Data Structures for Parallel Spatial Algorithms on Large Datasets

W. Randolph Franklin (RPI, USA), Salles V. G. de Magalhães \& Marcus V. A. Andrade (UF Viçosa, Brasil)

BIGSPATIAL, 2018-11-06

Abstract

- Efficient parallel data structures are different:
- Suboptimal: trees, recursion, pointers, sweep lines, global topologies.
- 2D GIS and 3D CAD share a lot-learn from each other.
- In additive manufacturing (3D printing), easier to build than to analyze.
- New way of looking at geometry is useful.
- This talk:
- local geometric data structures for map-reduce.
- local parallel computing.
- Big example: overlay two triangulated polyhedra, total 5.7 M triangles in 5.5 real seconds on 16 core Xeon workstation.
- That used rational numbers to prevent roundoff, and Simulation of Simplicity to handle geometric degeneracies, or it would have been even faster.

Our prior parallel geometry implementations. . .

on multicore Intel Xeon, with OpenMP

- Volume of union of 100 M identical cubes (2003)
- 2D planar graph overlay (BIGSPATIAL 2015)
- 3D point location (Berlin Geometry Summit 2016)
- Triangulated polyhedra overlay (IMR 2018)
on Nvidia GPUs, with Thrust
- Find all pairs of 3D points closer than given δ (BIGSPATIAL 2017)
- Preprocess points in 2D to 6D for nearest point query (CCCG 2016)

Background

- Philosophically a Computer Scientist.
- PhD officially in Applied Math.
- Working in Electrical, Computer, and Systems Engineering Dept.
- Students are from Computer Science.
- Teaching Engineering Parallel Computing.
- Collaborating with Geographers for a long time.
- Enjoy applying computer science and engineering to GIS.

Historical analogy

- Roebling, builder of Brooklyn Bridge, graduated from RPI.
- 15 year project.
- after spending money for 2 years, there was no visible progress.
- Roebling was building the foundations.
- None of his bridges ever fell down.
- In contrast: In last few decades, three interstate highway bridges have collapsed from design errors compounding maintenance lack.
Spend some time on the foundations.

Massive shared memory

- An underappreciated resource.
- External memory often not needed.
- Paging virtual memory is obsolete.
- Inexpensive servers have 1TB of memory.
- Even for Nvidia GPUs:
- up to 48GB,
- several can be ganged together with hi-speed bus.
- Many problems don't require the overhead of-
- MPI,
- supercomputers,
- distributed cloud computing.

Parallel computing

- Multicore Intel Xeon underappreciated.
- Dual 20 core: 80 hyperthreads.
- One Xeon core is $20 \times$ more powerful than one CUDA core.
- Nvidia GPUs: up to 5000 cores, 48 GB memory.
- Lower clock speed 750 MHz vs 3.4 GHz
- Hierarchy of memory: small/fast \longleftrightarrow big/slow
- Communication cost \gg computation cost
- Preferred: blocks of threads execute SIMT.
- Top 500 OS: never always some variant of

Why parallel HW?

- More processing \rightarrow faster clock speed \rightarrow more electrical power. Each bit flip (dis)charges a capacitor through a resistance.
- Faster \rightarrow requires smaller features on chip
- Smaller \rightarrow greater electrical resistance!
$\Longrightarrow \Longleftarrow$.
- Serial processors have hit a wall.

Some parallel programming tools

- OpenMP-
- Shared memory, multiple CPU core model.
- Good for moderate parallelism.
- Easy to get started.
- Options for protecting parallel writes:
- Sum reduction: no overhead.
- Atomic add and capture: small overhead.
- Critical block: perhaps 100 K instruction overhead.
- Valid cost metric: real time used.
- 2-thread programs perhaps slower than 1-thread.
- CUDA/Thrust-
- Nvidia C++ template library for CUDA based on STL.
- Functional paradigm: easier algorithm expression.
- Hides many CUDA details: good and bad.
- Powerful operators all parallelize: scatter/gather, reduction by key, permutation, sort, prefix sum.
- Surprisingly efficient algorithms like bucket sort.
- Possible back ends: CUDA, OpenMP, sequential on host.

Geometric Databases

- Hundreds of millions of primitive components.
- Some foundational operations-
- nearest point
- boolean intersection and union
- planar graph overlay
- mass property computation of the results of some boolean operation
- Higher applications-
- Volume and moments of an object defined as the union of many overlapping primitives.
- Two object interfere iff volume of intersection >0.
- Interpolate population from census tracts to flood zones.
- Interpolate properties between two triangulations of same polyhedron.
- ... and many higher-level problems.

How few types of info does a polyhedron rep need?

A design is not complete until everything possible has been removed.

- Why?
- fewer special cases \Rightarrow less code \Rightarrow less debugging
- less space \Rightarrow faster
- Operations:
- point location
- area, center of gravity, high-order moments
- Ambiguous rep: set of vertices.
- Sufficient rep: set of faces.
- Above operations are now map-reductions.

Point Location on a Set of Faces

- "Jordan curve" method
- Extend a semi-infinite ray from query point.
- Count intersections with faces.
- Odd number \equiv inside.
- Obvious but bad alternative: sum subtended signed volumes. Implementing w/o arctan, and handling special cases wrapping
 around is tricky and reduces to Jordan curve.

Moment Computation on a Set of Faces

- Each face, with the origin, defines a tetrahedron.
- Compute its moment; sum them.
- Extends to any mass property, including (using a characteristic function) point location.
- Extends to functionally graded properties, e.g., 3D printer
 extruding a varying-density material.

The Advantages of Set of Faces Data Structure

- Simple enough to debug.
- SW can be simple enough that there are obviously no errors, or complex enough that there are no obvious errors.
- Less storage.
- Easy parallelization: reduction operations.
\exists Other reps (on the following slides).

Augmented vertices: another minimal polyhedron representation

- Augmented vertices: add a little to each vertex.
- These examples use rectilinear polygons, but all this works on general polygons and polyhedra.
- 8 types of vertices;
- Each gets a sign, $s= \pm 1$.
- Now, each vertex defined as $v_{i}=\left(x_{i}, y_{i}, s_{i}\right)$
- Area of polygon: $A=\sum s_{i} x_{i} y_{i}$
- Volume of polyhedron:
$V=\sum s_{i} x_{i} y_{i} z_{i}$

- Moment of inertia about z-axis:
$I=\sum s_{i} x_{i}^{2} y_{i}^{2}$

Vertex incidences: YAMPR

Another minimal data structure, resembles half edges.

- Only data type is the incidence of an edge and a vertex, plus its neighborhood. For each such:
- $\vec{V}=$ coord of vertex
- $\hat{T}=$ unit tangent vector along the edge
- $\hat{N}=$ unit vector normal to \hat{T} pointing into the polygon.
- Polygon (2 tuples per vertex): $\{(\vec{V}, \hat{T}, \hat{N})\}$
- Perimeter $=-\sum(\vec{V} \cdot \hat{T})$.

- Mass properties are map-reductions.
- Area $=1 / 2 \sum(\vec{V} \cdot \hat{T})(\vec{V} \cdot \hat{N})$
- Multiple nested components ok.

What's the point of this?

- Don't we always know the edges?
- No, not easily for Boolean combinations.
- We know the input polyhedra's faces.
- However finding the output polyhedron's faces is much harder than merely finding the augmented vertices.
- That requires finding more global topology.
- Three types of output vertices-
- Some input vertices,
- Some intersections of three input faces.
- Some intersections of and input face with an edge.
- Filter them: an output vertex must be-
- for intersection: inside all input polyhedra.
- for union: outside all input polyhedra.
- Apply reduction equation to surviving vertices.
- Next: several examples.

Volume of Union of Many Cubes

- Illustrates power of these ideas.
- A prototype on an easy subcase (congruent axis-aligned cubes).
- Extends to general polyhedra.
- Not statistical sampling-this is exact output, apart from roundoff.
- Not subdivision-into-voxel method - the cubes' coordinates can be any representable numbers.

Application: Cutting Tool Path

- Represent path of a tool as piecewise line.
- Each piece sweeps a polyhedron.
- Volume of material removed is (approx) volume of union of those polyhedra.
- Image is from Surfware Inc's Surfcam website.

Traditional N-Polyhedron Union

- Construct pairwise unions of primitives.
- Iterate.

Time depends on intermediate swell, and elementary intersection time.

- Let $\mathrm{P}=$ size of union of an M -gon and an N -gon. Then $\mathrm{P}=\mathrm{O}(\mathrm{MN})$.
- Time for union (using line sweep) $T=\Theta(P \lg P)$.
- Total $T=O\left(N^{2} \lg N\right)$.

Hard to parallelize upper levels of computation tree.

Problems With Traditional Method

- $\lg N$ levels in computation tree cause $\lg N$ factor in execution time. Consider $N>20$.
- Intermediate swell: worse as overlap is worse. Intermediate computations may be much larger than final result.
- The explicit output polyhedron has complicated topology: unknown genus, loops of edges, shells of faces, nonmanifold adjacancies.
- Tricky to get all this right.
- However explicit output not needed for computing mass properties.
- Set of vertices with neighborhoods suffices.

Fast parallel volume of union

- Find the intersections in one flat intersection test.
- Filter them.
- Map-reduce them.
- Processing 100 M cubes with $L=0.005$ using 1000^{3} grid took 5800 secs.
- Computed 3M face-edge and 3M face-face-face intersections.
- Optimization: many grid cells were completely inside an input cube.
- Note that this is not simply streaming the data-these are triple-object incidences.

2D and 3D overlay

2D planar graph

- Input: two planar graphs containing sets of polygons (aka faces).
- Output: all the nonempty intersections of one polygon from each map.
- Example: Census tracts with watershed polygons, to estimate population in each watershed.

3D triangulated polyhedra

- presented at International Meshing Roundtable 2018.

Important data structure uniform grid.

Uniform grid

Summary

- Overlay a uniform 3D grid on the input.
- For each input primitive-face, edge, vertex-find overlapping cells.
- In each cell, store set of overlapping primitives.

Properties

- Simple, sparse, uses little memory if well programmed.
- Parallelizable.
- Robust against moderate data nonuniformities.
- Bad worst-case performance on extremely nonuniform data.
- As do octree and all hierarchical methods.

How it works

- Intersecting primitives must occupy the same cell.
- The grid filters the set of possible intersections.

Uniform Grid Qualities

- Major disadvantages: It's so simple that it apparently cannot work, especially for nonuniform data. Efficient implementing takes care.
- Major advantage: For the operations I want to do (intersection, containment, etc), it works very well for any real data l've ever tried.
- Outside validation: used in our 2nd place finish in ACM 2016 SIGSPATIAL GIS Cup award.
USGS Digital Line Graph; VLSI Design; Mesh

2D Uniform Grid Time Analysis

For i.i.d. edges (line segments), time to find edge-edge intersections in E^{2} is linear in size(input+output) regardless of varying number of edges per cell.

- N edges, length $1 / L, G \times G$ grid.
- Expected \# intersections $=\Theta\left(N^{2} L^{-2}\right)$.
- Each edge overlaps $\leq 2(G / L+1)$ cells.
- $\eta \triangleq$ \# edges per cell, is Poisson; $\bar{\eta}=\Theta\left(N / G^{2}(G / L+1)\right)$.
- Expected total \# xsect tests: $G^{2} \overline{\eta^{2}}=N^{2} / G^{2}(G / L+1)^{2}$.
- Total time: insert edges into cells + test for intersections. $T=\Theta\left(N(G / L+1)+N^{2} / G^{2}(G / L+1)^{2}\right)$.
- Minimized when $G=\Theta(L)$, giving $T=\Theta\left(N+N^{2} L^{-2}\right)$.
- $T=\Theta$ (size of input + size of output).

EPUG-Overlay: 2D planar graph overlay

- Previous step, presented at 2015 ACM BIGSPATIAL
- Biggest example: USWaterBodies: 21,652,410 vertices, 219,831 faces, with USBlockBoundaries: 32,762,740 vertices, 518,837 faces.
- Time (w/o I/O):
- 1342 secs (1 thread);
- 149 secs (16 cores, 32 threads).
- 9X parallel speedup.

PINMESH: 3D point location

- Previous step, presented at 2016 Berlin Geometry Summit
- Uses rational numbers, Simulation of Simplicity, uniform grid, parallelism, simple data structures
- Biggest example: sample dataset with 50 million triangles.
- Preprocessing: 14 elapsed seconds on 16-core Xeon.
- Query time: 0.6 s per point.

Exact fast parallel intersection of large 3-D

 triangular meshes- Intersect 3D meshes while
- Handling geometric degeneracies, including
- Mesh with itself,
- Mesh with its translation,
- Mesh with its rotation.
- With no roundoff errors.
- Fast in parallel.
- Economical of memory.
- Extensively tested on hard cases.
- Compared to competing implementations.
- Example: Intersection of two big meshes from AIM@SHAPE: Ramesses: 1.7 million triangles \times Neptune: 4 million triangles. 5.5 seconds on multicore Xeon.

Five key techniques

- Arbitrary precision rational numbers: for exactness.
- Simulation of Simplicity: for ensuring all the special cases are properly handled.
- Simple data representation and local information: parallelization and correctness.
- Uniform grid: accelerate computation; quickly constructed in parallel.
- Parallel programming

Hard part: making everything fit together.

Summary

The following techniques don't solve all the world's problems, but handle some foundational geometric ones nicely:

- deprecate hierarchies-
- simple geometric representation,
- bucket sort objects with uniform grid.
- local server HW processes large datasets in parallel.
- handles inter-object coincidences (not just streaming processing).
- exploits synergy between CAD and GIS.

