%ﬁfﬁﬁgﬁ% Rensselaer Polytechnic Institute, Troy NY USA i

S ‘2 Universidade Federal de Vicosa, MG, Brazil \ @ 4

g F 7(/) > -

N NV ¢

103 ‘T 03 A\A 1L Y
Jf¢ ; - t‘k \l, o -,& AA s’/ﬁ\, -
vé\ S AN ey

, S 2 &>

Fast analysis of upstream

features on spatial networks
(winner, 1st place, 2018 GIS Cup)

Salles Viana Gomes Magalhaes, UFV/RPI
W. Randolph Franklin, RPI

Ricardo dos Santos Ferreira, UFV

acm
SIGSPATIAL

Introduction

e Input: graph (JSON file), set of starting points (vertices/edges) and
controllers (vertices)

e \We call starting points/controllers important vertices

e Output: edges and vertices in a simple path between a controller and a starting
point.

e Challenge: the number of paths between a pair of vértices may be huge (e.g.:
exponential in a complete graph) — paths cannot enumerate

:-7_) ™ £
L\,,,Wj‘ (;cl}
\ Vs O \Vertex
Vi Vi v, Vs e
N\ [Vg © Starting Point
‘v\ii;; ;/, b 4 ‘\H 40
V3 Vq Ve V1o O Controller
' Upstream Feature
oO— O —
V11 Sl v12
Input Output

Source: GISCUP 2018

2

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

Key ideas

e Key idea: avoid enumerating all paths between controllers and starting points.
Main concepts: articulations, biconnected components, Block-Cut trees
Articulation: vertex which, when removed, increases the number of connected
components (CCs) in a graph
Biconnected graph: graph without articulations
Biconnected components (or blocks): maximal biconnected subgraphs of a
graph.

e Important observation: given two vertices a,b of a block B, any vertex of B is
in an a-b path.

Biconnected graph Non biconnected graph
Vertex in no a-b path
d
articulation

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

3

Key ideas

)]

X

4

C§> e Block-cut tree of a graph G (BC(G)): tree where:

" o Vertices are the blocks and articulations of G

E o There is an edge between each block B and the articulations from B.

<

—

;f) _ _ . Block-cut tree of G

= Graph G (articulations in red) (rectangles represent the vertices of the
i BC-Tree)

L o <

= | b

<

] a e &

= I P R A C. C

= /

4

— perneessnnsssnnsssnssssssnsbesss s .

% d:

> C e
: —ef
o co 9 r]
<A e
-l

<

Z

<

|_

7))

<

LL

.....................................

Key ideas

— | @f

)]

X

4

C§> e Block-cut tree of a graph G (BC(G)): tree where:

" o Vertices are the blocks and articulations of G

f o There is an edge between each block B and the articulations from B.

<

—

;f) _ _ . Block-cut tree of G

= Graph G (articulations in red) (rectangles represent the vertices of the
i BC-Tree)

Ny &~

5 : b .

<

E a \\

= P R | C....| i€ i

= I O R (e N /

= @ fey—w A e

0 d

5 / C

O Biconnected "~ |: @ f
% COmponentS e f I l
& of G e ; T
-l

<

Z

<

|_

7))

<

LL

.....................................

%)
\
e
o
=
l—
L
pa
-l
<
l_
<
o
%)
Z
O
0
L]
e
S
l_
<
LL]
LL
=
<C
L]
e
l—
%
o
>
LL
O
2
%
>_
—
<
Z
<
|_
%)
<C
LL

The algorithm

Consider this Graph with some controllers/starting points.
o If graph does not contain both — solution is empty
Graph is connected (otherwise, solve for each connected component)
Initially, suppose important features can only be vertices.
Black vertices: controllers
Green vertex: starting point
Red labels: articulations
Features detached in light blue: output features

The algorithm

e First step: create block-cut tree

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

The algorithm

e Leaves without important vértices — are in no path between important vértices
— can be iteratively removed

%)
2
e
o
=
l—
L
Z
-l
<
l—
<
o
%)
Z
@)
0
L]
e
S
l_
<
L]
LL
=
<C
L]
e
l—
%
o
>
LL
@)
2
%)
>_
—
<
p
<
|_
0
<C
LL

The algorithm

e Some of the removed blocks contain features that should be in the output.
o This is ok — these vertices are also in neighbor (non-removed) blocks

%)
2
e
o
=
l—
L
Z
-l
<
l—
<
o
%)
Z
@)
0
L]
e
S
l_
<
L]
LL
=
<C
L]
e
l—
%
o
>
LL
@)
2
%)
>_
—
<
p
<
|_
0
<C
LL

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

The algorithm

e Now, any vertex of the BC-Tree is in a path between a vertex with a controller
and one with a starting point.

e Special case: a in B, won't be in the output — remove leaves where the only
important vertex is an articulation still in the tree.

10

%)
\
e
o
=
l—
L
pa
-l
<
l_
<
o
%)
Z
O
0
L]
e
S
l_
<
LL]
LL
=
<C
L]
e
l—
%
o
>
LL
O
2
%
>_
—
<
Z
<
|_
%)
<C
LL

The algorithm

e Now, any vertex of the BC-Tree is in a path between a vertex with a controller
and one with a starting point.

e If a block is in a path between a controller and a starting point — all
vertices/edges inside this block will be (biconnected comp. property)

11

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

Summary of the algorithm

Find blocks and articulations (Tarjan’s algorithm: O(V+E))

Create a Block-Cut tree (O(|blocks + articulations|) = O(V+E) (worst case))
lteratively remove leaves w/o important vértices (O(|blocks + articulations]|))
Output features in the remaining leaves (O(V+E))

1.
2.
3.
4.

Total complexity: O(V+E)

12

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

Edge starting points

e Edges may be starting points

e Example (from GISCUP mailing list): vertex 4 and edge 6 are starting points

@

starting point

INPUT

é,_,,.i/éx._

2 ”
— »/f";
controller 6
7
4

starting point

OUTPUT

Source: GISCUP 2018
e Instead of treating this as a special case in the algorithm — modify the input:
o Starting point edge e=(u,v) — edges e=(u,s), e=(s,v) and s is a starting
point vertex.

13

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

Implementation details

According to the GISCUP website, solutions are ranked by efficiency (total
elapsed wall clock time) and correctness.

Several design choices carefully taken based on experiments with varying
sized datasets.

Parser: since the total time was evaluated, we created a fast custom parser.

o Makes some assumptions about the input file.

o According to the organizers, feature (vertex/edges) ids are always the
format “{7FC28536-6F4A-4A9A-B439-1D87AE2D8871}" — we encoded
them as two 64-bit integers — faster graph creation (which requires map
lookups) at a small cost of encoding/decoding the ids.

o Algorithm is loosely coupled — other parsers can be employed if a better
(reusable) code is desired.

14

Implementation details

e Tarjan’s algorithm for computing biconnected components:

o We implemented a custom version

o Since entire graph has to be traversed:
m Also finds connected components (CCs)
m Ignores CCs without both controllers and starting points
m Labels the biconnected component with information about the types of

vertices in them (controllers, starting points, regular vertices)
o Tarjan’s algorithm is typically recursive. We implemented it iteratively to
avoid stack overflows in big graphs.

e Parallel programming: we parallelized the main bottlenecks of the algorithm
using OpenMP.
o Graph (adjacency list) is represented using a ragged array and constructed

in parallel.

o Maps with the ids of the vértices (0,1,....V-1) and edges are created in
parallel.

o efc.

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

15

Experimental results

e 8-core Xeon Processor, 64 GB of RAM, Linux OS
e First dataset: GISCUP Esri’'s Naperville Electric Network Dataset
e Other ones: randomly created

%)
2
va
o
=
l_
L
Z
-l
<
l_
<
o
%)
Z
O
0
L]
i
S
l_
<
L]
LL
=

: lteratively Select features

Al CIEEIE remove in remaining

biconnected Block-cut :

components free leaves from vertices to

BC-tree output
Number of Time (s)
Dataset Vertices Edges Biconnected Output Graph Tarjan BC-tree Remove Select Total Total
Components features creation leaves output w/ 10

EsriNaperville 8465 8302 7859 34 0.001 0.000 0.001 0.000 0.000 0.002 0.016
Graph1 1M 16M 1 17000000 0.780 0.565 0.013 0.000 0.292 1.650 6.368
Graph?2 3M 33M 1866755 2566493 0.221 0.599 0.209 0.062 0.057 1.148 2:233
Graph3 3M 5M 435857 7128288 0.303 0.769 0.105 0.011 0.091 1.279 2.842
Graph4 5M 8M 843737 11312528 1.227 1.603 0.276 0.023 0.193 3.322 6.160
Graph5 13M 16M 5414204 18171594 0.939 3.047 0.842 0.163 0.449 5440 10.703
Graph6 16M 16M 15999979 39 1.020 2.937 1.216 0.536 0.117 5.826 10.882
Graph6_100 16M 16M 15999979 1142 1.028 2.939 1.445 0.533 0.112 6.057 11.065
Graph6_1M 16M 16M 16500369 7336103 1.064 3.055 2.658 0.444 0.753 7974 15.049

Experimental results

)]
x
C§> e 8-core Xeon Processor, 64 GB of RAM, Linux OS
mil e Firstdataset: GISCUP Esri’'s Naperville Electric Network Dataset
Z
@l ¢ Other ones: randomly created
<
—
<
o
‘g e Bottleneck: I/0 and Tarjan’s algorithm (DFS, data dependency, non
i parallelizable)
4l ® Other steps are more parallelizable:
) .
= o 5x speedup on Graph Creation (largest test case)
L o 2x speedup on the creation of the BC-Tree (largest test case)
=

Number of Time (s)
Dataset Vertices Edges Biconnected Output Graph Tarjan BC-tree Remove Select Total Total

Components features creation leaves output w/ 10

EsriNaperville 8465 8302 7859 34 0.001 0.000 0.001 0.000 0.000 0.002 0.016
Graphl 1M 16M 1 17000000 0.780 0.565 0.013 0.000 0292 1.650 6.368
Graph?2 3M 33M 1866755 2566493 0.221 0.599 0.209 0.062 0.057 1.148 2:233
Graph3 3M 5M 435857 7128288 0.303 0.769 0.105 0.011 0.091 1.279 2.842
Graph4 5M 8M 843737 11312528 1.227 1.603 0.276 0.023 0.193 3.322 6.160
Graph5 13M 16M 5414204 18171594 0.939 3.047 0.842 0.163 0.449 5440 10.703
Graph6 16M 16M 15999979 39 1.020 2.937 1.216 0.536 0.117 5.826 10.882
Graph6_100 16M 16M 15999979 1142 1.028 2.939 1.445 0.533 0.112 6.057 11.065
Graph6_1M 16M 16M 16500369 7336103 1.064 3.055 2.658 0.444 0753 7.974 15.049

Experimental results

%))
v
C§> e 8-core Xeon Processor, 64 GB of RAM, Linux OS
mil e Firstdataset: GISCUP Esri’'s Naperville Electric Network Dataset
Z
@l ¢ Other ones: randomly created
<
=
<
o
‘g e Little variation on graphs with different amounts of starting points/controllers.
UO) o Detached: 1 starting point, 1 controller
L
4
.
|_
<
L
L
=
Number of Time (s)
Dataset Vertices Edges Biconnected Output Graph Tarjan BC-tree Remove Select Total Total
Components features creation leaves output w/ 10
EsriNaperville 8465 8302 7859 34 0.001 0.000 0.001 0.000 0.000 0.002 0.016
Graphl 1M 16M 1 17000000 0.780 0.565 0.013 0.000 0292 1.650 6.368
Graph?2 3M 33M 1866755 2566493 0.221 0.599 0.209 0.062 0.057 1.148 2:233
Graph3 3M 5M 435857 7128288 0.303 0.769 0.105 0.011 0.091 1.279 2.842
Graph4 5M 8M 843737 11312528 1.227 1.603 0.276 0.023 0.193 3.322 6.160
Graph5 13M 16M 5414204 18171594 0.939 3.047 0.842 0.163 0.449 5440 10.703
Graph6 16M 16M 15999979 39 1.020 2.937 1.216 0.536 0.117 5.826 10.882
Graph6_100 16M 16M 15999979 1142 1.028 2.939 1.445 0.533 0.112 6.057 11.065
Graph6_1M 16M 16M 16500369 7336103 1.064 3.055 2.658 0.444 0753 7.974 15049

Experimental results

)]
x
C§> e 8-core Xeon Processor, 64 GB of RAM, Linux OS
mil e Firstdataset: GISCUP Esri’'s Naperville Electric Network Dataset
Z
@l ¢ Other ones: randomly created
<
=
<
o
‘g e Little variation on graphs with different amounts of starting points/controllers.
UO) o Detached: 100 starting points 100 controllers
(NN
4
)
|_
<
L
LL
=
Number of Time (s)
Dataset Vertices Edges Biconnected Output Graph Tarjan BC-tree Remove Select Total Total
Components features creation leaves output w/ 10
EsriNaperville 8465 8302 7859 34 0.001 0.000 0.001 0.000 0.000 0.002 0.016
Graphl 1M 16M 1 17000000 0.780 0.565 0.013 0.000 0292 1.650 6.368
Graph?2 3M 33M 1866755 2566493 0.221 0.599 0.209 0.062 0.057 1.148 2:233
Graph3 3M 5M 435857 7128288 0.303 0.769 0.105 0.011 0.091 1.279 2.842
Graph4 5M 8M 843737 11312528 1.227 1.603 0.276 0.023 0.193 3.322 6.160
Graph5 13M 16M 5414204 18171594 0.939 3.047 0.842 0.163 0.449 5440 10.703
Graph6 16M 16M 15999979 39 1.020 2.937 1.216 0.536 0.117 5.826 10.882
Graph6 100 16M 16M 15999979 1142 1.028 2.939 1.445 0,533 0112 6,057 11,065
Graph6_1M 16M 16M 16500369 7336103 1.064 3.055 2.658 0.444 0753 7.974 15049

Experimental results

)]
x
C§> e 8-core Xeon Processor, 64 GB of RAM, Linux OS
mil e Firstdataset: GISCUP Esri’'s Naperville Electric Network Dataset
Z
@l ¢ Other ones: randomly created
<
=
<
o
‘g e Little variation on graphs with different amounts of starting points/controllers.
UO) o Detached: 1M starting points, 1M controllers
= o 37% slower than the dataset with 1 controller (same network)
)
|_
<
L
LL
=

Number of Time (s)
Dataset Vertices Edges Biconnected Output Graph Tarjan BC-tree Remove Select Total Total

Components features creation leaves output w/ 10
EsriNaperville 8465 8302 7859 34 0.001 0.000 0.001 0.000 0.000 0.002 0.016
Graphl 1M 16M 1 17000000 0.780 0.565 0.013 0.000 0292 1.650 6.368
Graph?2 3M 33M 1866755 2566493 0.221 0.599 0.209 0.062 0.057 1.148 2:233
Graph3 3M 5M 435857 7128288 0.303 0.769 0.105 0.011 0.091 1.279 2.842
Graph4 5M 8M 843737 11312528 1.227 1.603 0.276 0.023 0.193 3.322 6.160
Graph5 13M 16M 5414204 18171594 0.939 3.047 0.842 0.163 0.449 5440 10.703
Graph6 16M 16M 15999979 39 1.020 2.937 1.216 0.536 0.117 5.826 10.882
Graph6_100 16M 16M 15999979 1142 1.028 2.939 1.445 0.533 0.112 6.057 11.065
Graph6i1M 16M 16M 16500369 7336103 1.064 3.055 2.658 0.444 0.753 7.974 1_§._?)49

Conclusions

e Linear-time algorithm to find upstream features in utility
networks

e |Implemented in parallel

e (asymptotic) Time independent of the number of starting
points/controllers

More broadly:

We could process a billion element (a full continent)
dataset in under 10 minutes on a $5000 workstation. We
would not need

)
X
4
o
=
—
Ll
Z
—
<
—
<
o
n
Z
O
)
LI
o
D
—
<
L
L
=
<
L
o
—
7
o
D
LL
O
&
n
>
—l
<
Z
<
—
7))
<
L

21

Thank you

%)
\
e
o
=
l—
L
pa
-l
<
l_
<
o
%)
Z
O
0
L]
e
S
l_
<
LL]
LL
=
<C
L]
e
l—
%
o
>
LL
O
2
%
>_
—
<
Z
<
|_
%)
<C
LL

Acknowledgement: @ @ : 0
CNPq i @) Y 22

CAPES

