
Data Structures for Parallel Spatial Algorithms on Large Datasets
(Vision paper)

W. Randolph Franklin
ECSE Dept, Rensselaer Polytechnic

Institute
Troy, NY USA

mail@wrfranklin.org

Salles Viana Gomes de
Magalhães

Universidade Federal de Viçosa
Viçosa – MG, Brasil

sallesviana@gmail.com

Marcus Vinícius Alvim
Andrade

Universidade Federal de Viçosa
Viçosa – MG, Brasil

marcus.ufv@gmail.com

ABSTRACT
This paper describes data structures and algorithms for efficient
implementation of GIS operations for large datasets on multicore
Intel CPUs and on NVIDA GPUs. Typical operations are boolean
combinations of polygons and map overlay. Efficient parallelization
prefers simple regular data structures, such as structures of arrays
of plain old datatypes. Warps of 32 threads are required to execute
the same instruction (or be idle). Ideally, the data used by adjacent
threads is adjacent in memory. Minimizing storage is important,
as is accessing it in a regular pattern. That disparages pointers,
linked lists, and trees. That implies that explicitly representing
global topology is bad. If using only local topological formulae is
sufficient, then it will be much faster. E.g., for many operations on a
2-D map (aka planar graph), the set of oriented edges suffices. Each
edge knows the locations of its endpoints and the ids of its adjacent
polygons. Any mass operation, such as area computation or point
location, can be implemented as a map-reduce. All these techniques
also apply in 3D to CAD/CAM and additive manufacturing. Indeed
they are more important there.

CCS CONCEPTS
• Theory of computation→ Computational geometry; Near-
est neighbor algorithms; • Computing methodologies→ Paral-
lel algorithms;MapReduce algorithms;

KEYWORDS
parallel computation, computational geometry, map overlay, local
topological formulae

ACM Reference Format:
W. Randolph Franklin, Salles Viana Gomes de Magalhães, and Marcus
Vinícius Alvim Andrade. 2018. Data Structures for Parallel Spatial Algo-
rithms on Large Datasets: (Vision paper). In 7th ACM SIGSPATIAL Inter-
national Workshop on Analytics for Big Geospatial Data (BigSpatial 2018),
November 6, 2018, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3282834.3282839

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BigSpatial 2018, November 6, 2018, Seattle, WA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6041-8/18/11. . . $15.00
https://doi.org/10.1145/3282834.3282839

1 PARALLEL COMPUTATION
The complex structure of sequential geometry algorithms causes
the design of parallel geometry algorithms to be challenging. Nev-
ertheless, it is apposite because all modern computers, even the
Raspberry Pi and Apple iPhone, are multicore, and perhaps one
third of all PCs have Nvidia GPUs, which are parallel computers.
The Message Passing Interface (MPI) is popular. However this paper
argues that MPI and distributed computing are often not necessary;
that many problems considered to be big data can be processed on
inexpensive lab servers.

We will consider two major parallel computing hardware ar-
chitectures. The first is the multicore Intel Xeon CPU with large
main memory, such as a quad 18-core with 144 hyperthreads and
2TB of main memory. Consider how much data fits into 2TB of
DRAM. The memory is flatly addressable by any of the cores, with
due consideration for caching and thread affinity. That amount of
available shared memory suffices to hold many problems often con-
sidered to need external storage. A typical API for programming in
this model is OpenMP. The cores asynchronously execute separate
instruction streams. The parallel algorithm design requirement is to
be decomposable into many separate threads that minimally write
to the same memory addresses.

The second major parallel computing paradigm uses NVIDIA
Tesla GPU accelerators with 5000 cores and 32GB of memory, such
as the current Volta architecture. Efficient GPU programming re-
quires the algorithm to utilize thousands of lightweight threads.
Every thread in a warp of 32 threads must execute the same in-
struction, or be idle. A serial code fragment will use only 3% of
the cores in its warp; Amdahl’s law controls. Ideally, consecutive
threads access consecutive words in memory.

Many current geometric data structures and paradigms are not
amenable to parallelization. Examples include sweep lines, and
most of the Computational Geometry Algorithms Library (CGAL)
[9]. The first several levels of divide-and-conquer are not very
parallelizable, as are hierarchical data structures like quadtrees
and R-trees. Such data structures are to be deprecated in favor of
flatter more regular ones like Uniform Grids and the Corner Table
representation of triangle and tetrahedron meshes [21, 41].

Expressing algorithms in a map-reduce model can make them
clearer, more concise, and more parallelizable. Reduction has been
a component of high level languages at least since the APL lan-
guage, proposed in 1957 and implemented by IBM in 1965. An
efficient C++ map-reduce implementation targeting NVIDIA GPUs
is CUDA Thrust[35]. Its other possible backends include OpenMP,
Intel Threaded Building Blocks (TBB), and generic CPUs. Thrust is
at a sweet spot of reasonable efficiency combined with hiding low

https://doi.org/10.1145/3282834.3282839
https://doi.org/10.1145/3282834.3282839

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Franklin, Magalhães, Andrade

level CUDA details. A recent more powerful tool is Kokkos [46].
Parallel programming at a lower level is analogous to writing in
assembly instead of in C++.

The range of problems easily solvable with this paradigm, as
shown in the example libraries, is surprising. They include bucket
sort (basically uniform grid), run length encoding and decoding,
lexicographic sorting, discrete voronoi, and welding triangle ver-
tices together, to eliminate redundant vertex positions and shared
edges to produce a connected mesh.

2 PRIOR ART
Current Computational Geometry algorithms, as embodied in, e.g.,
CGAL, often solve the edge intersection problem with data struc-
tures like topological sweep lines[43] with optimal worst case ex-
ecution time under a pair-comparison cost model. More complex
geometrical adjacencies and intersections use a hierarchical tree
structure, either an octree or R-tree[7], but they do not parallelize
easily or well, expecially on GPUs. Various point location algo-
rithms are presented in [10, 36, 38]. One has θ (lgN)2 query time,
another θ (lgN) query time but θ (N 2) preprocessing time and space.
Parallelizing the plane sweep algorithm is discussed in [31]. An
example of modeling one application with multiple overlaid meshes
is a physical dissection anatomical simulator [37]. An application of
Franklin’s local topological formulae to collisionless plasma simula-
tions is presented in [25]. Our ideas are used in [8, 39]. Cluster-based
parallel map overlay is presented in [1]. Problems with designing
geometric primitives in additive manufacturing, where a medium
lattice structure might have billions of elements, are discussed in
[4, 42]. External algorithms for datasets too to large process inter-
nally, including cache-oblivious and optimal I/O, are presented by
[5, 6, 45].

Early studies of parallel computational geometry are [2, 22–24,
32–34, 40, 48]. Large geometric datasets for testing are available at
[3, 26, 44].

3 PRELIMINARIES
Consider a polygon, P , in the 2D plane. Intuitively, it has vertices
and edges. If we restrict the number of each to be finite, then there
will be no problem with infinite sequences, limits and convergence.
The mathematical subject of analysis (used by calculus) is irrelevant.
However some interesting objects are now prohibited. E.g., we
cannot represent a curved object as the limit of a sequence of ever
more complex straight-edges objects.

An edge is a connected segment of a straight line. That is, it can-
not have two separate parts. Do we want to allow it to be infinite?
There are arguments both ways. All Voronoi diagrams have some
infinite edges. However, this makes representing edge lengths and
polygon areas trickier, since they can be infinite also.

An edge has a vertex at each end, aka each edge is adjacent to
two vertices. If we choose to prohibit isolated vertices, then a vertex
is adjacent to one or more edges.

Two edges with a common vertex intersect at that vertex. Do we
want to allow two edges to intersect elsewhere? Usually not, but
allowing that permits star polygons and four new regular, stellated,
polyhedra.

The vertices and edges form the boundary of P , ∂P . (The most
accessible source for the mathematical terms in this paper is Math-
world [47]). P also has an interior, but on which side of ∂P? The
conventional answer is the small finite part, not the large infinite
part, but sometimes we want the other one.

Next, what operations do we want to perform on legal polygons?
The obvious operations on polygons P and Q are union, (P + Q),
intersection, (P ·Q), and exclusive-or, (P ⊕ Q). The difference opera-
tion, A-and-not-B, (P −Q), is a common extra operation. Electrical
engineers like the fact that all the other operations can be defined
in terms of the difference, and so fewer types of electrical compo-
nents are needed in circuit design. Allowing the unary operation of
complement, P ′ or P̄ , opens up some possibilities. It is theoretically
desirable to require that the set of all possible polygons be closed
under these operations. That means that whenever these opera-
tions are applied to one or two legal polygons, then the result is
always a legal polygon. This implies that: (1) The empty set, ∅, and
its complement, the universal set, must be legal polygons. Indeed, ∅
results from intersecting two disjoint polygons. (2) A legal polygon
may have multiple separate disjoint components, which may even
be nested, like an island in a lake on the mainland.

A broader advantage of having the set of legal polygons closed
under union or intersection, and the empty and universal sets being
legal polygons, (and since those operations are both associative),
is that the set of polygons, together with either operation, forms a
mathematical commutative group in abstract algebra. Now, all the
many theorems that have been proved about groups also apply to
polygons under intersection or union.

4 GLOBAL TOPOLOGY OF A POLYGON
When a polygon’s edges form more than one connected component,
then each component of the edges and vertices is called a loop. The
loops’ containment relations form a forest of trees. E.g., consider
the polygon that is the land area of Canada. It has a loop for the
mainland shoreline, a second loop for Baffin Island’s shore, a third
loop for Lake Erie’s shore, a fourth loop for Pelee Island in Lake
Erie, etc. The fourth loop is inside the third loop, which is inside the
first. The second loop is inside none of them, nor are any of them
inside it. Conventionally, we would represent these containment
relations explicitly.

We argue that that is unnecessary, apart from a few special cases.
They include visually rendering a polygon on a graphics device,
i.e., shading each region, and interpolating from loops of elevation
contours to an elevation grid, [19, 20].

5 LOCAL TOPOLOGY OF A POLYGON
There are several advantages to minimizing the number of types of
information to be stored about a geometric object. In the common
case where I/O time dominates, even small constant factors in the
space are important. There may be hard limits in the available stor-
age, e.g., the biggest current GPU accelerator, the Nvidia Tesla V100,
has 32GB of storage. Spilling over that limit would require data to
be paged from the CPU memory, at a serious performance impact.
Minimizing the number of types often simplifies the algorithm.
When many data types are stored, they are often redundant; so con-
sistency relations must be maintained as the data is manipulated.
All this is more important in 3D.

Data Structures for Parallel Spatial Algorithms on Large Datasets BigSpatial 2018, November 6, 2018, Seattle, WA, USA

What relations need to be stored explicitly depends on the in-
tended operation. For the above Boolean operations, viz, union,
intersection, difference, and complement, a mere set of oriented
edges suffices. Start by observing that this representation suffices to
determine whether a point p is contained in the polygon P . Extend
semi-infinite ray up from p and count intersections. p is inside P
iff that number is odd. Simulation of Simplicity (SoS) [12] handles
geometric degeneracies, such as when the ray runs through a vertex.
PinMesh [29] implements this in 3D (which is much harder than
2D). Preprocessing a sample dataset with 50 million triangles took
only 14 elapsed seconds on a 16-core Xeon processor. The mean
query time was 0.6 microseconds.

To compute P + Q , observe that (1) The output vertices are a
subset of the input vertices and all the intersections of input edges.
Those input vertices that are output vertices are exactly those that
are outside the other polygon. (2) To find the output edges, cut the
input edges where they intersect each other. Select those pieces of
each polygon that are outside the other polygon.
Both the input and output are a set of edges, together with the
vertices at their ends. No more global topology is needed.

Indeed, not even the complete edges are always needed. Suppose
that our desired operation is to compute properties of the polygon
such as area and edge length. Then, representing the polygon as a
set of the vertex-adjacencies suffices. For each such adjacency, store
this triple: the vertex’s position, the direction that the edge leaves
the vertex, and which side of the edge is the inside of the polygon.
Each vertex and each edge induces two such triples, but they are not
explicitly associated in this representation. This representation is so
local that it does not even have complete vertices or edges, although
that information could be computed. More details, including the
formulae, are in [14, 34].

To intersect two polygons represented by sets of their edges,
computing the above vertex-edge incidence representation is easier
than computing the output edges, since we do not need to sort the
intersections along each edge to cut it into segments. This provides
an efficiency if we want the area of the union or intersection, but
not the union or intersection itself.

6 FASTER COMPLEX ALGORITHMS
With the simple data structures, we can solve complex geometric
problems with much more efficient algorithms than would other-
wise be possible. Here are some examples.
Union of many polygons: This problem is to find the union
of N polygons; perhaps N = 100M . The usual algorithm to unite N
polygons is to start by uniting pairs, then to unite the pair polygons,
and so on, building up a computation tree of height Θ(lgN). With
our local representation, the output can be computed as follows:
(1) Find all the intersections of any two input edges. (2) Test all those
points, together with all the input vertices, to see which are outside
all the input polygons. (3) Each point that passes is an output vertex.
Determine the two resulting vertex-edge incidences. Depending on
the desired output data structure, combine them in pairs to form
output edges.
For a wide distribution of inputs, the expected time is linear in the
size of the input plus the output.
Area of the union of many polygons: One application of
this is to compute the amount of material removed by a milling tool,

where its path is represented by a set of overlapping polygons. The
usual algorithm goes as follows: (1) Compute the union polygon.
(2) Find its area.

Our algorithm is a simplified version of our explicit union al-
gorithm in the previous section. The difference is that, instead of
pairing up vertex-edge incidences to form edges, apply our polygon
area formula to the vertex-edge incidences. I.e., finding the area of
the union is now faster and simpler than finding the explicit union.
An analysis of the 3D case is [14] and a parallel implementation for
identical cubes, for a multicore CPU is [15].
Planar Graphs (Maps): The above ideas are even more useful
when operating on embedded planar graphs, aka maps or meshes.
The notation is not standardized, so we will use the terms vertices,
also known as nodes and points, edges, and polygons aka faces.
Typical operations include determining which polygon contains a
test point, and intersecting, aka overlaying, two maps to produce a
new map.

The easy way to locate which polygon contains point p is to test
p against every polygon in turn. However, with this representation,
we can run a ray up from p until it hits the first edge, and from
that know which polygon contains p. The expected time is constant
per query point, after expected linear processing time. We have
implemented this in parallel in 3D [29].
Overlaying Maps: Overlaying two maps is also easy with this
representation; see [27, 28]. The expected time, as usual, is linear
in the input maps’ sizes.
Overlaying 3D triangulations: This is conceptually similar,
just harder, especially the implementation, [11, 30], which can pro-
cess tens of millions of triangles much faster than other implemen-
tations.
Cross Areas: This is the problem of computing the areas of all
the nonempty intersections when two maps are overlaid. One appli-
cation is to interpolate a property of the polygons of one map over
to the polygons of the other map. One example is to go from the
known population of each census polygon of one map to estimate
the population of each hydrography polygon of the other map.

This is a beautiful example of the power of the local topological
formulae. The area of an output polygon requires only the set of its
vertices together with the directions of the two edges intersecting
there and which input polygon is on each side of each of those edges.
Each intersection of an input edge of one map with an edge of the
other creates a vertex common to four output polygons. Their areas
can be accumulated in a hash table as the vertices are computed.
The algorithm and implementation are presented in [13, 17, 18].

A 3D algorithm for the volumes of intersecting regions of two
tetrahedrulations is [16].

7 SUMMARY AND FUTURE PLANS
Less is better (up to a point) has many advantages when represent-
ing GIS geometry. We must fight the urge to continually discover
new topological relations. We must fight the urge to unnecessar-
ily complexify simple data structures. The impact extends from
2D and GIS to 3D and Computer Aided Design. We are currently
demonstrating that with new implementations in those domains,
including more on GPUs, and on larger datasets.

This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1117277.

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Franklin, Magalhães, Andrade

REFERENCES
[1] Dinesh Agarwal, Satish Puri, Xi He, and Sushil K Prasad. 2012. A system for GIS

polygonal overlay computation on linux cluster-an experience and performance
report. In Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 1433–1439.

[2] Alok Aggarwal, Bernard Chazelle, Leo Guibas, Colm O’Dunlaing, and Chee Yap.
1985. Parallel Computational Geometry. In Foundations of Computer Science –
25th Annual Symposium. 468–477.

[3] AIM@SHAPE-VISIONAIR Shape Repository 2016. AIM@SHAPE-VISIONAIR
Shape Repository. Retrieved 2016-02-02 from http://visionair.ge.imati.cnr.it//

[4] George Allen. 2014. CAD Implications of Additive Manufacturing (Presentation).
In GDM 2014 Workshop: Geometric Design Facing Manufacturing. http://www.
cs.technion.ac.il/gdm2014/Presentations/GDM2014_allen.pdf (retrieved 2016-11-
15).

[5] Lars Arge and Mikkel Thorup. 2015. RAM-Efficient External Memory Sorting.
Algorithmica 73, 4 (2015), 623–636. https://doi.org/10.1007/s00453-015-0032-8

[6] Lars Arge, D. E. Vengroff, and J. S. Vitter. 1995. External-memory algorithms for
processing line segments in geographic information systems. In Proc. Annual
European Symposium on Algorithms, LNCS 979. 295–310.

[7] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.
Wu. 1998. An Optimal Algorithm for Approximate Nearest Neighbor Searching
in Fixed Dimensions. J. ACM 45, 6 (Nov. 1998), 891–923.

[8] Samuel Audet, Cecilia Albertsson, Masana Murase, and Akihiro Asahara. 2013.
Robust and Efficient Polygon Overlay on Parallel Stream Processors. In Pro-
ceedings of the 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (SIGSPATIAL’13). ACM, New York, NY, USA,
304–313. https://doi.org/10.1145/2525314.2525352

[9] CGAL. 2018. Computational Geometry Algorithms Library. Retrieved 2018-09-09
from https://www.cgal.org

[10] Mark de Berg, Otfried Cheong, and Marc van Kreveld. 2008. Computational
Geometry: Algorithms and Applications (3 ed.). Springer.

[11] Salles Viana Gomes de Magalhães. 2017. Exact and parallel intersection of 3D
triangular meshes. Ph.D. Dissertation. Rensselaer Polytechnic Institute.

[12] Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of Simplicity:
A Technique to Cope with Degenerate Cases in Geometric Algorithms. ACM T.
Graphics 9, 1 (January 1990), 66–104.

[13] Wm Randolph Franklin. 1990. Calculating Map Overlay Polygon’ Areas With-
out Explicitly Calculating the Polygons — Implementation. In 4th International
Symposium on Spatial Data Handling. Zürich, 151–160.

[14] W. Randolph Franklin. 2004. Analysis of Mass Properties of the Union of Millions
of Polyhedra. In Geometric Modeling and Computing: Seattle 2003, M. L. Lucian
and M. Neamtu (Eds.). Nashboro Press, Brentwood TN, 189–202.

[15] Wm. Randolph Franklin. 2005. Mass Properties of the Union of Millions of Iden-
tical Cubes. In Geometric and Algorithmic Aspects of Computer Aided Design
and Manufacturing, DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, Ravi Janardan, Debashish Dutta, and Michiel Smid (Eds.). Vol. 67.
American Mathematical Society, 329–345.

[16] Wm Randolph Franklin and Mohan S. Kankanhalli. 1993. Volumes From Overlay-
ing 3-D Triangulations in Parallel. In Advances in Spatial Databases: Third Intl.
Symp., SSD’93, D. Abel and B.C. Ooi (Eds.). Lecture Notes in Computer Science,
Vol. 692. Springer-Verlag, 477–489.

[17] Wm Randolph Franklin and Venkatesh Sivaswami. 1990. OVERPROP — Calculat-
ing Areas of Map Overlay Polygons without Calculating the Overlay. In Second
National Conference on Geographic Information Systems. Ottawa, 1646–1654.

[18] Wm Randolph Franklin, Venkateshkumar Sivaswami, David Sun, Mohan Kankan-
halli, and Chandrasekhar Narayanaswami. 1994. Calculating the Area of Overlaid
Polygons Without Constructing the Overlay. Cartography and Geographic Infor-
mation Systems (April 1994), 81–89.

[19] Michael Gousie and W. Randolph Franklin. 2003. Constructing a DEM from Grid-
based Data by Computing Intermediate Contours. In GIS 2003: Proceedings of the
Eleventh ACM International Symposium on Advances in Geographic Information
Systems (November 7–8), Erik Hoel and Phillippe Rigaux (Eds.). New Orleans,
71–77.

[20] Michael B. Gousie and Wm. Randolph Franklin. 2005. Augmenting Grid-based
Contours to Improve Thin Plate DEM Generation. Photogrammetric Engineering
& Remote Sensing 71, 1 (2005), 69–79.

[21] Topraj Gurung and Jarek Rossignac. 2009. SOT: compact representation for
tetrahedral meshes. In 2009 SIAM/ACM Joint Conference on Geometric and Physical
Modeling. 79–88.

[22] Mei-Cheng Hu and James D. Foley. 1985. Parallel Processing Approaches to
Hidden Surface Removal in Image Space. Computers and Graphics 9, 3 (1985),
303–317.

[23] Mohan Kankanhalli. 1990. Techniques for Parallel Geometric Computations. Ph.D.
Dissertation. Electrical, Computer, and Systems Engineering Dept., Rensselaer
Polytechnic Institute.

[24] Mohan Kankanhalli and Wm Randolph Franklin. 1995. Area and Perimeter
Computation of the Union of a Set of Iso-Rectangles in Parallel. J. Parallel Distrib.

Comput. 27, 2 (June 1995), 107–117. https://doi.org/10.1006/jpdc.1995.1076
[25] Julian Kates-Harbeck, Samuel Totorica, Jonathan Zrake, and Tom Abel. 2015.

Simplex-in-Cell Technique for Collisionless Plasma Simulations. Retrieved
2016-11-15 from https://arxiv.org/pdf/1506.07207.pdf

[26] Large Geometric Model Archive 2016. GIT Large Geometric Model Archive.
Retrieved 2016-02-02 from http://www.cc.gatech.edu/projects/large_models/

[27] Salles Viana Gomes Magalhães. 2015. An Efficient Algorithm for Computing the
Exact Overlay of Triangulations. In Proc. 2nd ACM SIGSPATIAL PhD Workshop
(SIGSPATIAL PhD ’15). ACM, New York, NY, USA, Article 3, 4 pages. https:
//doi.org/10.1145/2855680.2855840

[28] Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, and Wenli
Li. 2015. Fast exact parallel map overlay using a two-level uniform grid. In 4th
ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data
(BigSpatial). Bellevue WA USA. https://doi.org/10.1145/2835185.2835188

[29] Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, and Wenli
Li. 2016. PinMesh – Fast and exact 3D point location queries using a uniform
grid. Computer & Graphics Journal, special issue on Shape Modeling International
2016 58 (Aug. 2016), 1–11. https://doi.org/10.1016/j.cag.2016.05.017 (online 17
May). Awarded a reproducibility stamp, http://www.reproducibilitystamp.com/.

[30] Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, Wenli Li,
and Maurício Gouvêa Gruppi. 2016. Exact intersection of 3D geometric models.
In Geoinfo 2016, XVII Brazilian Symposium on GeoInformatics. Campos do Jordão,
SP, Brazil.

[31] Mark McKenney, Roger Frye, Mathew Dellamano, Kevin Anderson, and Jeremy
Harris. 2016. Multi-core parallelism for plane sweep algorithms as a founda-
tion for GIS operations. GeoInformatica (2016), 1–24. https://doi.org/10.1007/
s10707-016-0277-7

[32] Chandrasekhar Narayanaswami. 1991. Parallel Processing for Geometric Applica-
tions. Ph.D. Dissertation. Electrical, Computer, and Systems Engineering Dept.,
Rensselaer Polytechnic Institute. UMI no. 92-02201.

[33] C. Narayanaswami and Wm Randolph Franklin. 1991. Determination of mass
properties of polygonal CSG objects in parallel. Internat. J. Comput. Geom. Appl.
1, 4 (1991), 381–403.

[34] Chandrasekhar Narayanaswami and Wm Randolph Franklin. 1991. Determina-
tion of Mass Properties of Polygonal CSG Objects in Parallel. In Proc. Symposium
on Solid Modeling Foundations and CAD/CAM Applications, Joshua Turner (Ed.).
ACM/SIGGRAPH, 279–288.

[35] Nvidia. 2015. CUDA Toolkit Documentation. Retrieved 2016-02-23 from
http://docs.nvidia.com/cuda/thrust/

[36] Joseph O’Rourke. 1998. Computational Geometry in C (2 ed.). Cambridge Univer-
sity Press.

[37] Junjun Pan, Junxuan Bai, Xin Zhao, Aimin Hao, and Hong Qin. 2014. Dissection
of Hybrid Soft Tissue Models Using Position-based Dynamics. In Proceedings of
the 20th ACM Symposium on Virtual Reality Software and Technology (VRST ’14).
ACM, New York, NY, USA, 219–220. https://doi.org/10.1145/2671015.2671129

[38] F. P. Preparata and M. I. Shamos. 1985. Computational Geometry: An Introduction.
Texts and Monographs in Computer Science Springer-Verlag.

[39] Satish Puri and Sushil K. Prasad. 2013. Efficient Parallel and Distributed Algo-
rithms for GIS Polygonal Overlay Processing. In Proceedings of the 2013 IEEE
27th International Symposium on Parallel and Distributed Processing Workshops
and PhD Forum (IPDPSW ’13). IEEE Computer Society, Washington, DC, USA,
2238–2241. https://doi.org/10.1109/IPDPSW.2013.174

[40] John H. Reif and Sandeep Sen. 1988. An Efficient Output-sensitive Hidden-Surface
Removal Algorithm and its Parallelization. In Proc. Fourth Annual Symposium on
Computational Geometry. 193–200.

[41] Jarek Rossignac, Alla Safonova, and Andrzej Szymczak. 2001. 3D Compression
Made Simple: Edgebreaker on a Corner-Table. In Shape Modeling International.
278–283. https://doi.org/10.1109/SMA.2001.923399

[42] Vadim Shapiro. 2014. Geometric Modeling of Material (Micro)Structures (Pre-
sentation). In GDM 2014 Workshop: Geometric Design Facing Manufacturing.
http://www.cs.technion.ac.il/gdm2014/Presentations/GDM2014_shapiro.pdf (re-
trieved 2016-11-15).

[43] Diane Souvaine. 2008. Line Segment Intersection Using a Sweep Line Algo-
rithm. Retrieved 2016-11-13 from http://www.cs.tufts.edu/comp/163/notes05/
seg_intersection_handout.pdf

[44] Stanford Scanning Repository 2016. The Stanford 3D Scanning Repository.
Retrieved 2016-02-02 from http://graphics.stanford.edu/data/3Dscanrep/

[45] Laura Toma, Lars Arge, and J. S. Vitter. 2001. I/O–efficient algorithms for problems
on grid-based terrains. ACM J. Experimental Algorithmics 6 (2001).

[46] Christian Trott and Glen Hansen. 2018. Kokkos C++ Performance Portability
Programming EcoSystem. Retrieved 2018-10-05 from https://github.com/kokkos

[47] EricW.Weisstein. 2016. MathWorld–AWolframWeb Resource. http://mathworld.
wolfram.com/.

[48] Chee-Keng Yap. 1987. What can be Parallelized in Computational Geometry?. In
International Workshop on Parallel Algorithms and Architectures.

http://visionair.ge.imati.cnr.it//
http://www.cs.technion.ac.il/gdm2014/Presentations/GDM2014_allen.pdf
http://www.cs.technion.ac.il/gdm2014/Presentations/GDM2014_allen.pdf
https://doi.org/10.1007/s00453-015-0032-8
https://doi.org/10.1145/2525314.2525352
https://www.cgal.org
https://doi.org/10.1006/jpdc.1995.1076
https://arxiv.org/pdf/1506.07207.pdf
http://www.cc.gatech.edu/projects/large_models/
https://doi.org/10.1145/2855680.2855840
https://doi.org/10.1145/2855680.2855840
https://doi.org/10.1145/2835185.2835188
https://doi.org/10.1016/j.cag.2016.05.017
http://www.reproducibilitystamp.com/
https://doi.org/10.1007/s10707-016-0277-7
https://doi.org/10.1007/s10707-016-0277-7
http://docs.nvidia.com/cuda/thrust/
https://doi.org/10.1145/2671015.2671129
https://doi.org/10.1109/IPDPSW.2013.174
https://doi.org/10.1109/SMA.2001.923399
http://www.cs.technion.ac.il/gdm2014/Presentations/GDM2014_shapiro.pdf
http://www.cs.tufts.edu/comp/163/notes05/seg_intersection_handout.pdf
http://www.cs.tufts.edu/comp/163/notes05/seg_intersection_handout.pdf
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/kokkos
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/

	Abstract
	1 Parallel computation
	2 Prior art
	3 Preliminaries
	4 Global Topology of a Polygon
	5 Local Topology of a Polygon
	6 Faster complex algorithms
	7 Summary and Future Plans
	References

