
Intersecting maps Point location

Computing intersection areas of overlaid 2D meshes
W. Randolph Franklin1 , Salles V. G. Magalhães2

AcknowledgementsAcknowledgements

Local topological formulae

Power of local topological formulae:

Area of a face from either:
Set of vertex-edge incidences
Vertex positions and neighborhood, e.g.
● Restricting edge slopes: 1 or -1
● Each vertex: sign bit (neighborhood)

● Area = ∑s
i
x

i

2 = 0 - 1 + 4 - 9 + 16 - 4

 Similar formulae exist for general polygons.
PAROVER2 uses following formula:
➢Each vertex v has two adjacencies
➢ : the unit direction along the edge
➢ : unit direction perpendicular to v and

pointing to the inside of the edge

Requires little information → easy to

compute (and parallelize)

Performed with a map-reduce
Process input and compute each output vertex

with all its vertex-edge adjacencies. Two types:
Adjacency of one of the input maps.
Adjacency generated by an intersection of a

pair of edges from the two input maps.
Outface areas are accumulated.

Conclusions and future workConclusions and future work

Input pre-processed in linear time. Queries performed in
expected constant time.

Computing the adjacencies generated by the intersection of

two input edges: differs in two ways from previous case.

1. Intersections of edges have to be found. One intersection:

vertex of four outfaces and eight adjacencies.

2.Point location is not necessary (can be determined by the

intersection).

Test data: overlapping square meshes.
Dual 14-core 2.0 GHz Xeon, 256 GB of RAM
NVIDIA’s Thrust + OpenMP backend
Parallel speedup of 6.3x (Turbo Boost reduces the speedup)
Validate output by looking at computed areas.

 Algorithm: PAROVER2

Input: 2 polygonal maps (planar graphs) M
0
 and M

1
.

Objective: Efficiently compute the area of every

nonempty intersection of a face (polygon) from map

M
0
 and a face from M

1
.

Applications in CAD, GIS, statistics, etc.

Example: estimate populations of water resource

polygons from state populations.

Challenges
Special cases
Big datasets

Expected linear execution time
Grid indexing: efficient parallel uniform grid
Computation with local information.
Parallel: for multi-core computers
Simple flat data structures: good for GPUs.

Implemented using a functional paradigm with

NVIDIA's Thrust library:
High-level implementation
Can be targeted to different backgrounds:

OpenMP, TBB, sequential, CUDA.

“Soup” of edges:

Oriented edges: { (x
0
,y

0
,x

1
,y

1
,f

l
,f

r
) }.

f
l
and f

r
 are the ids of the two faces bounded by

the edge.

Supports:
Multiple components
Nested components
× Self intersections  contradictions

Outface area computationOutface area computation

1Rensselaer Polytechnic Institute, USA , Universidade Federal de Viçosa, Brazil2

NoveltiesNovelties

Data representationData representation

0 and 2 cannot be both on
the negative side of a-b

Performance experimentsPerformance experiments

input edges # output faces Elapsed time (sec)

220 400 0.023
3,720 3,600 0.032

40,400 40,000 0.082
361,200 360,000 0.47

4,004,000 4,000,000 6.2

A=∑(v ∘ t̂)(v∘ n̂)÷2

V=∑(v ∘ t̂)(v∘ n̂)(v ∘ b̂)÷6

Algorithm: output adjacencies that are
input adjacencies

1.Input adjacency: h , w.l.o.g., h in M
0

2.h is adjacent to two faces f
l
,f

r

3.Vertex of h: v -– v is in a face f’ of M
1

4.h is part of two outfaces: (f
l
,f’) and (f

r
,f’)

5.Normal vector of h may need to be
negated

6.Area component (outface-id, area)
computed for each outface

7.Total area of each outface obtained by
summing its components

Algorithm: output adjacencies that are
input adjacencies

1.Input adjacency: h , w.l.o.g., h in M
0

2.h is adjacent to two faces f
l
,f

r

3.Vertex of h: v -– v is in a face f’ of M
1

4.h is part of two outfaces: (f
l
,f’) and (f

r
,f’)

5.Normal vector of h may need to be
negated

6.Area component (outface-id, area)
computed for each outface

7.Total area of each outface obtained by
summing its components

Nontrivial parts:
➢ Special cases
➢ Storing area components
➢ Point location

Storing area components
1.Size of the vector: 4x the number of
input edges in the two meshes
combined.

2.The i-th input edge will create output
pairs numbered 4i to 4i+3 → no need for
synchronizations.

3.Vector sorted by outface-id and
reduced-by-key.

(slowest step: sort – no better alternative
found yet)

Storing area components
1.Size of the vector: 4x the number of
input edges in the two meshes
combined.

2.The i-th input edge will create output
pairs numbered 4i to 4i+3 → no need for
synchronizations.

3.Vector sorted by outface-id and
reduced-by-key.

(slowest step: sort – no better alternative
found yet)

Storing area componentsStoring area components

Challenges:
➢ Computing and storing components in

parallel.
➢ Ids of non-empty outfaces: unknown in

advance
➢ How many components each outface has:

unknown in advance

Point location: pre-processing
1.Create a g x g grid as index. g is chosen s.t. a cell
could contain the largest face.

2.For each edge e, compute the superset of size 4 of the
grid cells that intersect e. (for simplicity: use a bounding-
box)

3.In parallel: create a vector of pairs (cell, edge)
4.Sort it by cell id
5.Use a parallel scan to find the start of each cell in the
vector

Point location: pre-processing
1.Create a g x g grid as index. g is chosen s.t. a cell
could contain the largest face.

2.For each edge e, compute the superset of size 4 of the
grid cells that intersect e. (for simplicity: use a bounding-
box)

3.In parallel: create a vector of pairs (cell, edge)
4.Sort it by cell id
5.Use a parallel scan to find the start of each cell in the
vector

Point location: query
Input: query point q from M

0
 (wlog.)

1.Compute grid cell c containing q.
2.Find the edge e from M

1
 in c that

intersects a vertical ray from q at
the closest point.

3.If e does not exist → q is in the
exterior.

4.Otherwise, q is in one of the two
faces adjacent to e.

Point location: query
Input: query point q from M

0
 (wlog.)

1.Compute grid cell c containing q.
2.Find the edge e from M

1
 in c that

intersects a vertical ray from q at
the closest point.

3.If e does not exist → q is in the
exterior.

4.Otherwise, q is in one of the two
faces adjacent to e.

Adjacencies that are intersectionsAdjacencies that are intersections

Algorithm: output adjacencies that are intersections of
two input edges

1.Compute the maximum possible number of edge
intersections per cell and allocate a vector V for all
intersections.

2.Populate V with the pairs of possibly intersecting
edges. The i-th element in V can be found in O(1) time.

3.Filter V by whether or not the edges do intersect.
4.Map the resulting vector into a vector of octuples of
outface adjacencies.

5.Sort, reduce by key, and sum.

Algorithm: output adjacencies that are intersections of
two input edges

1.Compute the maximum possible number of edge
intersections per cell and allocate a vector V for all
intersections.

2.Populate V with the pairs of possibly intersecting
edges. The i-th element in V can be found in O(1) time.

3.Filter V by whether or not the edges do intersect.
4.Map the resulting vector into a vector of octuples of
outface adjacencies.

5.Sort, reduce by key, and sum.

n̂
t̂

t̂

Source: USGS

