
Data Structures for Parallel Spatial
Algorithms on Large Datasets

W. Randolph Franklin (RPI, USA), Salles V. G. de
Magalhães & Marcus V. A. Andrade (UF Viçosa, Brasil)

BIGSPATIAL, 2018-11-06

Abstract
I Efficient parallel data structures are different:

I Suboptimal: trees, recursion, pointers, sweep lines, global
topologies.

I 2D GIS and 3D CAD share a lot—learn from each other.
I In additive manufacturing (3D printing), easier to build

than to analyze.
I New way of looking at geometry is useful.
I This talk:

I local geometric data structures for map–reduce.
I local parallel computing.

I Big example: overlay two triangulated polyhedra, total
5.7M triangles in 5.5 real seconds on 16 core Xeon
workstation.
I That used rational numbers to prevent roundoff, and

Simulation of Simplicity to handle geometric
degeneracies, or it would have been even faster.

Our prior parallel geometry implementations. . .

on multicore Intel Xeon, with OpenMP

I Volume of union of 100M identical cubes (2003)
I 2D planar graph overlay (BIGSPATIAL 2015)
I 3D point location (Berlin Geometry Summit 2016)
I Triangulated polyhedra overlay (IMR 2018)

on Nvidia GPUs, with Thrust
I Find all pairs of 3D points closer than given δ

(BIGSPATIAL 2017)
I Preprocess points in 2D to 6D for nearest point query

(CCCG 2016)

Background

I Philosophically a Computer Scientist.
I PhD officially in Applied Math.
I Working in Electrical, Computer, and Systems

Engineering Dept.
I Students are from Computer Science.
I Teaching Engineering Parallel Computing.
I Collaborating with Geographers for a long time.
I Enjoy applying computer science and engineering to GIS.

Historical analogy

I Roebling, builder of Brooklyn Bridge, graduated from
RPI.

I 15 year project.
I after spending money for 2 years, there was no visible

progress.
I Roebling was building the foundations.
I None of his bridges ever fell down.
I In contrast: In last few decades, three interstate highway

bridges have collapsed from design errors compounding
maintenance lack.

Spend some time on the foundations.

Massive shared memory

I An underappreciated resource.
I External memory often not needed.
I Paging virtual memory is obsolete.
I Inexpensive servers have 1TB of memory.
I Even for Nvidia GPUs:

I up to 48GB,
I several can be ganged together with hi-speed bus.

I Many problems don’t require the overhead of—
I MPI,
I supercomputers,
I distributed cloud computing.

Parallel computing

I Multicore Intel Xeon underappreciated.
I Dual 20 core: 80 hyperthreads.

I One Xeon core is 20× more powerful than one CUDA
core.

I Nvidia GPUs: up to 5000 cores, 48GB memory.
I Lower clock speed 750MHz vs 3.4GHz
I Hierarchy of memory: small/fast ←→ big/slow
I Communication cost � computation cost
I Preferred: blocks of threads execute SIMT.

I Top 500 OS: never always some variant of

Why parallel HW?

I More processing → faster clock speed → more electrical
power. Each bit flip (dis)charges a capacitor through a
resistance.

I Faster → requires smaller features on chip

I Smaller → greater electrical
resistance !

I =⇒⇐=.
I Serial processors have hit a wall.

Some parallel programming tools
I OpenMP—

I Shared memory, multiple CPU core model.
I Good for moderate parallelism.
I Easy to get started.
I Options for protecting parallel writes:

I Sum reduction: no overhead.
I Atomic add and capture: small overhead.
I Critical block: perhaps 100K instruction overhead.

I Valid cost metric: real time used.
I 2-thread programs perhaps slower than 1-thread.

I CUDA/Thrust—
I Nvidia C++ template library for CUDA based on STL.
I Functional paradigm: easier algorithm expression.
I Hides many CUDA details: good and bad.
I Powerful operators all parallelize: scatter/gather,

reduction by key, permutation, sort, prefix sum.
I Surprisingly efficient algorithms like bucket sort.
I Possible back ends: CUDA, OpenMP, sequential on host.

Geometric Databases

I Hundreds of millions of primitive components.
I Some foundational operations—

I nearest point
I boolean intersection and union
I planar graph overlay
I mass property computation of the results of some

boolean operation
I Higher applications—

I Volume and moments of an object defined as the union
of many overlapping primitives.

I Two object interfere iff volume of intersection > 0.
I Interpolate population from census tracts to flood zones.
I Interpolate properties between two triangulations of same

polyhedron.
I · · · and many higher-level problems.

How few types of info does a polyhedron rep need?
A design is not complete until everything possible has been
removed.
I Why?

I fewer special cases ⇒ less code ⇒ less debugging
I less space ⇒ faster

I Operations:
I point location
I area, center of gravity, high-order moments

I Ambiguous rep: set of
vertices.

I Sufficient rep: set of
faces.

I Above operations are now
map-reductions.

Point Location on a Set of Faces

I ”Jordan curve” method
I Extend a semi-infinite ray from

query point.
I Count intersections with faces.
I Odd number ≡ inside.
I Obvious but bad alternative:

sum subtended signed volumes.
Implementing w/o arctan, and
handling special cases wrapping
around is tricky and reduces to
Jordan curve.

Moment Computation on a Set of Faces

I Each face, with the origin,
defines a tetrahedron.

I Compute its moment; sum them.
I Extends to any mass property,

including (using a characteristic
function) point location.

I Extends to functionally graded
properties, e.g., 3D printer
extruding a varying-density
material.

The Advantages of Set of Faces Data Structure

I Simple enough to debug.
I SW can be simple enough that there are obviously no

errors, or complex enough that there are no obvious
errors.

I Less storage.
I Easy parallelization: reduction operations.

∃ Other reps (on the following slides).

Augmented vertices: another minimal polyhedron
representation

I Augmented vertices: add a little
to each vertex.

I These examples use rectilinear
polygons, but all this works on
general polygons and polyhedra.

I 8 types of vertices;
I Each gets a sign, s = ±1.
I Now, each vertex defined as

vi = (xi , yi , si)

I Area of polygon: A =
∑

sixiyi
I Volume of polyhedron:

V =
∑

sixiyizi

I Moment of inertia
about z-axis:
I =

∑
six

2
i y

2
i

Vertex incidences: YAMPR
Another minimal data structure, resembles half edges.

I Only data type is the incidence
of an edge and a vertex, plus its
neighborhood. For each such:
I ~V = coord of vertex
I T̂ = unit tangent vector

along the edge
I N̂ = unit vector normal to T̂

pointing into the polygon.
I Polygon (2 tuples per vertex):
{(~V , T̂ , N̂)}

I Perimeter = −
∑

(~V · T̂).
I Area = 1/2

∑
(~V · T̂)(~V · N̂)

I Multiple nested components ok.

I Mass properties are
map-reductions.

What’s the point of this?
I Don’t we always know the edges?
I No, not easily for Boolean combinations.
I We know the input polyhedra’s faces.
I However finding the output polyhedron’s faces is much

harder than merely finding the augmented vertices.
I That requires finding more global topology.

I Three types of output vertices—
I Some input vertices,
I Some intersections of three input faces.
I Some intersections of and input face with an edge.

I Filter them: an output vertex must be—
I for intersection: inside all input polyhedra.
I for union: outside all input polyhedra.

I Apply reduction equation to surviving vertices.
I Next: several examples.

Volume of Union of Many Cubes
I Illustrates power of these ideas.
I A prototype on an easy subcase (congruent axis-aligned

cubes).
I Extends to general polyhedra.
I Not statistical sampling—this is exact output, apart from

roundoff.
I Not subdivision-into-voxel method — the cubes’

coordinates can be any representable numbers.

Application: Cutting Tool Path

I Represent path of a tool as piecewise line.
I Each piece sweeps a polyhedron.
I Volume of material removed is (approx) volume of union

of those polyhedra.
I Image is from Surfware Inc’s Surfcam website.

Traditional N-Polyhedron Union

I Construct pairwise unions of primitives.
I Iterate.

Time depends on intermediate swell, and elementary
intersection time.
I Let P = size of union of an M-gon and an N-gon. Then

P=O(MN).
I Time for union (using line sweep) T = Θ(P lgP) .
I Total T = O(N2 lgN).

Hard to parallelize upper levels of computation tree.

Problems With Traditional Method

I lgN levels in computation tree cause lgN factor in
execution time. Consider N > 20.

I Intermediate swell: worse as overlap is worse.
Intermediate computations may be much larger than final
result.

I The explicit output polyhedron has complicated topology:
unknown genus, loops of edges, shells of faces,
nonmanifold adjacancies.

I Tricky to get all this right.
I However explicit output not needed for computing mass

properties.
I Set of vertices with neighborhoods suffices.

Fast parallel volume of union

I Find the intersections in one flat intersection test.
I Filter them.
I Map-reduce them.
I Processing 100M cubes with L = 0.005 using 10003 grid

took 5800 secs.
I Computed 3M face–edge and 3M face–face–face

intersections.
I Optimization: many grid cells were completely inside an

input cube.
I Note that this is not simply streaming the data—these

are triple-object incidences.

2D and 3D overlay

2D planar graph

I Input: two planar graphs containing sets of polygons (aka
faces).

I Output: all the nonempty intersections of one polygon
from each map.

I Example: Census tracts with watershed polygons, to
estimate population in each watershed.

3D triangulated polyhedra

I presented at International Meshing Roundtable 2018.

Important data structure
uniform grid.

Uniform grid
Summary
I Overlay a uniform 3D grid on the input.
I For each input primitive—face, edge, vertex—find

overlapping cells.
I In each cell, store set of overlapping primitives.

Properties
I Simple, sparse, uses little memory if well programmed.
I Parallelizable.
I Robust against moderate data nonuniformities.
I Bad worst-case performance on extremely nonuniform

data.
I As do octree and all hierarchical methods.

How it works
I Intersecting primitives must occupy the same cell.
I The grid filters the set of possible intersections.

Uniform Grid Qualities
I Major disadvantages: It’s so simple that it apparently

cannot work, especially for nonuniform data. Efficient
implementing takes care.

I Major advantage: For the operations I want to do
(intersection, containment, etc), it works very well for any
real data I’ve ever tried.

I Outside validation: used in our 2nd place finish in ACM
2016 SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh

2D Uniform Grid Time Analysis

For i.i.d. edges (line segments), time to find edge–edge
intersections in E 2 is linear in size(input+output) regardless of
varying number of edges per cell.
I N edges, length 1/L, G × G grid.
I Expected # intersections = Θ (N2L−2).
I Each edge overlaps ≤ 2(G/L + 1) cells.

I η
∆
= # edges per cell, is Poisson; η = Θ(N/G 2(G/L+1)).

I Expected total # xsect tests: G 2η2 = N2/G 2(G/L + 1)2.
I Total time: insert edges into cells + test for intersections.

T = Θ (N(G/L + 1) + N2/G 2(G/L + 1)2).
I Minimized when G = Θ(L), giving T = Θ (N + N2L−2).
I T = Θ (size of input + size of output).
�

EPUG-Overlay: 2D planar graph overlay

I Previous step, presented at 2015 ACM BIGSPATIAL
I Biggest example: USWaterBodies: 21,652,410 vertices,

219,831 faces, with USBlockBoundaries: 32,762,740
vertices, 518,837 faces.

I Time (w/o I/O):
I 1342 secs (1 thread);
I 149 secs (16 cores, 32 threads).
I 9X parallel speedup.

PINMESH: 3D point location

I Previous step, presented at 2016 Berlin Geometry Summit
I Uses rational numbers, Simulation of Simplicity, uniform

grid, parallelism, simple data structures
I Biggest example: sample dataset with 50 million

triangles.
I Preprocessing: 14 elapsed seconds on 16-core Xeon.
I Query time: 0.6 s per point.

Exact fast parallel intersection of large 3-D
triangular meshes

I Intersect 3D meshes while
I Handling geometric degeneracies, including

I Mesh with itself,
I Mesh with its translation,
I Mesh with its rotation.

I With no roundoff errors.
I Fast in parallel.
I Economical of memory.
I Extensively tested on hard cases.
I Compared to competing implementations.
I Example: Intersection of two big meshes from

AIM@SHAPE: Ramesses: 1.7 million triangles x Neptune:
4 million triangles. 5.5 seconds on multicore Xeon.

Five key techniques

I Arbitrary precision rational numbers: for exactness.
I Simulation of Simplicity: for ensuring all the special cases

are properly handled.
I Simple data representation and local information:

parallelization and correctness.
I Uniform grid: accelerate computation; quickly

constructed in parallel.
I Parallel programming

Hard part: making everything fit together.

Summary

The following techniques don’t solve all the world’s problems,
but handle some foundational geometric ones nicely:
I deprecate hierarchies—

I simple geometric representation,
I bucket sort objects with uniform grid.

I local server HW processes large datasets in parallel.
I handles inter-object coincidences (not just streaming

processing).
I exploits synergy between CAD and GIS.

