
Fast Analysis of Upstream Features on Spatial Networks (GIS
Cup)

Salles Viana Gomes Magalhães

Universidade Federal de Viçosa

Viçosa, MG, Brazil

salles@ufv.br

W. Randolph Franklin

Rensselaer Polytechnic Institute

Troy, NY

mail@wrfranklin.org

Ricardo dos Santos Ferreira

Universidade Federal de Viçosa

Viçosa, MG, Brazil

ricardo@ufv.br

ABSTRACT
We present a fast linear time algorithm that uses a block-cut tree for

identifying upstream features from a set of starting points in a net-

work. Our implementation has been parallelized and it can process

a dataset with 32 million features in less than 8 seconds on a 8-core

workstation. This problem is the 2018 ACM SIGSPATIAL CUP chal-

lenge and presents several applications mainly on the field of utility

networks. Our code is freely available for nonprofit research and

education at https://github.com/sallesviana/FastUpstream

CCS CONCEPTS
• Mathematics of computing→ Graph algorithms;

KEYWORDS
Graph algorithms, GISCUP, parallel programming, spatial networks

ACM Reference Format:
Salles Viana Gomes Magalhães, W. Randolph Franklin, and Ricardo dos

Santos Ferreira. 2018. Fast Analysis of Upstream Features on Spatial Net-

works (GIS Cup). In 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (SIGSPATIAL ’18), November
6–9, 2018, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3274895.3276474

1 INTRODUCTION
The recent increase of the availability of big datasets has motivated

the creation of a variety of applications to analyze this informa-

tion. While the quality of the analysis typically improves as the

amount of available information increases, the computational cost

of processing this data becomes a challenge.

An example of datasets are the spatial networks, which can

be employed to represent utility networks [1]. Analyzing these

datasets is useful, for example, to determine the reliability of the

network (if all the electricity of a region passes through a single

transformer, any problem in this transformer may create a power

outage), to analyze how the resources flow, etc.

The GISCUP [3] is a yearly contest that encourages the inno-

vation and the development of efficient algorithms for the field

of Geographical Information Science. The objective is typically to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5889-7/18/11. . . $15.00

https://doi.org/10.1145/3274895.3276474

perform efficient analysis on big datasets. In 2018, the challenge is

the creation of an algorithm for analyzing the flow of resources in

utility networks. This paper describes our solution to this problem.

1.1 The problem
The utility network is modeled as an graph G where the edges

(always bidirectional) represent the medium (e.g. pipes, wires, etc.)

where resources (e.g. water, gas, electricity, etc.) flow and vertices

represent connections. Also,G contains some special vertices called

controllers (like power plants or water stations) that are the source

of the resources.

Given a utility network and a set of vertices and edges (the

starting points), the upstream identification problem consists in

finding all the features (vertices and edges) that are in a simple path

between a controller and a starting point (in the rest of this paper we

call these output features simply upstream features). An example

of application is to find devices (cables, transformers, etc) that

are between power stations (controllers) and important electricity

consumers (starting points) in an electricity network. This analysis

could be employed to find features that are critical for providing a

reliable source of electricity to hospitals, factories, etc.

Thus, the input of the problem is a graph G composed of a set

of vertices V and edges E, a set of controllers C (which is a subset

of V) and a set of starting points S (which is a subset of the edges

and vertices). In the rest of this paper we call vertices/edges that

are either controllers or starting points important vertices/edges.
Figure 1a presents an example of utility network (represented

by the graph G1) and detaches (on light blue) all the vertices and

edges on a simple path between controllers (vertices on black) and

starting points (the vertex on green).

1.2 Block-cut trees
The key technique employed in our algorithm is to use the block-

cut tree [2] of the network to find the upstream features. Given a

graphG , the block-cut tree ofG (shortened to BC-tree, or BC(G)) is
a tree where the vertices are the blocks (biconnected components)

and articulations of G . There is an edge in BC between each vertex

representing a block and the vertices representing its articulations.

The leaves of a block-cut tree BC(G) are associated to bicon-

nected components of the original graph and any path in BC(G)
alternates vertices associated to biconnected components with ver-

tices associated to articulations.

Figure 1b presents the block-cut tree BC1 of G1. Each vertex

(represented by square rectangles) i of BC1 is labeled with Bi and
the graph features (vertices and edges) that generated this vertex

are drawn inside the corresponding rectangle (in the rest of this

paper we consider these features to be inside the BC-tree vertex) .

https://doi.org/10.1145/3274895.3276474
https://doi.org/10.1145/3274895.3276474
https://doi.org/10.1145/3274895.3276474

SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA S. Viana Gomes Magalhães et al.

c1

c2

x

n

v

 ml

urqpo

s1

i

j k

g h

t
ba

fe
d

(a) Graph G1 of the network

u

m

a b

f

q r

l

ur

t

g

h

r u

k
j

e

a

g

q

c1

e

j
g

k

c1
a

c1

d
e

s1

i

o

j
k

p q

v x

n c2

B1B2
B3B4

B5

B6

B7

B8

B9
B10

B11

B12

B22

B21

B20

B19
B18

B16

B15

B14

B13

B17

v

u v

(b) Block-cut tree BC1 of G1

q r

l

urr u

j

e

q

e

j

c1

d
e

s1

i

o

j
k

p q

v x

n c2

B5

B6

B7

B8

B22

B21

B20

B19
B18 B15

B14

B13

B17

v

u v

(c) After iteratively removing non-important leaves from (b)

Figure 1: Example of utility network. The vertex s1 (on
green) represents a starting point, and c1 and c2 (on black)
are the controllers. Edges and vertices detached on light blue
are upstream from the starting point.

2 THE SOLUTION
2.1 Analyzing the network
We claim that the upstream features can be identified without

explicitly enumerating all the paths between starting points and

controllers (this is typically unfeasible because the number of such

paths could be exponential on the size of the graph).

For simplicity, let us assume the network is connected (other-

wise the problem can be solved independently for each connected

component), that it contains both controllers and starting points

vertices (otherwise the output should be empty), its vertices do

not contain loops and that a vertex cannot be a controller and a

starting point simultaneously. Also, assume starting points can only

be vertices. The special cases where some of these assumptions do

not hold will be considered in Section 2.2.

Because of space limitations, we will present the proofs related

to the process of finding upstream vertex features (the proofs for

edge features are similar).

Claim 1. Let BG be a biconnected graph. Any vertex of BG is on a
simple path between two vertices u,v of BG.

Proof: Since BG is connected, there is at least one simple path

between u and v . Also, given any vertexw (w , u,v) in BG there

are at least two paths Pu (between w and u) and Pv (between w
and v) such that Pu and Pv do not share a vertex (other than w)

and, thus, w is in a u-v path. If all paths between w and u and

between w and v shared a vertex x (s.t. x !=w), then removing x
would disconnect BG and, thus, it could not be biconnected. ■

Claim 2. Let A and C be two vertices of a a block-cut tree BC(G),
where both A and C contain important vertices and at least one of
these important vertices is a controller and another one is a starting
point. If vertex B of BC(G) (B , A,C) is in the unique simple path
connecting A to C , then any vertex of G in B is an upstream feature.

Proof: This is a result of Claim 1. For example, in Figure 1b vertex

B20 is in the unique path between B13 (containing a controller)

and B22 (containing a starting point). Thus, any vertex in B20 is an
upstream feature. ■

Claim 3. Let A and C be the two endpoints of a path P in a block-
cut tree BC(G), whereA andC contain important vertices and at least
one of these important vertices is a controller and another one is a
starting point. If both A and C contain at least one important vertex
which is not an articulation in P , then all features of G in vertices of
P are upstream features.

Proof: Because of Claim 2, we only have to prove that the vertices

in A and in C are upstream features. A (the proof for B is identical)

has at least one important vertex v that is not the articulation a,
which is also present in the neighbor of A in the path. Assume v is

a controller (if v is a starting point the proof is similar). If another

vertex in A is a starting point, because of Claim 1 any vertex in A
will be upstream. Otherwise, a vertex b of B is a starting point and,

since there is a path between b and a and any vertex in A is in a

simple path between v and a, then all vertices in A are upstream.

For example, any vertex ofG1 in path B22B8B7B6B5 in Figure 1b

is an upstream vertex. On the other hand, vertex a in path B3B4B5
is not upstream (the only important vertex in B3 is an articulation

represented by vertex B4 in the path) ■

Claim 4. LetT be a connected subgraph of a block-cut tree BC(G).
AssumeT contains both controllers and starting points, that all leaves
ofT represent biconnected components and that each leaf ofT contains
at least one important vertex that is not an articulation still in a vertex
of T . Then, all vertices of T are in a simple path between a vertex
containing a controller and one containing a starting point.

Fast Analysis of Upstream Features on Spatial Networks (GIS Cup) SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA

Proof: If all leaves contain only controllers (resp. starting points),

then at least one internal vertex V contain a starting point (resp.

controller). Since T is a tree, any vertex will be in a path between

V (containing a starting point) and a leaf (containing a controller).

If some leaves contain controllers and others contain starting

points, any vertex of T will be in a simple path between a leaf

containing a controller and a leaf containing a starting point.

Because of Claim 3, any vertex of G in T will be upstream. For

example, all vertices of G1 (Figure 1a) in Figure 1c are upstream. ■

Claim 5. Let L be a leaf of a block-cut tree BC(G), V (L) be the set
of vertices in L and a be the articulation whose associated vertex A of
BC(G) is adjacent to L. If no vertex of V (L)−a is an important vertex,
then, except possibly for a, no vertex in L is upstream.

Proof: Suppose a vertex v , a in L was on a simple path p between

two important vertices. Since the only vertex of L that may be im-

portant is a, then p would contain a twice and, therefore, p could

not be a simple path. For example, in Figure 1b B1 does not have
any important vertex and, thus, no simple path connecting two im-

portant vertices could contain a vertex (other than the articulation

a) in B1. ■

Claim 6. Let L be a leaf of a connected subgraph T of a block-cut
tree BC(G), V (L) be the set of vertices in L and a be the articulation
whose associated vertex in T is adjacent to L. If no vertex of V (L)−a
is an important vertex, then, the upstream vertices in T are also in
T − L.

Proof: According to Claim 5, V (L) − a does not contain upstream

vertices. Also, even though a may be an upstream vertex L may be

removed because a is an articulation and, thus, a neighbor of L in

T contains a copy of a. If T has upstream vertices it is guaranteed

that L has a neighbor (otherwise T would not have both kinds of

important vertices).

For example, consider Figure 1b. BC1 − B1, BC1 − B16 and BC
contain all the upstream vertices of the original graph. Observe

that, even though B16 has an upstream feature (u), there is a copy
of this feature in other vertices (since u is an articulation). ■

These claims suggest an algorithm (Algorithm 1) to compute the

upstream features in a graph. Observe that after the loop on lines 2

and 5, according to Claim 4 all returned features are upstream from

the starting points. Also, because of Claim 6, the loops on lines 2

and 5 do not remove any feature that should be in the output.

Figure 1c illustrates the state of the block-cut tree BC1 (Figure 1b)

after some leaves are removed by the loops on lines 2 and 5.

The block-cut tree can be created in linear time on the size of

the input (using Tarjan’s algorithm [4] to find the biconnected

components). Also, pruning the tree is linear (on the size of the tree,

which in the worst case is similar to the size of the input graph)

and, thus, in the worst case the cost of the pruning step is similar

to the cost of the creation of the tree. Therefore, the overall time

complexity of the algorithm is linear on the size of the graph.

2.2 Special cases
Instead of separately treating the special cases where edges are

starting points, we decided to reduce a dataset with this special

case to one without it. This is accomplished by replacing each

starting point edge e = (u,v) with two artificial edges e1 = (u, s)

Algorithm 1 Computes the upstream features in a graph G

1: BC ← Create the block-cut tree of G
2: while BC has a leaf L without important vertices do
3: Remove L from BC
4: end while
5: while BC has a leaf Lwhere L has exactly one important vertex

v and v is an articulation still in BC do
6: Remove L from BC
7: end while
8: return the vertices and edges of G inside the vertices of BC

and e2 = (s,v), where s is an “artificial” starting point vertex. This

process is illustrated in Figure 2. Then, each occurrence of the

artificial edges or vertices in the output obtained from the modified

dataset is replaced with the corresponding original starting point

edges. It is clear that the output of this modified input is the same

as the expected solution for the original dataset.

u v su v
e e1 e2

Figure 2: Using artificial edges and vertex (right) to represent
a starting point edge e (left).

Another special case arises when a vertex has a loop. Loops can-

not be in simple paths and, thus, they are ignored by the algorithm.

However, in the GISCUP a path may start at an edge and, thus, a

starting point edge that is a loop can be in a path to a controller

(since the path would start on the edge and, thus, won’t include

the loop vertex twice). This does not have to be explicitly handled

by the algorithm since the creation of the artificial edges/vertices

(as described above) replaces the loop with a cycle and, thus, the

algorithm behaves as desired. This process is illustrated in Figure 3.

u s
e

e1

e2

u

Figure 3: Loop starting point e being replaced with two arti-
ficial edges and a starting point s.

In the GISCUP, vertices were allowed to be simultaneously con-

trollers and starting points. We claim (without proof) that if a

connected component contains at least two different important

vertices and at least one of the vertices is simultaneously a starting

point and a controller, then no special treatment is necessary. The

only special case that needs to be handle separately happens when

the connected component has only one important vertex v which

is simultaneously a controller and a starting point. In this situation

the only output feature generated from this component will be v .

2.3 Implementation details
The algorithm described in this paper has been implemented in C++,

and several optimization techniques were employed to improve its

performance. The performance advantage of each design choice

was carefully evaluated during the implementation process.

First, in the GISCUP contest the global identifier of each feature

was always represented using a 32-digit string (where each digit is

in hexadecimal) which can be encoded using two 64-bit integers.

By employing this kind of representation we were able to not only

SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA S. Viana Gomes Magalhães et al.

Table 1: Running times (in seconds) of key steps of the algorithm considering datasets with varying sizes. Columns BC-tree,
Remove leaves, Select output and Total represent, respectively, the times to create the block-cut tree, iteratively remove leaves
without upstream features, select the upstream features for the output and the total time (excluding the parsing and I/O).

Number of Time (s)

Dataset Vertices Edges Biconnected Articulations Output Graph Tarjan BC-tree Remove Select Total

Components features creation leaves output

EsriNaperville 8465 8302 7859 4677 34 0.001 0.000 0.001 0.000 0.000 0.002

Graph1 1M 16M 1 0 17000000 0.780 0.565 0.013 0.000 0.292 1.650

Graph2 3M 3.3M 1866755 1228925 2566493 0.221 0.599 0.209 0.062 0.057 1.148

Graph3 3M 5M 435857 395566 7128288 0.303 0.769 0.105 0.011 0.091 1.279

Graph4 5M 8M 843737 753966 11312528 1.227 1.603 0.276 0.023 0.193 3.322

Graph5 13M 16M 5414204 4096497 18171594 0.939 3.047 0.842 0.163 0.449 5.440

Graph6 16M 16M 15999979 7998574 39 1.020 2.937 1.216 0.536 0.117 5.826

Graph6_100 16M 16M 15999979 7998574 1142 1.028 2.939 1.445 0.533 0.112 6.057

Graph6_1M 16M 16M 16500369 8498964 7336103 1.064 3.055 2.658 0.444 0.753 7.974

reduce the memory footprint of the algorithm, but also to accelerate

operations like comparing the ids of two features.

Also, the articulation points and biconnected components were

computed using Tarjan‘s algorithm [4]. However, instead of reusing

existing implementations of Tarjan’s algorithm (such as the one

provided by the Boost Graph Library), we decided to reimplement it

for performance purposes. Since Tarjan’s algorithm has to perform

a DFS traversal in the entire graph, our custom implementation

saves time by using this traversal to also identify connected com-

ponents (CCs), ignoring CCs not containing controllers or starting

points, determining whether or not a biconnected component has

a controller (and/or a starting point), etc.

Furthermore, a custom parser has been created to read the JSON

files representing the network. However, all the modules of our

implementation have been designed to be loosely coupled and, thus,

in situations where code reusability and maintainability is more im-

portant than performance, one can easily adapt the implementation

to reuse a regular JSON parser instead of the custom one.

Finally, the implementation has been profiled and the bottlenecks

were parallelized using OpenMP.

3 EXPERIMENTAL RESULTS
The algorithm has been evaluated on a workstation with a 8-core

Intel Xeon CPU E5-2630 v3, 64 GB of RAM, and Linux operating

system. Experiments have been performed on the sample datasets

provided by the GISCUP organizers [3], and we always used 8

threads. Also, we created a variety of random connected graphswith

different number of edges, vertices, starting points and controllers.

Table 1 presents the running times for some of the aforemen-

tioned datasets. Dataset EsriNap. is the sample network “Esri’s

Naperville Electric Network Dataset” provided by the GISCUP or-

ganizers while the other 8 ones were randomly created.

Graph6_100 and Graph6_1M contain, respectively, 100 and 10
6

controllers and starting points. Their network is equal to Graph6’s.

The other inputs contain one controller and one starting point.

Observe that, in general, the most time-consuming step of the

algorithm is the computation of the biconnected components (Tar-

jan’s algorithm). Since this step performs a DFS on the graph (which

is hard to parallelize efficiently because of data dependency) it was

not implemented in parallel. The creation of the graph and of the

block-cut tree, on the other hand, were performed in parallel (for

example, considering Graph6_1M these steps took, respectively, 5

and 2 times longer to run sequentially).

As expected, there is little variation in the time for graphs with

similar sizes. The variation on the time for graphs with different

amounts of starting point and controllers is also small: Graph6_1M

takes 37% longer to be processed than Graph6.

Besides performing experiments to evaluate the running time of

the algorithm, we also manually created a variety of small graphs

to evaluate the correctness of the algorithm. Special cases evaluated

include disconnected graphs, graphs with loops, multiple edges,

graphs where the important vertices are articulations, graphs where

the starting point and controllers were the same vertices, etc.

4 CONCLUSIONS
We presented a fast algorithm for finding features in a network

that are on a simple path between starting points and controllers.

This algorithm presents a running time that is linear on the number

of vertices and edges (its asymptotic running time does not de-

pend on the number of starting points or controllers). Its efficiency

makes it suitable, for example, for interactive applications where

the user wants to quickly visualize the result of a modification on

the network topology.

This research was partially supported by FAPEMIG, CAPES and

CNPq.

REFERENCES
[1] Petko Bakalov, Erik G. Hoel, and Sangho Kim. 2017. A Network Model for

the Utility Domain. In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (SIGSPATIAL’17). ACM,

New York, NY, USA, Article 32, 10 pages.

[2] Frank Harary. 1969. Graph Theory. Addison-Wesley, Reading, MA.

[3] Dev Oliver, Bo Xu, and Yuanyuan Pao. 2018. GISCUP - ACM SIGSPATIAL CUP

2018. (2018). http://sigspatial2018.sigspatial.org/giscup2018 (accessed Aug–2018).

[4] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160.

	Abstract
	1 Introduction
	1.1 The problem
	1.2 Block-cut trees

	2 The solution
	2.1 Analyzing the network
	2.2 Special cases
	2.3 Implementation details

	3 Experimental results
	4 Conclusions
	References

