Data Structures for Parallel Spatial
Algorithms on Large Datasets

W. Randolph Franklin (RPI, USA), Salles V. G. de
Magalhdes & Marcus V. A. Andrade (UF Vicosa, Brasil)

BIGSPATIAL, 2018-11-06



Abstract

» Efficient parallel data structures are different:

» Suboptimal: trees, recursion, pointers, sweep lines, global
topologies.

» 2D GIS and 3D CAD share a lot—learn from each other.

» In additive manufacturing (3D printing), easier to build
than to analyze.

» New way of looking at geometry is useful.

» This talk:

» local geometric data structures for map—reduce.
» local parallel computing.

» Big example: overlay two triangulated polyhedra, total
5.7M triangles in 5.5 real seconds on 16 core Xeon
workstation.

» That used rational numbers to prevent roundoff, and
Simulation of Simplicity to handle geometric
degeneracies, or it would have been even faster.



Qur prior parallel geometry implementations. . .

on multicore Intel Xeon, with OpenMP

» Volume of union of 100M identical cubes (2003)
» 2D planar graph overlay (BIGSPATIAL 2015)

» 3D point location (Berlin Geometry Summit 2016)
» Triangulated polyhedra overlay (IMR 2018)

on Nvidia GPUs, with Thrust

» Find all pairs of 3D points closer than given §
(BIGSPATIAL 2017)

» Preprocess points in 2D to 6D for nearest point query

(CCCG 2016)



Background

v

Philosophically a Computer Scientist.
PhD officially in Applied Math.

Working in Electrical, Computer, and Systems
Engineering Dept.

vy

Students are from Computer Science.
Teaching Engineering Parallel Computing.
Collaborating with Geographers for a long time.

vvyyvyy

Enjoy applying computer science and engineering to GIS.



Historical analogy

» Roebling, builder of Brooklyn Bridge, graduated from
RPI.

15 year project.

v

» after spending money for 2 years, there was no visible
progress.

» Roebling was building the foundations.

v

None of his bridges ever fell down.

» In contrast: In last few decades, three interstate highway
bridges have collapsed from design errors compounding
maintenance lack.

Spend some time on the foundations.



Massive shared memory

An underappreciated resource.
External memory often not needed.
Paging virtual memory is obsolete.

Inexpensive servers have 1TB of memory.
Even for Nvidia GPUs:

» up to 48GB,
» several can be ganged together with hi-speed bus.

vvyyVvyyy

» Many problems don't require the overhead of—
> MPI,
» supercomputers,
» distributed cloud computing.



Parallel computing

» Multicore Intel Xeon underappreciated.
» Dual 20 core: 80 hyperthreads.

» One Xeon core is 20x more powerful than one CUDA
core.

Nvidia GPUs: up to 5000 cores, 48GB memory.
Lower clock speed 750MHz vs 3.4GHz
Hierarchy of memory: small/fast «— big/slow
Communication cost > computation cost
Preferred: blocks of threads execute SIMT.

By
Top 500 OS: never & always some variant of =<

vvyyVvyVvyy

v



Why parallel HW?

» More processing — faster clock speed — more electrical
power. Each bit flip (dis)charges a capacitor through a
resistance.

» Faster — requires smaller features on chip

» Smaller — greater electrical

resistance ! | .
> = T | T
» Serial processors have hit a wall.




Some parallel programming tools
» OpenMP—

>
>

>
4

>
>

Shared memory, multiple CPU core model.
Good for moderate parallelism.
Easy to get started.
Options for protecting parallel writes:
» Sum reduction: no overhead.
» Atomic add and capture: small overhead.
» Critical block: perhaps 100K instruction overhead.
Valid cost metric: real time used.
2-thread programs perhaps slower than 1-thread.

» CUDA/Thrust—

| 2

4
>
>

v

Nvidia C++ template library for CUDA based on STL.
Functional paradigm: easier algorithm expression.

Hides many CUDA details: good and bad.

Powerful operators all parallelize: scatter/gather,
reduction by key, permutation, sort, prefix sum.
Surprisingly efficient algorithms like bucket sort.

Possible back ends: CUDA, OpenMP, sequential on host.



Geometric Databases

» Hundreds of millions of primitive components.

» Some foundational operations—

| 4
>
>
>

nearest point

boolean intersection and union

planar graph overlay

mass property computation of the results of some
boolean operation

» Higher applications—

>

v

Volume and moments of an object defined as the union
of many overlapping primitives.
Two object interfere iff volume of intersection > 0.
Interpolate population from census tracts to flood zones.
Interpolate properties between two triangulations of same
polyhedron.

- and many higher-level problems.



How few types of info does a polyhedron rep need?
A design is not complete until everything possible has been
removed.

> Why?
» fewer special cases = less code = less debugging
» less space = faster

» Operations:

» point location
» area, center of gravity, high-order moments

» Ambiguous rep: set of -
vertices. -
» Sufficient rep: set of
faces.

» Above operations are now
map-reductions.




Point Location on a Set of Faces

v

"Jordan curve” method

» Extend a semi-infinite ray from
query point.

v

Count intersections with faces.
» Odd number = inside.

» Obvious but bad alternative:
sum subtended signed volumes.
Implementing w/o arctan, and
handling special cases wrapping
around is tricky and reduces to
Jordan curve.

B L

I-I--.k

-



Moment Computation on a Set of Faces

» Each face, with the origin,
defines a tetrahedron.

v

Compute its moment; sum them.

» Extends to any mass property,
including (using a characteristic
function) point location.

» Extends to functionally graded
properties, e.g., 3D printer
extruding a varying-density
material.




The Advantages of Set of Faces Data Structure

v

Simple enough to debug.

» SW can be simple enough that there are obviously no
errors, or complex enough that there are no obvious
errors.

» Less storage.

» Easy parallelization: reduction operations.

3 Other reps (on the following slides).



Augmented vertices: another minimal polyhedron
representation

» Augmented vertices: add a little ﬂ @ D7 itlj

to each vertex. = :

e WP M

» These examples use rectilinear \ j P9
polygons, but all this works on . v ¢
general polygons and polyhedra.

> 8 types of vertices;
» Each gets a sign, s = £1.
» Now, each vertex defined as
v; = (xi, i, 5i)
> Area of polygon: A=) sixy; » Moment of inertia
» Volume of polyhedron: about z-axis:

V = Z SiXiyiZ; | = Z 5,'X,-2_)/I-2



Vertex incidences: YAMPR

Another minimal data structure, resembles half edges.

» Only data type is the incidence
of an edge and a vertex, plus its
neighborhood. For each such:
> V = coord of vertex
> T = unit tangent vector
along the edge
» N = unit vector normal to T
pointing into the polygon. T

» Polygon (2 tuples per vertex): Vv
V. T,N
{ _ )} o A » Mass properties are
> Perimeter = —3 (V- T). map-reductions.
> Area=1/25 (V- T)(V-N)
» Multiple nested components ok.



What's the point of this?

>

>
>
>

Don't we always know the edges?
No, not easily for Boolean combinations.
We know the input polyhedra’s faces.

However finding the output polyhedron’s faces is much
harder than merely finding the augmented vertices.

» That requires finding more global topology.
Three types of output vertices—

» Some input vertices,
» Some intersections of three input faces.
» Some intersections of and input face with an edge.

Filter them: an output vertex must be—

» for intersection: inside all input polyhedra.
» for union: outside all input polyhedra.

Apply reduction equation to surviving vertices.
Next: several examples.



Volume of Union of Many Cubes

v

[llustrates power of these ideas.

» A prototype on an easy subcase (congruent axis-aligned
cubes).

v

Extends to general polyhedra.
» Not statistical sampling—this is exact output, apart from
roundoff.

» Not subdivision-into-voxel method — the cubes’
coordinates can be any representable numbers.




Cutting Tool Path

psters gmnding

Application:

» Represent path of a tool as piecewise line.

» Each piece sweeps a polyhedron.

» Volume of material removed is (approx) volume of union
of those polyhedra.

» Image is from Surfware Inc's Surfcam website.



Traditional N-Polyhedron Union

» Construct pairwise unions of primitives.
> lterate.

Time depends on intermediate swell, and elementary
intersection time.

» Let P = size of union of an M-gon and an N-gon. Then
P=0O(MN).

» Time for union (using line sweep) T = ©(PlgP) .

» Total T = O(N?IgN).

Hard to parallelize upper levels of computation tree.



Problems With Traditional Method

>

>

v

Ig N levels in computation tree cause Ig N factor in
execution time. Consider N > 20.

Intermediate swell: worse as overlap is worse.
Intermediate computations may be much larger than final
result.

The explicit output polyhedron has complicated topology:
unknown genus, loops of edges, shells of faces,
nonmanifold adjacancies.

Tricky to get all this right.

However explicit output not needed for computing mass
properties.

Set of vertices with neighborhoods suffices.



Fast parallel volume of union

vvyyvyy

v

Find the intersections in one flat intersection test.
Filter them.
Map-reduce them.

Processing 100M cubes with L = 0.005 using 10003 grid
took 5800 secs.

Computed 3M face—edge and 3M face—face—face
intersections.

Optimization: many grid cells were completely inside an
input cube.

Note that this is not simply streaming the data—these
are triple-object incidences.



2D and 3D overlay
2D planar graph

» Input: two planar graphs containing sets of polygons (aka
faces).

» OQutput: all the nonempty intersections of one polygon
from each map.

» Example: Census tracts with watershed polygons, to
estimate population in each watershed.

3D triangulated polyhedra

» presented at International Meshing Roundtable 2018.

Important data structure
uniform grid.



Uniform grid
Summary
» Overlay a uniform 3D grid on the input.
» For each input primitive—face, edge, vertex—find
overlapping cells.
» In each cell, store set of overlapping primitives.
Properties
» Simple, sparse, uses little memory if well programmed.
» Parallelizable.
» Robust against moderate data nonuniformities.

» Bad worst-case performance on extremely nonuniform
data.

» As do octree and all hierarchical methods.
How it works
» Intersecting primitives must occupy the same cell.
» The grid filters the set of possible intersections.



Uniform Grid Qualities

» Major disadvantages: It's so simple that it apparently
cannot work, especially for nonuniform data. Efficient
implementing takes care.

» Major advantage: For the operations | want to do
(intersection, containment, etc), it works very well for any
real data I've ever tried.

» OQutside validation: used in our 2nd place finish in ACM
2016 SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh




2D Uniform Grid Time Analysis

For i.i.d. edges (line segments), time to find edge—edge
intersections in E2 is linear in size(input+output) regardless of
varying number of edges per cell.

» N edges, length 1/L, G x G grid.

Expected # intersections = © (N?L72).

Each edge overlaps < 2(G/L + 1) cells.

n 2 # edges per cell, is Poisson; 7 = O(N/G*(G/L+1)).
Expected total # xsect tests: G212 = N?/G?(G/L + 1)2.
Total time: insert edges into cells + test for intersections.
T=0(N(G/L+1)+ N?/G*(G/L+1)3).

Minimized when G = ©(L), giving T = © (N + N2L~2).
T = © (size of input + size of output).

vvyYVvy vy

vy



EPUG-Overlay: 2D planar graph overlay

» Previous step, presented at 2015 ACM BIGSPATIAL

» Biggest example: USWaterBodies: 21,652,410 vertices,
219,831 faces, with USBlockBoundaries: 32,762,740
vertices, 518,837 faces.

» Time (w/o 1/0):

> 1342 secs (1 thread);
» 149 secs (16 cores, 32 threads).
» OX parallel speedup.



PINMESH: 3D point location

» Previous step, presented at 2016 Berlin Geometry Summit

» Uses rational numbers, Simulation of Simplicity, uniform
grid, parallelism, simple data structures
> Biggest example: sample dataset with 50 million
triangles.
> Preprocessing: 14 elapsed seconds on 16-core Xeon.
» Query time: 0.6 s per point.



Exact fast parallel intersection of large 3-D

triangular meshes

>
>

vvyvyVvyyvyy

Intersect 3D meshes while
Handling geometric degeneracies, including

» Mesh with itself,
» Mesh with its translation,
» Mesh with its rotation.

With no roundoff errors.

Fast in parallel.

Economical of memory.

Extensively tested on hard cases.
Compared to competing implementations.

Example: Intersection of two big meshes from
AIMOSHAPE: Ramesses: 1.7 million triangles x Neptune:
4 million triangles. 5.5 seconds on multicore Xeon.



Five key techniques

» Arbitrary precision rational numbers: for exactness.

» Simulation of Simplicity: for ensuring all the special cases
are properly handled.

» Simple data representation and local information:
parallelization and correctness.

» Uniform grid: accelerate computation; quickly
constructed in parallel.

» Parallel programming

Hard part: making everything fit together.



Summary

The following techniques don't solve all the world's problems,
but handle some foundational geometric ones nicely:

» deprecate hierarchies—

> simple geometric representation,
» bucket sort objects with uniform grid.

» local server HW processes large datasets in parallel.

» handles inter-object coincidences (not just streaming
processing).

» exploits synergy between CAD and GIS.



