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Abstract

Parover2 is a parallel algorithm and preliminary implementation
to compute the area of every nonempty intersection of any face
of one 2D mesh with any face from another mesh over an
overlapping domain. This is the hard part of cross-interpolating
data from one mesh to another, for when the faces one mesh
have an attribute that would be useful for the faces of the other
mesh. Parover2, implemented using a map-reduce paradigm
in Thrust, can quickly process millions of faces. The expected
execution time is linear in the number of intersections, which
is usually linear in the number of input faces. A uniform grid
quickly determines the pairs of input edges that might intersect.
Local topological formulae compute the areas of the output faces
from the sets of their (vertex, edge) adjacencies w/o needing to
compute the faces’ global topologies.

1 Introduction

Suppose that a polygon P has been meshed, or partitioned, into
smaller faces, in two different ways, M0 and M1 for two different
applications. Each mesh is optimal for some application, and
would be suboptimal for the other application. Assume that
the faces of M0 have some property, such as mass, that would
be useful for the faces of M1. (If the density varies, then the
mass is not simply the area.) One quick approximation for
the mass of f ′, a face of M1. is a weighted sum of the masses
of the overlapping faces of M0, with the weights being the
areas of the intersections of f ′ with the overlapping faces of M0.
The compute-bound component is to identify all the nonempty
intersections of any face of M0 with any face of M1, and compute
their areas. This paper presents Parover2, an algorithm and
preliminary parallel implementation for that.

Parover2’s execution time is linear in the number of inter-
sections, which is generally linear in the number of faces. An
initial cull to locate pairs of faces likely to intersect is achieved
with a uniform grid. Parover2 uses local topological formulae
to compute the areas of the output faces (aka outfaces) from
their vertices and half-edges. The algorithm is largely a series
of map-reduce steps, implemented with Nvidia’s Thrust, with
an OpenMP backend.

3D-EPUG-Overlay, Magalhães et al [5, 11, 12, 13, 17] is
a somewhat similar idea. Working in 3D, that finds the com-
plete intersection polyhedra, where we find only areas. However
it directly uses OpenMP, while we use Thrust, so our possi-
ble implementation platform will also include an Nvidia GPU.
3D-EPUG-Overlay also uses rational numbers to completely
prevent roundoff errors. Because of the specialized nature of its
output, Parover2 is much faster. However 3D-EPUG-Overlay
handles geometric degeneracies with Simulation of Simplicity.

Common algorithms for computing intersections include plane
sweep lines (in 2D) and quad or octrees [2, 20]. According to
Audet [1], “the plane sweep strategy does not parallelize effi-

ciently, rendering it incapable of benefiting from recent trends of
multicore CPUs and general-purpose GPUs”, and “While effort
has been expended to parallelize the plane sweep on CPU, most
recently by ([18, 19]), none of the proposed candidates result in
an algorithm amendable to fine-grained SIMD parallelism such
as with GPUs”.

QuickCSG [6] is an efficient parallel intersection algorithm
using a kd-tree index. However, it assumes vertices are in
general position, and does not handle floating point numerical
non-robustness [21], although the user may randomly perturb
the input to help.

CGAL [3] operates on Nef polyhedra, which are boolean
combinations of half-spaces. LibiGL [15] is an exact and parallel
algorithm, Zhou et al.[21], for performing booleans on meshes.
LibiGL is also much faster than CGAL for Nef Polyhedra, but
is still slower than fast inexact algorithms such as QuickCSG.

The simpler problem of computing the area of the intersection
of two polygons is useful in interference detection in robotics.
However, the usual solution is either more complicated; it first
computes the intersection polygon, and then its area, or it’s
simpler and tests only whether the intersection is nonempty.

While there appears little archival literature on directly com-
puting intersection areas, some web pages exist. That is, while
every CAD package can perform boolean operations on poly-
gons and polyhedra, and then can compute mass properties,
optimizing the composition of those two functions is rather rare.
Nevertheless, Hardy [14] gives an algorithm with code for the
area of the intersection. Polylib [16] operates on objects that
are unions of d-D polytopes. Edwards [7] describes how to find
the area of the intersection of two polygons with a graphing
calculator.

2 Data structures

Parover2 reads the input meshes in one format, and computes
the output mesh in a different, simpler, format. Each format
is sufficient for the necessary computation. The input mesh
format is designed to compute the outface vertices. The outface
format is designed compute the outface areas.

The input mesh format is the set of its edges,
{(x0, y0, x1, y1, fl, fr)}. (x0, y0), (x1, y1) are the coordinates of
one edge’s end vertices. fl and fr are the identifiers (ids) of
its adjacent faces to the left and the right. There are no lists,
and no explicit vertices, explicit faces, or higher level topology
such as the edges around a vertex, the edges around a face,
nested faces, etc. That is, although several edges may contain
the same vertex, we do not record this. We do not record in
one place all the vertices contained in one face, etc. This info
could be derived if we needed it, which we don’t. This is simpler
than quad edges and doubly connected edge lists, because it
permits fewer operations (but it permits all the operations that
we need).

The outface format is even simpler; it does not even store
complete edges. It is a set of edge-vertex incidences, as de-
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scribed later. However it permits the local topological formulae
described next to compute the outface areas.

3 Local topological formulae

This section will motivate the power of local topological for-
mulae, by presenting an algorithm for computing the area of
a face from either the set of its vertex positions and their
neighborhoods, or the set of its vertex-edge incidences. The
neighborhood of a vertex is defined as the direction vectors of
its adjacent edges, and which one of the two sectors that they
define is inside the face. This algorithm does not use the lengths
of the adjacent edges, nor the vertices at their other ends. It
resembles Green’s theorem, except that, while Green’s theorem
computes a polygon’s area by integrating along its boundary
edges, we use only the boundary vertices.
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Figure 1: Diagonal recti-
linear polygon

The general formula is given in
[8]. For a simple example, con-
sider a diagonal rectilinear face
f , as shown in Figure 1. All
edges have slope +1 or −1. The
face may have multiple compo-
nents and nested islands and holes.
Each vertex will be assigned a sign
bit, s, determined by its neigh-
borhood. Then the area of this
isothetic diagonal f is

∑
i six

2
i .

For Figure 1, the area would be
0− 1 + 4− 9 + 16− 4 = 6. As this formula is a map-reduction,
it may be efficiently computed in parallel.

The proof is by induction. It is clearly true if f is a rect-
angle. If two rectangles with a common edge are united and
those common edges (and four vertices) removed, then the area
formula remains valid. In this way, any face may be built up.
Any mass property, such as a higher order moment, may be
likewise computed.

There are many formulae using different input formats. An-
other face area formula map-reduces the set of oriented edges,
summing the signed areas subtended by the edges and the
coordinate origin.

We compute the outface areas with a formula using the set of
(vertex, edge) adjacencies. Each vertex neighborhood comprises
two adjacencies. For vertex v with adjacent edges e1, e2, they
would be (v, ê1) and (v, ê2). The normalization is because
we know the direction of the edge but not its length. One
adjacency is represented as the triple (v, t̂, n̂). v is the position
of the vertex. t̂ is a unit direction vector along the edge. n̂ is a
unit direction vector perpendicular to t̂ pointing to the inside
side of the edge. n̂ adds only one bit of information.

The area of the general f is
(∑(

v · t̂
)
(v · n̂)

)
/2. This is

proved by dropping a perpendicular from the origin to each
edge of f , and partitioning f into 2n right triangles. The
vertices of one triangle will be the origin, a perpendicular foot,
and one of the two end vertices of that foot’s edge. Then, the
signed area of one such triangle is

(
(v · t̂)(v · n̂)

)
/2 .

The above data structure is simpler, smaller, and faster than
the well known half-edge data structure of the doubly connected
edge list, since we do not use both ends of an edge together. It
is much simpler to compute outfaces in this format than to also
compute their edges.

4 Outface area computation strategy

Each outface is the intersection of two input faces (aka infaces),
one from each input mesh. An outface is identified by the

ordered pair of those two infaces. Parover2 computes the out-
face areas by a map-reduction over the vertex-edge adjacencies.
As it processes the input, it does not compute each outface all
at once. Rather, it will compute an output vertex with all its
vertex-edge adjacencies, then another output vertex with all
its vertex-edge adjacencies, and so on. So, it accumulates the
outface areas incrementally. It never computes the output edges.
(If necessary, the adjacencies could be paired up to produce the
output edges.)

There are two types of output vertex-edge adjacencies: an
adjacency of one of the input meshes Mi, and an intersection
of an edge of M0 with an edge of M1.

4.1 Output adjacencies that are input adjacencies
1. Call the input adjacency, h.
2. Without loss of generality, assume that h is in mesh M0.
3. h is adjacent to two infaces, call them fl and fr.
4. Let the vertex of h be v. v is contained in some face, say

f ′, of the other mesh, M1.
5. h is part of the two outfaces (fl, f

′) and (fr, f
′).

6. The normal vector component of h may need to be negated
depending on which outface we are considering.

7. Parover2 will compute an area component for the two
outfaces. Each component is of the form (outface-id, area-
component).

8. The total area of each outface is obtained by summing its
components, as described later.

There are three nontrivial parts here: the tedious process of get-
ting the several different special cases correct, storing the area
components, and point location. Storing the area components
is complicated. We are computing and storing the compo-
nents in parallel. We do not know in advance the ids of the
nonempty outfaces. We do not know in advance how many com-
ponents each outface will have (aka how many vertices it has).
Parover2 uses a vector of the (outface-id, area-component)
pairs as follows.

1. The size of the vector is four times the number of input
edges in the two meshes combined.

2. The i-th input edge will create output pairs numbered 4i
to 4i+ 3. So, the output pairs can be written in parallel
w/o needing semaphores or locks. Specifically, we define a
function that maps from index i to output pair i, and then
map that function over the index vector 0, 1, 2, ....

3. Finally we sort the vector by outface-id and perform a
parallel reduce-by-key, which sums the area components
with the same outface-id.

4. The slowest step is the sort. However, every alternative,
such a hash table keyed by the outface-id, or linked lists,
appears worse.

For locating which face of M1 contains v, we use a uniform
grid, aka bucket sort. The expected query time is constant per
point location, independent of the map size. The preprocessing
algorithm goes as follows:

1. Determine the maximum linear size of any face in either
direction (x or y).

2. Superimpose a grid of g × g cells over the meshes. g is
chosen so that a cell is slightly taller and wider than the
largest face.
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3. For each input edge e, compute a superset of size 4 of the
grid cells that intersect e. Because of the choice of g, the
actual number of cells intersecting e ranges from 1 to 3.
For programming ease, we circumscribe e with a box and
use all the cells intersecting that box. This avoids exactly
computing—in parallel—the intersecting cells, which would
require identifying, in constant time, the i-th intersecting
cell.

4. Working in parallel over the edges, form a vector of these
pairs.

5. Sort it by cell id.
6. Use a parallel scan function to find the start of each cell’s

edges in the sorted vector, and the number of edges in each
cell.

The total preprocessing execution time is linear in the input
size because (a) for sorting by cell ids, a linear-time radix sort
is applicable, and (b) the other steps are linear in the number
of pairs (and fast).

The query algorithm to locate which face mesh M1 contains
point q from mesh M0 is this:

1. Compute which grid cell contains q. (This is simply two
modulo operations on q’s coordinates.)

2. Process the edges of M1 that are in the same cell as q as
follows, in parallel over the edges, as follows. (a) Run a
vertical line up and down from q through the cell. (b) Skip
edges that are not intersected. (c) For each edge that is
intersected, compute the vertical distance from q to the
edge. (d) Return the absolutely closest edge.

3. If no edge was vertically above or below q, then the con-
taining face is the external face. This is because the grid
size is large enough that it is impossible to a face to extend
beyond a cell in both directions.

4. Otherwise the containing face is one of the two faces ad-
jacent to the closest edge. Which one is determined by
whether the edge is above or below q and whether its first
vertex is to the left or right of its second vertex.

The execution time to query q is linear in the number of edges
in its grid cell. Since the cell size is slightly larger than the
largest face, that depends on the ratio between the average
face size and the largest face size, which is a constant < 4 for
many common distributions of face sizes, including uniform and
Gaussian. So, the expected query time per point is constant.

4.2 Output adjacencies that are the intersections
of two input edges

This case differs from the previous case in two ways. First, we
must compute the intersections of edges from M0 with edges
from M1. Each intersection is a vertex of four outfaces and
generates two adjacencies per face, for a total of eight outface
adjacencies per intersection. Second, there is no need for point
location because here we know the outface ids.

Note that two edges that intersect each other must both
intersect the same grid cell, but not all pairs of edges in the
same cell will intersect. The edge pairs in a cell can be indexed
so that the i-th pair can be determined in constant time. If the
edges are independently and identically distributed, then the
probability of a pair of edges in the same cell intersecting each
other is constant, independent of the total number of edges.

The algorithm goes as follows.
1. Compute the maximum possible number of edge intersec-

tions per cell and allocate space for a vector of intersections

from all cells.
2. Populate that vector with the pairs of possibly intersecting

edges. Note that this parallelizes because of the above
observations. I.e., we can determine in constant time the
i-th element of that vector.

3. Filter that vector by whether or not the edges do intersect.
4. Map the resulting vector into a vector of octuples of outface

adjacencies.
5. Sort, reduce by key, and sum.

This parallelizes well. The expected execution time is linear in
the number of input edges. An adversary could generate bad
input cases, but other data structures such as quadtrees can
also be made to perform poorly, and they don’t parallelize well.
We do not believe that real data would have this problem.

5 Implications of the target platform

The design choices in Parover2 are motivated by the goal
of eventual execution on an Nvidia GPU. (Nvidia was chosen
because it is currently by far the most common and most cost-
effective GPU.) A GPU executes thousands of threads in parallel,
with the threads grouped by 32 into warps. All 32 threads in
one warp simultaneously execute the same instruction, ideally
on data from successive words in memory. The only exception
is that some threads in the warp may be idle.

Efficient algorithms for a GPU prefer data structures that
are arrays of plain old data types, not even arrays of structures.
Conditionals hurt performance. Pointers are strongly to be
deprecated. Even randomly accessing elements is not ideal.

Therefore complex and adaptive data structures such as sweep
lines and trees are very difficult to parallelize. This is especially
true when using hundreds or thousands of threads. All this gets
much worse in 3D. Hence our preference for simple flat data
structures like uniform grids.

Simple flat data structures have another advantage; they
are more compact; they take less space. In many parallel
programs, the I/O time to read and write the data dominates
the computation time. Although hosts and devices have a lot
of memory as described above, it is slow, but they have small
fast caches and register banks.

6 Implementation

Parover2 is implemented in C++ on a dual 14-core 2.0GHz
Intel Xeon with 256GB of memory, running Ubuntu Linux.
The parallel environment is Nvidia’s Thrust, which is a set of
parallel C++ classes and routines that map and reduce vectors.
It is a parallel extension of parts of the Standard Template
Library and Boost[4]. Thrust is reasonably mature, and seems
to represent a good medium being a high level abstraction and
being efficient. Thrust has several possible backends, including
OpenMP and CUDA. Parover2 currently uses OpenMP, with
CUDA support being debugged.

Our initial test cases are pairs of overlapping square meshes.
Times are shown in Table 1. The test times start after the
data has been read. The additional time to read the data, from
ASCII files stored in real memory, is about 80% of the processing
time. If the identical job is rerun, the time may vary by 10%.
The parallel speedup on this system with 28 threads and 56
hyperthreads was a factor of 6.3. One limiting factor is that
the processors automatically overclock from 2.0GHz to 3.2GHz
when lightly loaded, but run more slowly when executing many
parallel threads. This is typical of multicore CPUs, and serves
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No. input edges No. output faces Elapsed time (sec)
220 400 .023

3,720 3,600 .032
40,400 40,000 .082

361,200 360,000 .47
4,004,000 4,000,000 6.2

Table 1: Elapsed time to compute intersection areas of two
meshes

to limit the heat. The CPU time increased massively with
the parallelism; for 56 threads it was 198 CPU seconds. This
is irrelevant because the usual metric for parallel programs is
elapsed wall-clock time.

7 Extension to 3D

The goal of this project is to compute the volumes of all the
intersecting regions from two overlaid meshes in 3D. The mesh
polyhedra may be tetrahedra, hexahedra, or other polyhedra.
The conceptual extension is small; the difficulties mostly prac-
tical. Indeed, we expect that the tools that make Parover2
work, i.e., local topogical formulae and uniform grid, will be
even more valuable in 3D, in Parover3.

Each input mesh for Parover3 is a set of faces, each tagged
with the ids of its adjacent polyhedra. The output is the set of
the pairs of input polyhedra that have a nonempty intersection,
together with that intersection’s volume.

Our volume formula for a polyhedron is a map-reduce over
the set of 3D adjacencies. A 3D adjacency is a 4-tuple (v, t̂, n̂, b̂),
where v is the position of a vertex, t̂ is a unit vector tangent
to an adjacent edge, n̂ is a unit vector normal to t̂ and in the
plane of a face adjacent to that vertex and edge, and b̂ is a unit
binormal vector, normal to both t̂ and n̂ and pointing towards
the interior of that face.

If v has k adjacent edges, then it will have 2k adjacencies.
The volume of the polyhedron is

(∑
((v · t̂)(v · n̂)(v · b̂)

)
/6. The

unnecessity of any global topological info, even complete edges
or faces, makes this formula easier to apply to the intersection
of two 3D meshes.

Union3 [9, 10] is another parallel algorithm and implemen-
tation that demonstrates the validity and efficiency of these
ideas. Union3 computes the volume of the union of millions of
congruent isothetic cubes. When the cubes’ positions are i.i.d.,
the expected execution time is linear in the number of cubes,
even if the number of face-edge and face-face-face intersections
grows superlinearly. The reason is that only those intersections
that are not inside any input cube become output vertices. That
number grows only linearly. When a cell is completely inside a
cube, the possibly superlinear number of intersections inside it
are never computed. A more detailed theoretical analysis, with
implemention details and test results is given in the references.
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