ParCube

W. Randolph Franklin and Salles V. G. de Magalh&es, RPI

2017-11



Abstract

» Parallelization of a 3d application (intersection detection).

» Shows good (uniform grid, radix sort) and bad (octree,
recursion) data structures and algorithms for
parallelization.

» The good parallel algorithm is also a good sequential one.

» Demos that functional programming via Thrust is a useful
abstraction level.

» The challenge is expressing the algorithm using those
primitives.

» In parallel, 100x faster than CGAL.



Parallel notes

v

Almost all processors, even my smart phone, are parallel.

v

Algorithms that don't parallelize are obsolete.

v

Nvidia GPUs are almost ubiquitous.

v

Thousands of cores execute SIMT in warps of 32 threads.

v

Hierarchy of memory: small/fast — big/slow
» Communication cost > computation cost



Thrust

» C++ template library for CUDA based on STL.

» Functional paradigm: can make algorithms easier to
express.

» Hides many CUDA details: good and bad.

» Powerful operators all parallelize: scatter/gather,
reduction, reduction by key, permutation, transform
iterator, zip iterator, sort, prefix sum.

» Surprisingly efficient algorithms like bucket sort.

» Execution cost relative to CUDA: perhaps factor of 3.

» Possible back ends (via setting flag and recompiling).

» GPU: CUDA,
» CPU: OpenMP, TBB, sequential.



Implications of 32-thread warp

32 threads execute same instruction.

v

v

Biggest cost is data access.

v

Ideally access interleaved data.

v

Bad: linked lists, trees, recursion.

v

Good: arrays, grids.



Functional programming model

v

Map / reduce.

v

Permute data with scatter / gather.
Fast radix sort.

v

» Surprising what can be done efficiently:

» run-length encode / decode
» bucket sort



Uniform grid
Summary
» Overlay a uniform 3D grid on the universe.
» For each input primitive — face, edge, vertex — find
overlapping cells.
» In each cell, store set of overlapping primitives.
Properties
» Simple, sparse, uses little memory if well programmed.
Parallelizable.

v

v

Robust against moderate data nonuniformities.

v

Bad worst-case performance on extremely nonuniform
data.

» As do octree and all hierarchical methods.
How it works

» Intersecting primitives must occupy the same cell.

» The grid filters the set of possible intersections.



Uniform Grid Qualities

» Major disadvantage: It's so simple that it apparently
cannot work, especially for nonuniform data.

» Major advantage: For the operations | want to do
(intersection, containment, etc), it works very well for any
real data I've ever tried.

» Outside validation: used in our 2nd place finish in
November's ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh




Uniform Grid Time Analysis

For i.i.d. edges (line segments), show that time to find
edge—edge intersections in E2 is linear in size(input+output)
regardless of varying number of edges per cell.

» N edges, length 1/L, G x G grid.

» Expected # intersections = © (N2L72) .

» Each edge overlaps < 2(G/L+ 1) cells.

> 7 2 # edges per cell, is Poisson; 7 = ©(N/G?(G/L+1)).

» Expected total # xsect tests: G%12 = N?/G?(G/L + 1)

» Total time: insert edges into cells + test for intersections.
T=0(N(G/L+1)+ N?*/G*(G/L+ 1)?).

» Minimized when G = ©(L), giving T = © (N + N2L72).

» = O (size of input + size of output).



Sample app: Cube intersection (ParCube)

» useful for

» collision detection
» complex boolean operations

» 3D is harder than 2D. (Sweep planes?)
» using N=10M cuts out the toy algorithms,
» output sensitive algorithm required.

» bipartite (red-blue) intersection detection would cause
trouble for sweep lines.

» typical prior art: octree.



ParCube

>

vV V. VvV v vY

use specific example here for clarity.

input: 10M cubes, length 0.003.

Every following step paralllelizes.

overlay 300x300x300 grid.

compute 80M (cell,cube) pairs.

sort to form ragged array of cubes in each cell.

compute number of (cube,cube) pairs in each cell (total:
100M pairs).

compute function mapping each pair to a unique location
in pair array, and insert pairs.

» compute which 6M pairs actually intersect and filter array.
» time from when array of input cubes is in computer to

when have list of intersecting pairs.
total time on good Nvidia GPU: 0.33 elapsed seconds.

» 130x faster than CGAL.
» asymptotic time is output sensitive: linear in output size.



Commentary

» possible backends: sequential, OpenMP, TBB, CUDA.

» hardest part: expressing algorithm within restrictions of
Thrust.

» result: very compact straight-line program.

» even sequential is sometimes 3x faster than CGAL.

» more sophisticated algorithms are slower.

» adversary can create bad input, but same with octrees.
» sweep lines not so good in 3D.

» ParCube would extend to higher dimensions.



Validation

» separate implementation using CGAL.

» hardest part was ensuring intersection test did floating
roundoff compatibly.

» compared list of intersecting pairs for sample parameters.
» perfect match.



Performance

50

Number of pojnts: 10M

300

400

500 600
Grid size

700

DA



General lesson, and Future

» simple regular algorithms work very well and parallelize.
» applicable to 7D for robot configuration space collisions.

» Try to compute intersecting graded material properties in
additive manufacturing.



