. The third part shows the same region computed by QuickCSG. Note
the errors along the edges.

3.3.7. Rotation invariance:
We also validated 3D-EPUG-OVERLAY by verifying that its result does not

change when the input meshes are rotated. I.e., a pair of meshes were rotated
around the same point, intersected, and the resulting mesh was rotated back. To
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ensure exactness, we chose a rotation angle with rational sine and cosine. We
evaluated all the pairs in Table 2. For each pair, we performed a rotation around the
x axis and, then, a rotation around the y axis (the origin was defined as the center
of the joint bounding-box of the two meshes). We chose rotation angle θ such that
sinθ = 400/10004 and cosθ = 9996/10004. θ ≈ 2.29 degrees.

In all the experiments Metro reported that the resulting meshes had distance
0.000000 w.r.t. the corresponding ones obtained without rotation.

In addition, we intersected each mesh from Table 2 with a rotated version
of itself. This is a notoriously difficult case for CAD systems because the large
number of intersections and small triangles. Each mesh M was rotated around
the center of its bounding-box using the above θ , and intersected with its original
version, using both LibiGL and 3D-EPUG-OVERLAY. In every experiment the
Hausdorff distance between the two outputs was 0.000000. That is, we can quickly
process cases that can crash CAD systems.

3.3.8. Limitations:
Even though the computations are performed exactly, common file formats for

3D objects such as OFF represent data using floating-point numbers. Converting
3D-EPUG-OVERLAY’s rational output into floats may introduce errors since most
rationals cannot be represented exactly. Possible solutions include avoiding the
conversion (i.e., always employing multiple-precision rationals in the representa-
tions), or using heuristics such [37] to try to choose floats for each coordinate so
that the approximate output will not only be similar to the exact one, but also it
will not present topological errors.

A limitation of symbolic perturbation is that the results are consistent con-
sidering the perturbed dataset, not necessarily considering the original one [10].
Thus, if the perturbation in the mesh resulting from the intersection is ignored,
the unperturbed mesh may contain degeneracies such as triangles with area 0 or
polyhedra with volume 0 (these polyhedra would have infinitesimal volume if the
perturbation was not ignored). More details are in [CITATION REMOVED].

3.4. Summary:
3D-EPUG-OVERLAY is an algorithm and implementation to intersect a pair

of 3D triangular meshes. It is simultaneously the fastest, free from roundoff
errors, handles geometric degeneracies, parallelizes well, and is economical of
memory. The source code, albeit research quality, is freely available for nonprofit
research and education at [CITATION REMOVED]. We have extensively tested
it for errors; we encourage others to test it. It is a suitable subroutine for larger
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systems such as 3D GIS or CAD systems. Computing other kinds of overlays,
such as union, difference, and exclusive-or, would require modifying only the
classification step. We expect that 3D-EPUG-OVERLAY could easily process
datasets that are orders of magnitude larger, with hundreds of millions of triangles.
Finally, 3D-EPUG-OVERLAY has not nearly been fully optimized, and could be
made much faster. Indeed, we are currently adapting it to employ an NVIDIA GPU
to further accelerate the computation.
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Table 1: Test datasets.

Mesh Vertices Triangles Polyhedra
(×103) (×103) (×103)

Clutch2kf 1 2 -
Casting10kf 5 10 -
Horse40kf 20 40 -
Dinausor40kf 20 40 -
Armadillo52kf 26 52 -
Camel 35 69 -
Camel69kf 35 69 -
Cow76kf 38 76 -
Bimba 75 150 -
Kitten 137 274 -
Armadillo 173 346 -
461112 403 805 -
461115 411 822 -
RedCircBox 701 1403 -
Ramesses 826 1653 -
Ramesses Rot. 826 1653 -
Ramesses Tran. 826 1653 -
Vase 896 1793 -
226633 1226 2452 -
Neptune 2004 4008 -
Neptune Tran. 2004 4008 -
914686Tetra 66 605 281
68380Tetra 107 1067 506
ArmadilloTetra 340 3377 1602
ArmadilloTetra Tran. 340 3377 1602
518092Tetra 603 5938 2814
461112Tetra 842 8495 4046

* meshes with the suffix Tetra have been tetrahedralized;
* Rot. and Tran. mean, respectively, that the mesh has been rotated or trans-
lated; a Red Circular Box; b tetrahedralized version of the Armadillo mesh.
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Table 2: Pairs of meshes intersected.

# triangles (×103) Grid size
M0 M1 M0 M1 Out G1 G2

a

Casting10kf Clutch2kf 10 2 6 64 2
Armadillo52kf Dinausor40kf 52 40 25 64 4
Horse40kf Cow76kf 40 76 24 64 4
Camel69kf Armadillo52kf 69 52 16 64 4
Camel Camel 69 69 81 64 4
Camel Armadillo 69 331 43 64 4
Armadillo Armadillo 331 331 441 64 8
461112 461115 805 822 808 64 8
Kitten RedCircBox 274 1402 246 64 8
Bimba Vase 150 1792 724 64 8
226633 461112 2452 805 1437 64 8
Ramesses RamessesTrans 1653 1653 1571 64 16
Ramesses RamessesRotated 1653 1653 1691 64 16
Neptune Ramesses 4008 1653 1112 64 16
Neptune NeptuneTrans 4008 4008 3303 64 16
68380Tetra 914686Tetra 1067 605 9393 64 2
ArmadilloTetra ArmadilloTetraTran.3377 3377 61325 64 4
518092Tetra 461112Tetra 5938 8495 23181 64 4

a resolution of the first level grid, second level grid.
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Table 3: Times, in seconds, spent by key steps of 6 versions of 3D-EPUG-OVERLAY .

Version: Vector Ragged Ragged NoAlloc NoAlloc Interval
Allocator: Tcm. a Tcm. a Glibc Tcm. a Glibc Tcm. a

Step
Comp. grid cell b 0.58 0.58 0.77 0.44 0.42 0.10
First pass c 0.39 0.07 0.06 0.06 0.07 0.07
Second pass d 0.04 0.04 0.04 0.05 0.04
Refinement e 0.13 0.06 0.36 0.06 0.36 0.06

List pairs of tri. f 0.17 0.16 0.22 0.15 0.21 0.17
Detect inters. g 81.77 83.48 126.54 66.77 66.71 0.19

Total time grid h 1.10 0.75 1.24 0.60 0.89 0.27
Total time inter. i 81.94 83.64 126.76 66.92 66.93 0.35

a Tcmalloc memory allocator; b time spent determining in which grid cell each input vertex
is; c time spent performing the first pass throught the triangles in order to count the number
of triangles in each cell; d time spent actually inserting the triangles into the cells;
e time spent creating the second level grid; f time creating the list of pairs of triangles that
may intersect; g time testing triangles for intersection; h total time spent creating the
uniform grid; i total time detecting the intersections once the grid has been created.
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Table 4: Comparing the times (in seconds) for detecting pairwise intersections of triangles using
CGAL (sequential) versus using a uniform grid (parallel).

CGAL

# faces (×103) # int.a Int.testsb Time (s)

M0 M1 M0 M1 ×103 ×103 Pre.proc.c Inter.d

Camel Armadillo 69 331 3 14 0.32 0.01
Armadillo Armadillo 331 331 4611 5043 1.27 259.23
Kitten RedC.Boxe 274 1402 3 13 2.33 0.01
226633 461112 2452 805 23 128 7.18 0.08
Ramesses Ram.Tran.f 1653 1653 36 237 12.38 0.17
Neptune Nept.Tran.g 4008 4008 78 647 36.24 0.47

Uniform grid

# faces (×103) # int.a Int.testsb Time (s)

M0 M1 M0 M1 ×103 ×103 Pre.proc.c Inter.d

Camel Armadillo 69 331 3 33 0.06 0.02
Armadillo Armadillo 331 331 50 5351 0.25 63.80
Kitten RedC.Boxe 274 1402 3 27 0.08 0.02
226633 461112 2452 805 23 307 0.16 0.05
Ramesses Ram.Tran.f 1653 1653 36 866 0.16 0.10
Neptune Nept.Tran.g 4008 4008 78 5087 0.27 0.35

a number of intersections detected; b number of intersection tests performed;
c pre-processing time; d time spent testing pairs of triangles for intersection;
e Red Circular Box; f Ramesses Translated; g Neptune Translated.
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Table 5: Times, in seconds, spent by different methods for intersecting pairs of meshes. QuickCSG
reported errors during the intersections whose times are flagged with *. The tetrahedral mesh tests
(last three rows) used only 3D-EPUG-OVERLAY.

Time (s)

3D- Libi- CGAL Quick-

M0 M1 Epug GL Converta Intersectb CSG

Casting10kf Clutch2kf 0.2 1.3 4.2 1.1 0.1*
Armadillo52kf Dinausor40kf 0.1 3.0 38.0 21.5 0.1
Horse40kf Cow76kf 0.1 3.2 51.1 24.2 0.1
Camel69kf Armadillo52kf 0.1 3.2 54.3 25.7 0.1
Camel Camel 13.9 18.0 62.7 230.6 0.9*
Camel Armadillo 0.2 11.7 189.9 80.0 0.3
Armadillo Armadillo 67.0 88.1 339.7 1,198.2 4.1*
461112 461115 0.8 58.9 753.2 473.2 1.1
Kitten RedCircBox 0.3 28.6 819.8 329.6 1.1
Bimba Vase 0.6 58.0 971.7 455.7 1.1
226633 461112 0.9 96.0 1,723.7 905.5 2.2*
Ramesses Ram.Tran.c 1.3 93.0 1,558.8 946.1 2.4*
Ramesses Ram.Rot.d 2.1 122.0 1,577.3 989.8 2.4
Neptune Ramesses 1.2 118.1 3,535.5 1,535.6 4.1
Neptune Nept.Tran.e 2.7 220.2 5,390.7 2,726.2 6.1
68380Tet.f 914686Tet.g 51.3 - - - -
Armad.Tet.h Arm.Tet.Tran.i 263.3 - - - -
518092Tetra 461112Tetra 136.6 - - - -

a time converting the meshes to CGAL Nef Polyhedra; b time intersecting the Nef Polyhedra;
c Ramesses Translated; d Ramesses Rotated; e Neptune Translated; f 68380Tetra;
g 914686Tetra; h ArmadilloTetra; i ArmadilloTetra Translated.
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