Intersecting maps

Algorithm: PAROVER2

M, and a face from M.

» Applications in CAD, GIS, statistics, etc.

polygons from state populations.

» Challenges
»Special cases
»Big datasets

- § Water Resource Regions

‘. s
© S Paclie

MNorthwest |

‘ '|_I

N,

Up':l;n?r
Mississippi |

e ; s g
sas-White-Red - |
I WL

Texas-Gulf .L‘.

3

| Caribbean
RS D2

f I.'III
L? (\k Great A

r h s
 California _S8fs
\ . ol

........

Source: USGS

» Expected linear execution time

» Grid indexing: efficient parallel uniform grid
» Computation with local information.

» Parallel: for multi-core computers

»Simple flat data structures: good for GPUs.

Data representation

> “Soup” of edges:
» Oriented edges: { (XY XY ,f . f) b

the edge.

>Supports:
‘/Multiple components
v Nested components
X Self intersections _, contradictions

» Input: 2 polygonal maps (planar graphs) M and M.

» Objective: Efficiently compute the area of every
nonempty intersection of a face (polygon) from map

»Example: estimate populations of water resource

»Implemented using a functional paradigm with
NVIDIA's Thrust library:
» High-level implementation
»Can be targeted to different backgrounds:
OpenMP, TBB, sequential, CUDA.

>f, and f are the ids of the two faces bounded by

\ 4 @ @ \ 4 v Y

W. Randolph Franklin?, Salles V. G. Magalhaes?

Local topological formulae
» Power of local topological formulae:

» Area of a face from either:
> Set of vertex-edge incidences
»>\ertex positions and neighborhood, e.g.
* Restricting edge slopes: 1 or -1
* Each vertex: sign bit (neighborhood)
eArea=3sx’=0-1+4-9+16-4

(2,3)

(1,0) (3,0)
> Similar formulae exist for general polygons.

» PAROVER2 uses following formula:
»Each vertex v has two adjacencies
>: the unit direction along the edge
»1: unit direction perpendicular to vand t
pointing to the inside of the edge

A=Y (vot)(von)+2

»Requires little information = easy to
compute (and parallelize)

Outface area computation

» Performed with a map-reduce

»Process input and compute each output vertex
with all its vertex-edge adjacencies. Two types:
» Adjacency of one of the input maps.
» Adjacency generated by an intersection of a
pair of edges from the two input maps.
» Outface areas are accumulated.

Algorithm: output adjacencies that are
Input adjacencies
1.Input adjacency: h, w.l.o.g., hin M,

2.h is adjacent to two faces 1,f
3.Vertex of h: v-—vis in a face f" of M
4.h is part of two outfaces: (f,f’) and (f,f)

5.Normal vector of h may need to be
negated

6.Area component (outface-id, area)
computed for each outface

/. Total area of each outface obtained by
summing its components

» Nontrivial parts:
> Special cases
> Storing area components
~ Point location

Storing area components

» Challenges:
~Computing and storing components in
parallel.
~|ds of non-empty outfaces: unknown in
advance
~How many components each outface has:
unknown in advance

Storing area components

1.Size of the vector: 4x the number of
input edges in the two meshes
combined.

2.The I-th input edge will create output
pairs numbered 4/ to 4/+3 — no need for
synchronizations.

3.Vector sorted by outface-id and
reduced-by-key.

(slowest step: sort — no better alternative
found yet)

J-

Point location

»Input pre-processed in linear time. Queries performed in
expected constant time.

Point location: pre-processing

1.Create a g x g grid as index. g is chosen s.t. a cell
could contain the largest face.

2.For each edge e, compute the superset of size 4 of the
grid cells that intersect e. (for simplicity: use a bounding-
box)

— 3.In parallel: create a vector of pairs (cell, edge)

4.Sort it by cell id

5.Use a parallel scan to find the start of each cell in the
vector

Point location: query
Input: query point g from M, (wlog.)
1.Compute grid cell ¢ containing q.
2.Find the edge e from M_ in ¢ that

intersects a vertical ray from q at
the closest point.

3.If e does not exist — g is in the
exterior.

4.0therwise, g is in one of the two
faces adjacent to e.

Adjacencies that are intersections

»Computing the adjacencies generated by the intersection of

two input edges: differs in two ways from previous case.

1. Intersections of edges have to be found. One intersection:
vertex of four outfaces and eight adjacencies.

2.Point location is not necessary (can be determined by the
intersection).

Algorithm: output adjacencies that are intersections of
two input edges

1.Compute the maximum possible number of edge
Intersections per cell and allocate a vector V for all
Intersections.

2.Populate V with the pairs of possibly intersecting
edges. The /-th element in V can be found in O(1) time.

3.Filter V by whether or not the edges do intersect.

4.Map the resulting vector into a vector of octuples of
outface adjacencies.

5.Sort, reduce by key, and sum.

Performance experiments

»Test data: overlapping square meshes.
»Dual 14-core 2.0 GHz Xeon, 256 GB of RAM
»NVIDIA’s Thrust + OpenMP backend

> Parallel speedup of 6.3x (Turbo Boost reduces the speedup)
»Validate output by looking at computed areas.

input edges # output faces Elapsed time (sec)

220 400 0.023

3,720 3,600 0.032
40,400 40,000 0.082
361,200 360,000 0.47
4,004,000 4,000,000 6.2

Conclusions and future work

»Simple fast algorithm for computing the area of intersections.
»High-level functional programming style: easily (?) portable
code.

» Extension to 3D: volume of intersecting polyhedra.

V=y(voi)(ven)(veb)+6

»Small conceptual extension, but practical challenges.
»We've been developing other software with similar ideas. E.g.
3D-EPUG-OverI Union3, PinMesh

Acknowledgements

CAPES

