
ParCube

W. Randolph Franklin and Salles V. G. de Magalhães,
Rensselaer Polytechnic Institute

2017-11-07



Which pairs intersect?



Abstract

I Parallelization of a 3d application (intersection detection).

I Good (uniform grid, radix sort) vs bad (octree, recursion)
data structures.

I The good parallel algorithm is also a good sequential one.

I Functional programming via Thrust is a useful abstraction
level.

I Challenge: expressing the algorithm using those
primitives.

I Capability of inexpensive HW (neither MPI nor BG nor
Spark nor cloud).

I Up to 130× faster than CGAL (Computational Geometry
Algorithms Library).



Prior art
I Zomorodian and Edelsbrunner

I uses segment and range trees to �nd 1D intersections.
I 3 1D intersections are necessary (but not su�cient) for

3D intersection.
I very e�cient in practice, though adversarial inputs exist.
I not parallelizable.
I used in CGAL.

I PBIG
I parallelizes with CUDA
I uniform grid
I complex CUDA-speci�c optimizations, compression
I very fast, parallelizable.

I ParCube (this talk)
I as fast or faster than PBIG.
I simpler.
I higher level abstraction, not restricted to CUDA.



Parallel good; massive better(?)

I Almost all processors, even my smart phone, are parallel.

I Algorithms that don't parallelize are obsolete.

I Nvidia GPUs are almost ubiquitous.

I Thousands of cores execute SIMT in warps of 32 threads.

I Hierarchy of memory: small/fast → big/slow

I Communication cost � computation cost

Massive: IBM Blue Gene, Hadoop, Spark, cloud.

I Each processor has little memory.

I MPI, expensive communication.

I If you need it, then you need it.

However you can do a lot on one server or one GPU.



Thrust

I C++ template library for CUDA based on STL.

I Functional paradigm: algorithms easier to express.

I Hides many CUDA details: good and bad.

I Powerful operators all parallelize: scatter/gather,
reduction, reduction by key, permutation, transform
iterator, zip iterator, sort, pre�x sum.

I Surprisingly e�cient algorithms like bucket sort, runlength
encode/decode.

I Execution cost relative to CUDA: perhaps factor of 3.

I Many possible back ends (just recompile):
I GPU: CUDA,
I CPU: OpenMP, TBB, sequential.



Uniform grid

Summary

I Overlay a uniform 3D grid on the universe.

I Find cells overlapping each input primitive.

I In each cell, store set of overlapping primitives.

Properties

I Simple, sparse, uses little memory if well programmed.

I Parallelizable.

I Robust against data nonuniformities.

I Bad worst-case performance on adversarial data.
I As do octree and all hierarchical methods.

How it works to �nd intersections

I Intersecting primitives must occupy the same cell.

I The grid �lters the set of possible intersections.



Uniform Grid Qualities

I Major disadvantage: It's so simple that it apparently
cannot work, especially for nonuniform data.

I Major advantage: For the operations I want to do
(intersection, containment, etc), it works very well for any
real data I've ever tried.

I Outside validation: used in our 2nd place �nish in
November's ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; CFD Mesh



Uniform Grid Time Analysis
For i.i.d. edges (line segments) in E 2, the time to �nd
edge�edge intersections is linear in size (input+output)
regardless of varying number of edges per cell.

I N edges, length 1/L, G × G grid.

I Expected # intersections = Θ
(

N2

L2

)
.

I Each edge overlaps ≤ 2G
L

+ 1 cells.

I η
∆
= # edges per cell, is Poisson; η = Θ

(
N
G2

(
2G

L
+ 1

))
.

I Expected total # xsect tests: G 2η2 = Θ
(

N2

G2

(
2G

L
+ 1

)2)
.

I Total time: insert edges into cells + test for intersections.

T = Θ
(
N(2G

L
+ 1) + N2

G2 (2G
L

+ 1)2
)
.

I Minimized when G = Θ(L), giving T = Θ
(
N + N2

L2

)
.

I Time = Θ (size of input + size of output). �



ParCube: Find pairwise cube intersections

I Necessary function in
I collision detection
I complex boolean operations
I near point detection

I 3D is harder than 2D. (Sweep planes?!)

I Using N=107 cuts out the toy algorithms,

I Output sensitive algorithm required.

I Easy extension to bipartite (red-blue) intersection
detection, which would cause trouble for sweep lines.



ParCube algorithm summary
I I use speci�c numbers here for clarity.
I Input: 107 cubes, length 0.0025.
I Every step parallelizes.
I Overlay a 400x400x400 grid; cells slightly larger than
cubes.

I Compute array of (cell,cube) pairs; 8 · 107 pairs.
I Sort to form ragged array of cubes in each cell.
I Compute array of (cube, cube) pairs from all pairs of
cubes in each cell.

I Total: 108 potentially intersecting pairs.
I Test pairs for actual intersection; �nd 6 · 106.
I Time from when array of input cubes is in computer to
when have list of intersecting pairs.

I On Nvidia GeForce Titan X GPU: 0.33 elapsed seconds.
I 131x faster than CGAL.
I Asymptotic time is output sensitive: linear in output size.



Computing (cell, cube) array
I Determine, parallelly, the cells that each cube overlaps.
I Store all those pairs in one array.
I Could use a global atomic read-increment-store counter
pointing to the latest pair in the array.

I That's very slow and doesn't scale well.
I Instead: precompute where each pair will go.
I Then can store the pairs parallelly.
I Given the choice of grid size, each cube overlaps 8 cells
(or, rarely, fewer).

I Precomputing each pair's location is easy.
I Pair #j from cube #i is global pair 8i+j.
I Lower-bound function on cube ids computes dope vector.
I Reduce-by-key function computes number of cubes in
each cell (which varies from cell to cell).

I Can �nd j-th cube of i-th cell in constant time.



Computing (cube, cube) array parallelly
I This is harder because di�erent cells have a di�erent
number of (cube,cube) pairs that might intersect.

I k cubes in a cell →
(
k
2

)
pairs in that cell.

I Order combo pairs: (1,0), (2,0), (2,1), (3,0), (3,1), . . .
I Can compute the ids of the two cubes in i-th pair.
I Given a vector with the number of cubes in each cell,
map to compute a vector of the number of pairs.

I Scan it to create a dope vector for each cell's list in the
global (cube,cube) array.

I Now, for the i-th entry in the global (cube,cube) array:
I Lower-bound computes cell id and pair id l in that cell.
I from l compute the ids of the two cubes.

I Write the global (cube,cube) array in parallel.
I Filter it testing whether each pair actually intersects.
I Sort and uniquify it, since some pairs were found twice (in
di�erent cells).

I Result is an array of all the intersecting cube pairs. �



Commentary

I Possible backends: sequential, OpenMP, TBB, CUDA.

I Hardest part: expressing algorithm within restrictions of
Thrust, especially storing (cube, cube) pairs.

I Resulting program:
I Straight line.
I < 200 lines of code (plus supporting �les).

I Even sequential is sometimes 3x faster than CGAL.

I More sophisticated algorithms are slower.

I Sweep lines not so good in 3D.

I ParCube would extend to higher dimensions.

I ParCube not fully optimized; less abstraction might run
3x faster.



Validation

I Separate implementation by di�erent person, using
CGAL.

I Couldn't get PBIG to work, so used its reported times.

I Hardest part was ensuring intersection test did �oating
roundo� compatibly with CGAL.

I (a+ b)− b 6= a

I Compared lists of intersecting pairs for sample
parameters.

I Perfect match.

I All our SW is freely available for nonpro�t research and
education.

I It is research-quality not commercial-quality.



Experimental performance comparison

Times for 107 cubes with di�erent grid (and cube) sizes,
comparing CGAL and ParCube (various backends).

300 400 500 600 700
Grid size

0

10

20

30

40

50

Ti
m

e 
(s

)

Method
CGAL
CUDA
CPP
OMP
TBB

Number of points: 10M



Parallel speedup on dual 8-core multicore Intel

Xeon

1 2 4 8 16 32
Threads

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

Method
OpenMP
TBB



Smaller datasets are faster

I 100,000 cubes: 0.01 - 0.02 sec (video frame rate)

I 1M cubes: .04 - .1 sec

I 10M cubes: .28 - .5 secs



General lessons, and Future

I You can do a lot on a GPU. . .

I including �nding multiple-object intersections.

I Even a 7003 = 343 · 106 cell uniform grid indexing 107

cubes works.

I Simple regular algorithms work very well and parallelize.

I Should extend to other Geometry and CAD problems.

I Would be applicable to 7D for robot con�guration space
collisions.

I Now intersecting 3D triangulations with millions of
triangles, rational numbers, simulation of simplicity,
uniform grid, OpenMP. (talk on Fri).

I Next trying to compute intersecting graded material
properties in additive manufacturing.


