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 Introduction
● Input: graph (JSON file), set of starting points (vertices/edges) and 

controllers (vertices)
● We call starting points/controllers important vertices
● Output: edges and vertices in a simple path between a controller and a starting 

point.
● Challenge: the number of paths between a pair of vértices may be huge (e.g.: 

exponential in a complete graph) → paths cannot enumerate 

Source: GISCUP 2018
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 Key ideas
● Key idea: avoid enumerating all paths between controllers and starting points.
● Main concepts: articulations, biconnected components, Block-Cut trees
● Articulation: vertex which, when removed, increases the number of connected 

components (CCs) in a graph
● Biconnected graph: graph without articulations
● Biconnected components (or blocks): maximal biconnected subgraphs of a 

graph.
● Important observation: given two vertices a,b of a block B, any vertex of B is 

in an a-b path.

Biconnected graph Non biconnected graph

articulation

Vertex in no a-b path
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 Key ideas
● Block-cut tree of a graph G ( BC(G) ): tree where:

○ Vertices are the blocks and articulations of G  
○ There is an edge between each block B and the articulations from B.

Graph G (articulations in red)
Block-cut tree of G

(rectangles represent the vertices of the 
BC-Tree)
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 Key ideas
● Block-cut tree of a graph G ( BC(G) ): tree where:

○ Vertices are the blocks and articulations of G  
○ There is an edge between each block B and the articulations from B.

Graph G (articulations in red)

Biconnected 
Components
of G

Block-cut tree of G 
(rectangles represent the vertices of the 

BC-Tree)
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 The algorithm
● Consider this Graph with some controllers/starting points.

○ If graph does not contain both → solution is empty
● Graph is connected (otherwise, solve for each connected component)
● Initially, suppose important features can only be vertices.
● Black vertices: controllers
● Green vertex: starting point
● Red labels: articulations
● Features detached in light blue: output features

6
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 The algorithm
● First step: create block-cut tree
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 The algorithm
● Leaves without important vértices → are in no path between important vértices 

→ can be iteratively removed
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 The algorithm
● Some of the removed blocks contain features that should be in the output.

○ This is ok → these vertices are also in neighbor (non-removed) blocks
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 The algorithm
● Now, any vertex of the BC-Tree is in a path between a vertex with a controller 

and one with a starting point.
● Special case: a in B3 won’t be in the output → remove leaves where the only 

important vertex is an articulation still in the tree.
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 The algorithm
● Now, any vertex of the BC-Tree is in a path between a vertex with a controller 

and one with a starting point.
● If a block is in a path between a controller and a starting point → all 

vertices/edges inside this block will be (biconnected comp. property)
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 Summary of the algorithm
1. Find blocks and articulations ( Tarjan’s algorithm: O(V+E) )
2. Create a Block-Cut tree ( O( |blocks + articulations| ) = O(V+E) (worst case) )
3. Iteratively remove leaves w/o important vértices ( O( |blocks + articulations| ) )
4. Output features in the remaining leaves ( O(V+E) )

Total complexity: O( V+E ) 
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 Edge starting points
● Edges may be starting points
● Example (from GISCUP mailing list): vertex 4 and edge 6 are starting points

● Instead of treating this as a special case in the algorithm → modify the input:
○ Starting point edge e=(u,v) → edges e=(u,s), e=(s,v) and s is a starting 

point vertex.

Source: GISCUP 2018

Works 
even 
with 

loops 13
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 Implementation details
● According to the GISCUP website, solutions are ranked by efficiency (total 

elapsed wall clock time) and correctness.
● Several design choices carefully taken based on experiments with varying 

sized datasets.

● Parser: since the total time was evaluated, we created a fast custom parser.
○ Makes some assumptions about the input file. 
○ According to the organizers, feature (vertex/edges) ids are always the 

format “{7FC28536-6F4A-4A9A-B439-1D87AE2D8871}” → we encoded 
them as two 64-bit integers → faster graph creation (which requires map 
lookups) at a small cost of encoding/decoding the ids.

○ Algorithm is loosely coupled → other parsers can be employed if a better 
(reusable) code is desired.
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 Implementation details
● Tarjan’s algorithm for computing biconnected components:

○ We implemented a custom version 
○ Since entire graph has to be traversed:

■ Also finds connected components (CCs)
■ Ignores CCs without both controllers and starting points
■ Labels the biconnected component with information about the types of 

vertices in them (controllers, starting points, regular vertices)
○ Tarjan’s algorithm is typically recursive. We implemented it iteratively to 

avoid stack overflows in big graphs.

● Parallel programming: we parallelized the main bottlenecks of the algorithm 
using OpenMP.
○ Graph (adjacency list) is represented using a ragged array and constructed 

in parallel.
○ Maps with the ids of the vértices (0,1,....V-1) and edges are created in 

parallel.
○ etc.
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 Experimental results
● 8-core Xeon Processor, 64 GB of RAM, Linux OS
● First dataset: GISCUP Esri’s Naperville Electric Network Dataset
● Other ones: randomly created

Find 
biconnected 
components

Create 
Block-cut 
tree

Iteratively 
remove 
leaves from 
BC-tree

Select features 
in remaining 
vertices to 
output
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 Experimental results
● 8-core Xeon Processor, 64 GB of RAM, Linux OS
● First dataset: GISCUP Esri’s Naperville Electric Network Dataset
● Other ones: randomly created

● Bottleneck: I/O and Tarjan’s algorithm (DFS, data dependency, non 
parallelizable)

● Other steps are more parallelizable: 
○ 5x speedup on Graph Creation (largest test case)
○ 2x speedup on the creation of the BC-Tree  (largest test case)
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 Experimental results
● 8-core Xeon Processor, 64 GB of RAM, Linux OS
● First dataset: GISCUP Esri’s Naperville Electric Network Dataset
● Other ones: randomly created

● Little variation on graphs with different amounts of starting points/controllers.
○ Detached: 1 starting point, 1 controller
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 Experimental results
● 8-core Xeon Processor, 64 GB of RAM, Linux OS
● First dataset: GISCUP Esri’s Naperville Electric Network Dataset
● Other ones: randomly created

● Little variation on graphs with different amounts of starting points/controllers.
○ Detached: 100 starting points 100 controllers
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 Experimental results
● 8-core Xeon Processor, 64 GB of RAM, Linux OS
● First dataset: GISCUP Esri’s Naperville Electric Network Dataset
● Other ones: randomly created

● Little variation on graphs with different amounts of starting points/controllers.
○ Detached: 1M starting points, 1M controllers
○ 37% slower than the dataset with 1 controller (same network)
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 Conclusions
● Linear-time algorithm to find upstream features in utility 

networks
● Implemented in parallel
● (asymptotic) Time independent of the number of starting 

points/controllers

More broadly:

We could process a billion element (a full continent) 
dataset in under 10 minutes on a $5000 workstation.   We 
would not need

○ Cloud computing Hadoop  Spark
○ Supercomputing
○ MPI 

21
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 Thank you
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