
ParCube

W. Randolph Franklin and Salles V. G. de Magalhães, RPI

2017-11



Abstract

I Parallelization of a 3d application (intersection detection).

I Shows good (uniform grid, radix sort) and bad (octree,
recursion) data structures and algorithms for
parallelization.

I The good parallel algorithm is also a good sequential one.

I Demos that functional programming via Thrust is a useful
abstraction level.

I The challenge is expressing the algorithm using those
primitives.

I In parallel, 100x faster than CGAL.



Parallel notes

I Almost all processors, even my smart phone, are parallel.

I Algorithms that don't parallelize are obsolete.

I Nvidia GPUs are almost ubiquitous.

I Thousands of cores execute SIMT in warps of 32 threads.

I Hierarchy of memory: small/fast → big/slow

I Communication cost � computation cost



Thrust

I C++ template library for CUDA based on STL.

I Functional paradigm: can make algorithms easier to
express.

I Hides many CUDA details: good and bad.

I Powerful operators all parallelize: scatter/gather,
reduction, reduction by key, permutation, transform
iterator, zip iterator, sort, pre�x sum.

I Surprisingly e�cient algorithms like bucket sort.

I Execution cost relative to CUDA: perhaps factor of 3.

I Possible back ends (via setting �ag and recompiling).
I GPU: CUDA,
I CPU: OpenMP, TBB, sequential.



Implications of 32-thread warp

I 32 threads execute same instruction.

I Biggest cost is data access.

I Ideally access interleaved data.

I Bad: linked lists, trees, recursion.

I Good: arrays, grids.



Functional programming model

I Map / reduce.

I Permute data with scatter / gather.

I Fast radix sort.

I Surprising what can be done e�ciently:
I run-length encode / decode
I bucket sort



Uniform grid
Summary

I Overlay a uniform 3D grid on the universe.
I For each input primitive � face, edge, vertex � �nd
overlapping cells.

I In each cell, store set of overlapping primitives.

Properties

I Simple, sparse, uses little memory if well programmed.
I Parallelizable.
I Robust against moderate data nonuniformities.
I Bad worst-case performance on extremely nonuniform
data.

I As do octree and all hierarchical methods.

How it works

I Intersecting primitives must occupy the same cell.
I The grid �lters the set of possible intersections.



Uniform Grid Qualities

I Major disadvantage: It's so simple that it apparently
cannot work, especially for nonuniform data.

I Major advantage: For the operations I want to do
(intersection, containment, etc), it works very well for any
real data I've ever tried.

I Outside validation: used in our 2nd place �nish in
November's ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh



Uniform Grid Time Analysis

For i.i.d. edges (line segments), show that time to �nd
edge�edge intersections in E 2 is linear in size(input+output)
regardless of varying number of edges per cell.

I N edges, length 1/L, G × G grid.

I Expected # intersections = Θ (N2L−2) .

I Each edge overlaps ≤ 2(G/L + 1) cells.

I η
∆
= # edges per cell, is Poisson; η = Θ(N/G 2(G/L+ 1)).

I Expected total # xsect tests: G 2η2 = N2/G 2(G/L + 1)2.

I Total time: insert edges into cells + test for intersections.
T = Θ (N(G/L + 1) + N2/G 2(G/L + 1)2).

I Minimized when G = Θ(L), giving T = Θ (N + N2L−2).

I = Θ (size of input + size of output).

�



Sample app: Cube intersection (ParCube)

I useful for
I collision detection
I complex boolean operations

I 3D is harder than 2D. (Sweep planes?)

I using N=10M cuts out the toy algorithms,

I output sensitive algorithm required.

I bipartite (red-blue) intersection detection would cause
trouble for sweep lines.

I typical prior art: octree.



ParCube
I use speci�c example here for clarity.
I input: 10M cubes, length 0.003.
I Every following step paralllelizes.
I overlay 300x300x300 grid.
I compute 80M (cell,cube) pairs.
I sort to form ragged array of cubes in each cell.
I compute number of (cube,cube) pairs in each cell (total:
100M pairs).

I compute function mapping each pair to a unique location
in pair array, and insert pairs.

I compute which 6M pairs actually intersect and �lter array.
I time from when array of input cubes is in computer to
when have list of intersecting pairs.

I total time on good Nvidia GPU: 0.33 elapsed seconds.
I 130x faster than CGAL.
I asymptotic time is output sensitive: linear in output size.



Commentary

I possible backends: sequential, OpenMP, TBB, CUDA.

I hardest part: expressing algorithm within restrictions of
Thrust.

I result: very compact straight-line program.

I even sequential is sometimes 3x faster than CGAL.

I more sophisticated algorithms are slower.

I adversary can create bad input, but same with octrees.

I sweep lines not so good in 3D.

I ParCube would extend to higher dimensions.



Validation

I separate implementation using CGAL.

I hardest part was ensuring intersection test did �oating
roundo� compatibly.

I compared list of intersecting pairs for sample parameters.

I perfect match.



Performance

300 400 500 600 700
Grid size

0

10

20

30

40

50

Ti
m

e 
(s

)

Method
CGAL
CUDA
CPP
OMP
TBB

Number of points: 10M



General lesson, and Future

I simple regular algorithms work very well and parallelize.

I applicable to 7D for robot con�guration space collisions.

I Try to compute intersecting graded material properties in
additive manufacturing.


