
Fast exact parallel 3D mesh intersection algorithm using only
orientation predicates∗

Salles V. G. Magalhães
Universidade Fed. de Viçosa

DPI, Campus da UFV
Viçosa, MG, Brazil 36570-000

salles@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.

110 8th street
Troy, NY 12180

mail@wrfranklin.org

Marcus V. A. Andrade
Universidade Fed. de Viçosa

DPI, Campus da UFV
Viçosa, MG, Brazil 36570-000

marcus@ufv.br

ABSTRACT

We present an algorithm to compute the intersection of two 3D
triangulated meshes. It has applications in GIS, CAD and Additive
Manufacturing, and was developed to process big datasets quickly
and correctly. The speed comes from simple regular data struc-
tures that parallelize very well. The correctness comes from using
multiple-precision rational arithmetic to prevent roundoff errors
and the resulting topological inconsistencies, and symbolic pertur-
bation (simulation of simplicity) to handle special cases (geometric
degeneracies). To simplify the symbolic perturbation, the algorithm
employs only orientation predicates. This paper focuses on the
challenges and solutions of the implementing symbolic perturba-
tion. Our preliminary implementation has intersected two objects
totalling 8M triangles in 11 elapsed seconds on a dual 8-core Xeon.
The competing LibiGL took 248 seconds and CGAL took 2726 sec-
onds. Our software is freely available for nonprofit research and
education.

CCS CONCEPTS

• Computing methodologies→ Shared memory algorithms;
Computer graphics; Shape modeling;

KEYWORDS

GIS, 3D, Parallel Programming, Computational Geometry

ACM Reference format:

Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade.
2017. Fast exact parallel 3D mesh intersection algorithm using only orienta-
tion predicates. In Proceedings of ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, Redondo Beach, CA USA,
Nov 2017 (SIGSPATIAL’17), 11 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION

Computing intersections or overlays is important to GIS, CAD,
Additive Manufacturing and computational geometry. While GIS
usually deal with 2D data, there are several applications for 3D

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

GIS. For example, while a 2D model could represent urban or hy-
drological networks, or the different kinds of soil in a region, a 3D
model could model more complex features such as layers of soil in a
mine, subway tunnels, buildings, etc. Computing intersections is an
important operation often required by these systems. An example
of application is to intersect polyhedra representing layers of soil
with a polyhedron representing a section of the soil to be mined.

Although 3D models have been widely used, processing is still
a challenge [10]. Due to the algorithm complexity caused by han-
dling special cases, the necessity of processing big datasets, and
floating point arithmetic errors, they note that software packages
occasionally “fail to give a correct result, or they refuse to give a
result at all”. The likelihood of failure increases for bigger datasets.

An algorithm that occasionally fails might be acceptable. Never-
theless, an efficient, robust, and even exact, algorithm is especially
important when it is a subroutine of another algorithm.

In previous works we have developed exact and efficient algo-
rithms for processing 2D (polygonal maps) and 3D models (trian-
gulated meshes). These algorithms employ a combination of five
separate techniques to achieve both robustness and efficiency. Exact
arithmetic is employed to completely avoid errors caused by floating
point numbers. Special cases (geometric degeneracies) are treated
using Simulation of Simplicity (SoS) [9]. The computation is per-
formed using simple local information to make the algorithm easily
parallelizable and to easily ensure robustness. Efficient indexing
techniques with a uniform grid, and High Performance Computing
(HPC) are used to mitigate the overhead of exact arithmetic.

In all these algorithms, our spatial data is represented using
simple topological formats. The 2D maps are represented using
sets of oriented edges where each edge contains the labels of the
polygons on its positive and negative sides. In 3D, the meshes are
represented using a set of oriented triangles and each triangle has
the labels of the polyhedra on its positive and negative sides.

In this paper we will present 3D-EPUG-Overlay1, an exact al-
gorithm to intersect 3D triangulated meshes. This project is an
extension of preliminary work previously published in Magalhães
et al. [17], which presented the general idea of the algorithm. This
paper presents an improved algorithm using only orientation oper-
ations. With this simplicity, implementing the complicated boolean
expressions caused by special case 3D intersections is easier. We
also discuss the challenges associated with the use of SoS to handle
degeneracies.

1Acronym for Exact, Parallel and Uniform Grid

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade

2 RELATEDWORK

While most of the available algorithms are inexact, recently some re-
searchers have developed exact algorithms for performing boolean
operations on meshes.

Hachenberger et al. [12] presented, and CGAL [5] implemented,
an algorithm for computing exact booleans on Nef polyhedra (a
Nef polyhedron is a finite sequence of complement and intersec-
tion operations on half-spaces). However, these algorithms have
limitations such as poor performance due to the heavy-weight
data structures associated with the representation [14, 21]. Another
concern is that Nef Polyhedra are uncommon.

An example of application of the CGAL exact geometry in GIS
is the SFCGAL [19] backend of the PostGIS DBMS. SFCGAL wraps
wraps CGAL exact representation for 2D and 3D data, allowing
PostGIS to perform exact geometric computation.

Bernstein and Fussell [4] also presented an intersection algo-
rithm that tries to achieve robustness. Their basic idea is to repre-
sent the polyhedra using binary space partitioning (BSP) trees with
fixed-precision coordinates. They mention that the main limitation
is that the process to convert BSPs to widely used representations
(such as meshes) is slow and inexact.

Recently Zhou et al. [21] presented an exact and parallel algo-
rithm for performing booleans on meshes. The key of their algo-
rithm is to use the concept of winding numbers to disambiguate
self-intersections on the mesh. Their algorithm first constructs an
arrangement with the two (or more) input meshes and, then, re-
solves the self-intersections in the combined mesh by retesselating
the triangles such that intersections happen only on common ver-
tices or edges. The self-intersection resolution eliminates not only
the triangle-triangle intersections between triangles of the different
input meshes, but also between triangles of the same mesh and,
as result, their algorithm can also eliminate self-interesctions in
the input meshes, repairing them. Finally, a classification step is
applied to compute the resulting boolean operations.

Zhou et al. [21] employs exact predicates provided by CGAL.
Furthermore, the triangle-triangle intersection computation is ac-
celerated using CGAL’s bounding-box-based spatial index.

3 DATA REPRESENTATION

The program input is a pair of meshes in 3D (E3). Each mesh is a
partition (triangulation) of the space into polyhedra. The polyhedra
may have complex topologies, with holes and disjoint components.
Polyhedra from the same mesh intersect only at common vertices,
edges, and faces (triangles). Triangles from the same mesh intersect
only at common vertices and edges. All triangles have a nonzero
area and all tetrahedra a nonzero volume. (A mesh that violates
those conditions can be cleaned up by splitting edges and retrian-
gulating.) Vertices and polyhedra are labeled with ids.

Each meshM is a set of triangles (a triangle soup) {ti }. Each trian-
gle t = (a0,a1,a2,q+,q−). (a0,a1,a2) is the oriented list of triangle
vertices, and (q+,q−) are the adjacent polyhedra on the positive and
negative sides of t . Note that we store no global topology, such as
face shells, because we do not need it. Our data structure simplicity
is key, e.g., in facilitating parallelization.

Two types of vertices are processed by the algorithm: (1) input
vertices occurring in the input meshes, and (2) intersection vertices
resulting from intersections between an edge of one mesh and a

triangle of the other. Similarly to the vertices, there are two types of
triangles: input triangles and triangles from retesselation. The first
one contains only input vertices while the second one may contain
vertices generated from intersections and are created during the
retesselation of input triangles.

A vertex from intersection is represented by the edge and the
input triangle whose intersection generated it. Even though it is
possible to compute the coordinates of these vertices using the infor-
mation about how the they were generated, we have an additional
data structure that caches these coordinates to avoid recomputation.

As it will be mentioned later, distinguishing input vertices from
vertices generated from intersections is important for the imple-
mentation of the symbolic perturbation.

4 ROUNDOFF ERRORS

The finite precision of floating point computations cause floating
arithmetic to violatemost of the axioms of the real number field. E.g.,
associativity under addition is not always true because (10−20 + 1)
rounds to 1, so (10−20 + 1) − 1 , 10−20 + (1 − 1). Such arithmetic
roundoff errors can cause the sign of a determinant to be evaluated
wrong, resulting in a boolean predicate being wrong. Therefore,
whether two edges intersect can be determined wrongly. Worse,
a transformation that ought to preserve such incidence proper-
ties, such as translations, rotations, or scalings, might erroneously
change how the predicate is evaluated.

These arithmetic errors can lead to topological errors and im-
possibilities causing an algorithm to produce inconsistent output.
Although the chance of any one roundoff error being problematic
may be quite small, as datasets get larger, the probability of a prob-
lem somewhere also gets larger. Our solution is to compute within
a field of rational numbers, so that there are no roundoff errors.
Rationals are slower than floats, but our algorithm is fast enough
that this is not a problem.

5 GEOMETRIC DEGENERACIES

Another common source of error in geometric algorithms are the
special cases (geometric degeneracies). Algorithms are usually de-
scribed considering they will process non-degenerate input. How-
ever, during the actual implementation, degenerate data have to be
considered. Degeneracies increase the number of cases that must
be considered. E.g., when comparing point q against line l , there
are now three cases: q may be (above / on / below) l instead of
only two (above / below). By itself, this would not be bad, except
that this predicate may be a component of a larger one. Perhaps
q is a vertex of a piecewise straight linem with vertices qpr , and
we wish to know howm intersects l . There are now more special
cases. Next, consider the intersection of the piecewise straight line
with vertices a0a1a2 with the piecewise straight line with vertices
b0b1b2. Perhaps a1 = b1, or a0a1 is collinear with b1b2, and so on...

As mentioned by Yap [20], “sometimes, even careful attempts at
capturing all degenerate cases leave hard-to-detect gaps”. Properly
handling special cases is a challenge mainly in geometric problems
such as the mesh intersection, that depend on several subproblems,
each one with its own special cases.

A technique for handling special cases is Simulation of Simplicity
(SoS) [9], a general-purpose symbolic perturbation technique. It is

Fast exact parallel 3D mesh intersection algorithm using only orientation predicates SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA

based on the idea that if the geometric objects are perturbed with
infinitesimals, then the degeneracies disappear.

SoS uses a symbolic perturbation by a power of an indetermi-
nate infinitesimal ϵ . Its mathematical formalization extends some
exactly computable field, such as rationals, by adding orders of
infinitesimals. Floating point numbers cannot be the base because
of roundoff errors. The infinitesimal is an indeterminate. It has
no meaning apart from the rules for how it combines. All posi-
tive first-order infinitesimals are smaller than the smallest positive
number. All positive second-order infinitesimals are smaller than
the smallest positive first-order infinitesimal, and so on. All this is
consistent, satisfying the axioms of an abstract algebra field.

The result of SoS is that degeneracies are resolved in a way
that is globally consistent, which is crucial for the development
of algorithms relying on multiple geometric predicates. Figure 1
illustrates the importance of the consistency: suppose edges uv and
uw are collinear. If after a perturbation,w is on the positive side of
uv , then a predicate that computes the orientation ofw with respect
to uv should return "positive". At the same time, a predicate that
verifies ifw ′ is closer to x than v ′ is should return "true", otherwise
the results of these two predicates would be inconsistent.

u
v

w

x

y

v'

w'

Figure 1: Importance of global consistency and determining

if a segment is below another one.

To implement the algorithm using SoS, the perturbation scheme
must satisfy three properties. (1) The perturbed dataset must be
non-degenerate, (2) it must retain the non-degenerate properties of
the original one and (3) the computational overhead of processing
it instead of the original one must be small.

Edelsbrunner illustrated the application of SoS by implementing
an orientation predicate and employing it to solve the convex hull
problem. Initially, the predicate is applied to the non-perturbed
input points and the result can be returned if it is non-degenerate
(because of the second property). If a degeneracy is detected, a
function that evaluates the predicate considering the perturbed
dataset is applied. This is efficient because there is no overhead if
the input is non-degenerate and because the use of different orders
of infinitesimals allows the computation of the predicate without
evaluating all the terms in the expressions.

5.1 The symbolic perturbation

In Edelsbrunner [9], the geometric objects processed by the con-
vex hull algorithm are the input vertices. In the 2D version of the
problem, the j-th coordinate of each vertex was perturbed by trans-
lating it by ϵ2

2i−j
. As shown by the authors, even if all the points

were originally coincident, after the perturbation no three points
would be collinear, which completely eliminates degeneracies for
the convex hull problem.

In contrast, for the mesh intersection problem, we assume that
the individual meshes are not degenerate, and coincidences happen
only when they are processed together. For example, two triangles
from the same mesh only intersect at common edges or vertices but
the interior of a triangle from one mesh can intersect a co-planar

triangle from the other mesh, which represents a special case of
the intersection algorithm.

Allowing an individual meshM to be degenerate is challenging
because it is hard to develop a perturbation scheme that ensures
M will be consistent after the perturbation. For example,M could
contain two triangles where all six vertices coincide. Even though a
perturbation scheme such as the one employed by Edelsbrunner [9]
for the 3D orientation would ensure no two vertices will coincide,
there is no guarantee that the information about the tetrahedra on
each side of the triangles will be consistent after the perturbation.

For the rest of this paper the following notation will be employed.
The two input meshes will be represented byM0 andM1 and the
corresponding perturbed meshes will be, respectively,M0ϵ andM1ϵ .
All the perturbed geometric objects (vertices, edges and triangles)
will be followed by an ϵ subscript (for example, vertex vϵ is the
perturbed version of vertex v).

We propose the following perturbation scheme for the 3D mesh
intersection problem. (1) Do not modify mesh 0. (2) Translate each
vertex of mesh 1 equally by the vector (ϵ, ϵ2, ϵ3), i.e., vjϵ = (vjx +

ϵ,vjy + ϵ
2,vjz + ϵ3). Now, no vertex fromM0ϵ can coincide with

any vertex fromM1ϵ .
The rest of this Section will present lemmas describing properties

of the perturbed meshes. The proofs will be omitted because of
space limitations.

Lemma 5.1. If aϵ is a vertex from mesh i and tϵ is a triangle from
mesh 1 − i , then aϵ and tϵ are not coplanar.

Lemma 5.2. Given an edge e1ϵ = aϵbϵ (aϵ , bϵ), i.e., the endpoints
are aϵ and bϵ , from mesh i and another edge e2ϵ = cϵdϵ (cϵ , dϵ)
from mesh 1 − i such that e1ϵ and e2ϵ are not parallel, then e1ϵ and
e2ϵ do not intersect.

Lemma 5.3. Given two distinct vertices aϵ and bϵ from mesh i and
another vertex cϵ from mesh 1−i , then aϵ , bϵ and cϵ are not collinear.

Lemma 5.4. If an edge eϵ from a mesh i intersects a triangle tϵ
from mesh (1 − i), then this intersection happens in the interior of tϵ .

Lemma 5.5. If eϵ is an edge from mesh i and tϵ is a triangle from
mesh 1 − i , then eϵ and tϵ are not coplanar.

Lemma 5.6. If tiϵ and t(1−i)ϵ are triangles belonging to, respec-
tively, meshes i and 1 − i , then tiϵ and t(1−i)ϵ are not co-planar.

While these lemmas could be still valid for some other perturba-
tion schemes, they are not valid for all perturbations. For example, if
meshM1 was translated by (ϵ, ϵ, ϵ) instead of (ϵ, ϵ2, ϵ3), then the fol-
lowing three points would be collinear: aϵ = (0, 0, 0), bϵ = (1, 1, 1)
and cϵ = (0+ ϵ, 0+ ϵ, 0+ ϵ) (where aϵ and bϵ are in meshM0ϵ and
cϵ is in meshM1ϵ).

6 IMPLEMENTING INTERSECTIONWITH

SIMPLE GEOMETRIC PREDICATES

To simplify the implementation of the symbolic perturbation, we
developed two versions of each geometric function employed in the
mesh intersection algorithm. The first one focused on efficiency,
and was implemented based on efficient algorithms available in the
literature. The second one focused on simplicity, and was imple-
mented using as few geometric predicates as possible.

The idea is that, during the computation, the first version of
each function is called. If a special case is detected, then the second

SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade

version is called. In order to make sure the special cases are properly
handled we only need to implement the perturbation scheme on
these predicates. As will be seen, the second version of the functions
was implemented with only orientation predicates.

The main advantage of having the orientation predicates as
base for other functions is the simplicity of the implementation. It
is usually much easier to implement symbolic perturbation with
orientation predicates than with more complicated functions, such
as using barycentric coordinates to detect if a point is in a triangle.

Since the focus of this paper is the implementation of the sym-
bolic perturbation scheme, details about the first version of the
geometric functions will not be presented. Furthermore, as men-
tioned before, the first versions of the functions are used only for
speed. Our algorithm can be correctly implemented without them.

6.1 Orientation predicates

From Edelsbrunner [9], the orientation of a sequence of d +1 points
in Ed is “either negative or positive - unless the d + 1 points lie on
a common hyperplane, in which it is undefined". The orientation is

orientation(p0,p1, ..,pd) = sдn
*....
,

����������

p00 p01 ... p0(d−1) 1
p10 p11 ... p1(d−1) 1
...

pd0 pd1 ... pd (d−1) 1

����������

+////
-

where pi j is the j-th coordinate of point i and sgn is the signum
function that returns−1 if the argument is negative, 1 if it is positive
and 0 if it is 0 (coincidence).

As it will be shown later, the predicates employed by the 3D
mesh intersection algorithm will be the 1D, 2D and 3D orienta-
tion. These predicates will be adapted to handle the perturbed
points, remaining consistent with the perturbation. E.g„ because of
Lemma 5.1 orientation(aϵ ,bϵ , cϵ ,dϵ) will never be 0 if aϵbϵcϵ is a
triangle from one mesh and dϵ is a vertex of the other mesh.

As mentioned in the section on symbolic perturbation above, not
all coincidences are eliminated by the perturbations. For example,
orientation(aϵ ,bϵ , cϵ ,dϵ) may be 0 if all the points are from the
samemesh. However, as it will be shown, in the few functions where
these coincidences may happen, the behavior of the algorithm is
well defined and the coincidence does not propagate to other steps
of the algorithm.

7 THE MESH INTERSECTION ALGORITHM

The computation is performed using only local information stored
in the individual triangles. That is, the triangles from one mesh are
intersected with the triangles from the other one. Then a new mesh
containing the triangles from the two original meshes is created,
and the original triangles are split at the intersection points. I.e., if
a pair of triangles in this new mesh intersect, then this intersection
will happen necessarily on a common edge or vertex. Finally, the
adjacency information stored in each triangle is updated to ensure
that the new mesh will consistently represent the intersection of
the two original ones.

7.1 Intersecting triangles

For speed, a uniform grid is employed to cull the number of pairs of
triangles that need to be tested for intersection. For each uniform
grid cell, the intersections between pairs of triangles from the two

triangulations are computed. Triangles that do not occur in the
same cell are not tested.

More specifically, a two-level 3D uniform grid is employed to
accelerate the computation. That is, the grid will be created by
inserting in its cells triangles from both meshesM0ϵ andM1ϵ . Then,
for each grid cell c , the pairs of triangles from both meshes in c are
intersected. If the resolution of the uniform grid is chosen such that
the expected number of triangles per grid cell is a constant K , then
it is expected that each triangle will be tested for intersection with
the otherK triangles in its grid cell. Thus, the expected total number
of intersection tests performed will probably be linear in the size of
the input maps. The exception would be if there were a superlinear
number of triangle pairs very close to each other. This does not
occur in real datasets, which satisfy a form of Lipshitz condition
bounding themaximumdensity of elements. Also, experiments with
uniform grids in various applications show excellent performance
on real data [2, 11, 16].

Since the cells do not influence each other, the process of in-
tersecting the triangles can be trivially parallelized: the grid cells
can be processed in parallel by different threads using a parallel
programming API such as OpenMP.

7.1.1 Implementation with orientation predicates. Let t0 and t1
be two triangles from, respectively, meshesM0 andM1. Assume t0ϵ
and t1ϵ intersect and, w.l.o.g, let eϵ be an edge of one of the triangles
tiϵ that intersects t(1−i)ϵ . Since, because of Lemma 5.1, no vertex
of eϵ can be on the plane of t(1−i)ϵ , it is clear that the intersection
will necessarily happen in the interior of eϵ . Furthermore, eϵ will
intersect the interior of t(1−i)ϵ (Lemma 5.4)

Since t0ϵ and t1ϵ cannot be co-planar and edges intersect only the
interior of triangles, the intersection of t0ϵ and t1ϵ will always be an
edge uϵvϵ (with uϵ , vϵ), where uϵ and vϵ are vertices generated
from the intersection of the interior of one of the triangles and the
interior of one edge of the other triangle.

Vertices uϵ and vϵ can be computed by testing the intersection
of the six combinations of edges from one triangle against the other
one. The number of intersections detected will be either zero (when
the triangles do not intersect) or two (when they do intersect).

As showed by [18], the intersection between an edge eϵ and a
triangle can be detected by computing five 3D orientations. For
example, if both vertices of eϵ the are on the same side of the triangle,
then they do not intersect. Therefore, the intersection computation
can be implemented employing only orientation predicates.

Since intersections are computed only between input triangles,
in this step the only necessary predicate is the 3D orientation of
input vertices. The vertices from intersection are created in this step
of the algorithm, and since their coordinates are stored implicitly
as a pair (edge, triangle), no further computation is necessary.

Furthermore, since there will be no coincidence between edges
of one perturbed mesh and triangles of the other perturbed mesh,
the 3D orientation predicates will never return 0.

7.2 Retesselating the triangles

After computing the intersections between each pair of triangles,
the next step is to split the triangles where they intersect, so that
after this process all the intersections will happen only on common
vertices or edges. When a triangle is split, the labels of its two
bounding objects will be copied to the new triangles.

Fast exact parallel 3D mesh intersection algorithm using only orientation predicates SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA

Figure 2 presents an example of intersection computation. In
Figure 2(a), we have two meshes representing two tetrahedra with
one region in each one: the brown mesh (mesh M0) bounds the
exterior region and region 1 while the yellow mesh (mesh M1)
bounds the exterior region and region 2.

After the intersections between the triangles are computed, the
triangles from one mesh that intersect triangles from the other one
are split into several triangles, creatingmeshesM ′0 andM

′
1. The only

triangle from meshM0 that intersects meshM1 is BCD. Since BCD
intersects three triangles from M1, it was split into seven triangles
when M ′0 was created. Similarly, each of the three triangles from
M1 intersectingM0 was split into three smaller triangles.

Before retesselating each triangle tϵ , the original edges of tϵ that
intersect other triangles are split at the intersection points. This
process is performed by sorting the intersection points along the
edge based on their distance from one of the end vertices of the
edge. Then, a planar graph G is created to represent the original
non-intersecting edges of tϵ , the intersecting edges of tϵ split at
the intersection points, and the edges generated by intersecting tϵ
with the other mesh. Since this process is performed on the plane,
tϵ is first projected onto a plane (x = 0, y = 0 or z = 0) that it is not
nearly perpendicular to.

The retesselation of tϵ is performed using two strategies. First,
ifG contains only one connected component, then the algorithm
presented in [13] is employed to extract the faces of G. In the set
of faces from G, each face is triangulated using the ear-clipping
algorithm [8], that has a time complexity quadratic in the number
of vertices in the face. That time is acceptable because the expected
size of a face is small. If it were a problem, more efficient polygon
triangulation algorithms exist, using as little as linear time in the
face size, at the cost of considerable complexity.

Second, if G contains multiple connected components, a triv-
ial incremental algorithm is employed to triangulate G. A trivial
implementation has a θ (n4) complexity, where n is the number of
vertices in G. The reasons why we decided to employ this simpler
algorithm are two: the graphs should be relatively small in practice
and, according to preliminary experiments, disconnected graphs
happen rarely if compared to connected ones.

7.2.1 Implementation with orientation predicates. Assume tϵ
is a triangle from mesh Miϵ and T is the set of triangles from
meshM(1−i)ϵ intersecting tϵ . We will show how to retesselate tϵ
employing only orientation predicates.

As mentioned before, during the retesselation the vertices are
projected onto a plane (x = 0, y = 0 or z = 0) with which tϵ is non-
perpendicular. For simplicity, unless otherwise noted all orientation
operations will be performed using the projected vertices.

Splitting edges at intersection points. Let eϵ = aϵbϵ be an edge of
tϵ . In this step, the vertices generated from the intersection of eϵ
with triangles from M(1−i)ϵ are sorted based on their distance to
aϵ . The required geometric predicate to perform this operation is a
comparison predicate that verifies if a vertex is closer to aϵ than
another vertex is.

Let v1ϵ and v2ϵ be two vertices generated from the intersection
of eϵ , with respectively, t ′1ϵ and t ′2ϵ of meshM(1−i)ϵ . Since bothv1ϵ
and v2ϵ are on eϵ , there would be a coincidence on the distance of
these points to aϵ iff v1ϵ and v2ϵ coincide. But, they cannot coin-
cide because otherwise the interior of t ′1ϵ and t ′2ϵ would intersect

(which cannot happen since t ′1ϵ and t ′2ϵ are from the same mesh).
The predicate to decide which vertex is closer to aϵ can be easily
implemented by applying a 3D orientation to the non-projected
(3D) vertices: v1ϵ is closer to aϵ than v2ϵ is iff v1ϵ and aϵ are on
the same side of t ′2ϵ .

Figure 3 illustrates this. Since both aϵ andv1ϵ are on the positive
side of t ′2ϵ = dϵeϵ fϵ , then v1ϵ is closer to aϵ than v2ϵ is.

Face extractions. The only geometric predicate required by the
polygon extraction algorithm is the one that sorts pairs of edges by
their polar angle around a shared vertex. Given two edges e1ϵ =
uϵvϵ and e2ϵ = uϵwϵ , if vϵ and wϵ are in the same quadrant
(assuming thatuϵ is the origin) then the polar angle of e1ϵ is smaller
than the polar angle of e2ϵ iff the 2D orientation of uϵ , vϵ andwϵ
is positive. If they are in different quadrants, then comparing their
polar angle is trivial.

To determine in which quadrant a vertex vϵ is consideringwϵ
as the origin, it is necessary to evaluate the signum of each coordi-
nate of the vectorwϵvϵ , which is equivalent to computing the 1D
orientation ofwϵ and vϵ for the corresponding coordinate.

During the retesselation of tϵ ∈ Miϵ the edges e1ϵ = uϵvϵ or
e2ϵ = uϵwϵ can be either one of the original edges of tϵ (possibly
split) or one edge generated by the intersection of tϵ with a triangle
t ′ϵ fromM(1−i)ϵ .

If, say, e1ϵ is one of the original edges of tϵ , then its polar an-
gle cannot be equal to e2ϵ ’s polar angle otherwise tϵ would be
degenerate, or e1ϵ and t ′ϵ would be co-planar. The first and second
situations would happen if, respectively, e2ϵ was an edge of tϵ or
an edge generated from an intersection.

Now, suppose e1ϵ and e2ϵ are edges generated from intersections.
Since both edges are on tϵ , they are generated from the intersection
of tϵ with other triangles t ′1ϵ and t ′2ϵ of mesh M(1−i)ϵ . Since the
interior of edges generated from intersections is always in the
interior of the triangles that generated them, e1ϵ and e2ϵ cannot
have the same polar angle otherwise the intersection of these two
edges would have a common point and, thus, t ′1ϵ and t ′2ϵ would
intersect in their interior (which cannot happen since both triangles
are in the same mesh). Therefore, there will be no coincidence in
the predicate to compare pairs of edges by their polar angle when
the perturbed input is processed.

An attentive reader may notice that the symbolic perturbation
may modify the result of the comparison predicate for a non-
degenerate input: if before the perturbation an edge has polar angle
exactly 0, then after the perturbation this edge may be in the first
or forth quadrants. However, this modification does not affect the
face extraction algorithm since the objective of sorting the edges is
to extract the wedges and the algorithm works properly as long as
the list is sorted in a cyclic order.

Ear clipping. The ear-clipping algorithm employs only two geo-
metric predicates: one that verifies if a vertex is an ear (convex) and
one that verifies if a vertex is outside of a triangle.

Again, these two operations can be performed using 2D orien-
tations. Given two oriented edges uϵvϵ and vϵwϵ of a face, vϵ is
convex iff orientation(uϵ ,vϵ ,wϵ) is positive. Also, given a triangle
tϵ = aϵbϵcϵ , we can determine if vϵ is inside tϵ by evaluating the
orientation of vϵ w.r.t. the edges aϵbϵ , bϵcϵ and cϵaϵ .

SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade

(a) (b)

Figure 2: Computing the intersection of two tetrahedra. Source: [17]

Figure 3: Sorting the vertices along an edge

During the ear-clipping some coincidences may happen even
after the perturbation. Since all vertices of the same mesh are trans-
lated using the same perturbation, three vertices from the intersec-
tion uϵ , vϵ andwϵ may be collinear. Even though this coincidence
may happen, they do not affect the ear-clipping algorithm since
if a vertex vϵ and its two neighbors are collinear, vϵ will not be
considered an ear. Also, the algorithm assumes the point in triangle
algorithm always returns true if a vertex is on an edge.

One could argue that even these simple coincidences should be
completely eliminated. However, we believe they do not negatively
affect the algorithm since they happen only in a lower level predi-
cate, and do not propagate to higher level functions. Furthermore,
they cannot be completely removed without violating mathematical
properties: for example, the point of intersection of an edge with a
triangle will always be collinear with the endpoints of the edge.

Triangulating disconnected subdivisions. Disconnected subdivi-
sions are triangulated using only one kind of geometric predicate,
which verifies if any two edges e1ϵ = uϵvϵ and e2ϵ = kϵwϵ inter-
sect other than at their endpoints.

Since all the vertices have unique coordinates, two edges will
intersect at their endpoints iff they share a vertex. 2D orientation
predicates can be employed to detect if e1ϵ and e2ϵ intersect at
their interior. If e1ϵ and e2ϵ are collinear, an intersection in the
interior of these edges can be detected by projecting them onto one
of the Cartesian axes and verifying if the intervals defined by this
projection intersect at their interior. A 1D orientation predicate can
be employed to perform this verification.

7.3 Classifying triangles

After the intersections are detected and all the triangles that inter-
sect other triangles are split at the intersection points, two new
meshes M ′0ϵ and M ′1ϵ are created such that each new mesh M ′iϵ
will have the following two kinds of triangles:
• Triangles from the original mesh: if triangle tϵ fromMiϵ did not
intersect the interior of a triangle from the other mesh, then tϵ
will be inM ′iϵ .
• New triangles: if triangle tϵ from Miϵ intersects the interior
of one or more triangles from the other mesh, then tϵ will be
partitioned into smaller triangles that will be inserted intoM ′iϵ .
It is clear that each mesh M ′iϵ will exactly represent the same

regions that Miϵ represents. Thus, computing the intersection be-
tweenM ′iϵ andM ′

(1−i)ϵ is equivalent to computing the intersection
ofMiϵ withM(1−i)ϵ . However,M ′iϵ andM ′

(1−i)ϵ are easier to pro-
cess: since the triangles from one mesh intersect with the triangles
of the other one only in common vertices or edges, then each tri-
angle tϵ fromM ′iϵ will be completely inside a region fromM ′

(1−i)ϵ .
Suppose a triangle tϵ from M ′iϵ bounds regions Ra and Rb and is
completely inside region Rc from mesh M ′

(1−i)ϵ . When M ′iϵ is in-
tersected withM ′

(1−i)ϵ , tϵ will be in the resulting mesh and it will
bound regions Ra ∩ Rc and Rb ∩ Rc .

Therefore, the process of classifying the triangles to create the
output mesh consists in processing each triangle tϵ from the meshes
M ′iϵ (i = 0, 1), determining in what region ofM ′

(1−i)ϵ tϵ is and, then,
updating the information about the regions tϵ bounds such that
the resulting mesh is consistent.

If a triangle tϵ is in the exterior of the other mesh, in the resulting
mesh the two regions tϵ bounds will be the exterior region and,
thus, they can be ignored and not stored in the output mesh.

Figure 2(b) illustrates the classification step. All the intersections
happen at common edges, and the only triangle from M ′0 that is
completely inside region 2 (of M ′1) is triangle LMN . Since LMN
bounds region 1 and the exterior region in M ′0, in the resulting
intersection LMN will bound region 1 ∩ 2 and the exterior region.
All the other triangles from M ′0 are in the exterior region of M ′1
and, thus, they will only bound the exterior region in the resulting

Fast exact parallel 3D mesh intersection algorithm using only orientation predicates SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA

intersection (therefore, they will be ignored when the output mesh
is computed). Similarly, in M ′0 the only triangles that are inside
region 1 ofM ′0 are triangles EMN , ELM and ELN .

The process of locating triangles of one mesh in the other one
can be performed using a point location algorithm and a flood-fill
algorithm. Suppose triangles of meshM ′iϵ are being located. If two
adjacent triangles tϵ and t ′ϵ share an edge that was not generated by
an intersection withM ′

(1−i)ϵ , than these triangles are in the same
region of M ′

(1−i)ϵ . If tϵ and t ′ϵ share an edge that was generated
by an intersection with triangle t ′′ϵ of mesh M ′

(1−i)ϵ , then tϵ and
t ′ϵ are in different regions of the other mesh. Since the regions t ′′ϵ
bound are known, it is possible to determine the location of tϵ and
t ′ϵ once the location of at least one of these two triangles is known.
For example, if t ′′ϵ bounds region 0 on its positive side and 1 on the
negative side and it is known that tϵ is in region 0 ofM ′

(1−i)ϵ , then
t ′ϵ can only be in region 1.

Thus, the location of all triangles in each connected component
of triangles can be performed by locating one of the triangles as a
seed and, then, using a traversal algorithm to locate the others. We
use as seed a triangle containing an input vertex. Since the location
of an input vertex is the same of the triangles containing it, the
seed is located by locating one of its input vertices. This process is
performed using the PinMesh [15] point location algorithm that,
besides being able to perform queries in expected constant time,
uses the same index we employ for indexing the triangles.

7.3.1 Implementation with orientation predicates. The triangles
from one mesh are located in the other one by employing PinMesh
to locate triangles with input vertices and, then, using a flood-fill
algorithm to assign the location of the other triangles. Thus, we
only have to show that PinMesh can be implemented using only
orientation predicates.

PinMesh performs only 3 geometric operations [15]:
• isOnProj (tϵ ,qϵ) : given a triangle tϵ and a query pointqϵ , decide
if the projection of qϵ onto the plane passing through tϵ is on
the interior of tϵ .
• isAbove (tϵ ,qϵ) : given a query point qϵ and a triangle tϵ such
that isOnProj (tϵ ,qϵ) is true, decide if the projection of qϵ onto
tϵ is above qϵ , i.e., the triangle is above the point.
• isBelow (tϵ , t

′
ϵ ,qϵ) : given two triangles tϵ and t ′ϵ directly above

a query point qϵ , decide if the z component of the projection of
qϵ onto tϵ is smaller than the z component of the projection of
qϵ onto t ′ϵ .
The first operation is the point in triangle test and, as mentioned

earlier in the section on ear clipping, it can be implemented using
three 2D orientation predicates. The operation isAbove (tϵ ,qϵ) can
be implemented by deciding onwhich side of tϵ qϵ lies and verifying
if tϵ ’s normal has a positive or negative z-component (which can
computed by verifying if the 2D orientation of the 3 vertices of tϵ
is positive considering tϵ is projected onto z = 0).

Finally, isBelow (tϵ , t
′
ϵ ,qϵ) can also be implemented using orien-

tation: let vϵ be the vertex generated from the intersection of tϵ
with a vertical edge passing through qϵ . isBelow (tϵ , t

′
ϵ ,qϵ) will be

true iff the (3D) orientation of qϵ with respect to t ′ϵ is equal to the
orientation ofvϵ with respect to t ′ϵ (i.e., if both qϵ andvϵ are on the
same side of t ′ϵ). This predicate can be implemented by creating the

vertex vϵ as a dummy vertex from the intersection and applying
the 3D orientation predicate.

Figure 1 also illustrates an analogous process in 2D: to determine
if the segment uv intersects a vertical line passing through y at a
lower point than uw intersects, a dummy vertex v ′ can be created
as the intersection of uv with yx , where x is an arbitrary point
above y. Since v ′ and y are on the negative side of uw , then v ′ is
lower thanw ′.

PinMesh is employed to query an input vertex of one mesh
against the other original mesh and, thus, only input vertices are
processed. Also, PinMesh employs the same perturbation scheme
employed in this paper and, thus, there will be no coincidence
during the point location queries.

8 IMPLEMENTING SYMBOLIC

PERTURBATION

Since all geometric operations can be implemented using only ori-
entation predicates, the symbolic perturbation needs to be imple-
mented only for these predicates. Because of the determinants’
regularity, orientation predicates can be easily adapted to process
perturbed points, Edelsbrunner [9].

However, there is a challenge in the mesh intersection problem:
the predicates will have not only to handle input vertices (with
real or rational coordinates), but also vertices generated from in-
tersections. Since the coordinates of a vertex generated from an
intersection is a function of five input points (two points defining
an edge of one mesh and three points defining a triangle of the
other mesh) and these points are perturbed, then the orientation
has to be modified to handle these points.

As shown above in the section describing the mesh intersection
algorithm, the 3D orientation will only be computed using, as argu-
ments, three input vertices and another vertex that may be either
an input vertex or a vertex from the intersection. Thus, at least two
versions of the 3D orientation will have to be implemented.

For the 2D orientation, on the other hand, any of the three pa-
rameters may be either an input vertex or a vertex generated by
an intersection. Thus, eight versions of the orientation predicate
will be required. Since the orientation is computed using a determi-
nant, the order of the parameters may be modified as long as the
signum of the result is negated for each parameter swap. Then the
number of functions actually written can be reduced by sorting the
parameters by their type (input vertex or vertex from intersection).

During the evaluation of a predicate where at least one of the
parameters pϵ is a vertex from the intersection, the coordinates of
this vertex need to be computed. By definition, pϵ is represented
by the points t0ϵ = t0 + (iϵ, iϵ2, iϵ3), t1ϵ = t1 + (iϵ, iϵ2, iϵ3) and
t2ϵ = t2+ (iϵ, iϵ2, iϵ3) of the triangle tϵ and e0ϵ = e0+ ((1−i)ϵ, (1−
i)ϵ2, (1 − i)ϵ3) and e1ϵ = e1 + ((1 − i)ϵ, (1 − i)ϵ2, (1 − i)ϵ3) of the
edge eϵ , where i is the id (that may be either 0 or 1) of the mesh
containing tϵ and pϵ is the intersection of tϵ with eϵ .

Each coordinate of pϵ will be an ϵ-expression with degree 3,
where each coefficient is a function of the input vertices and of id .
The coefficient of degree 0 represents the corresponding coordinate
of the intersection point if the dataset was not perturbed.

Once the determinant to compute the signum of the orientation
is evaluated, the resulting ϵ-expression will have maximum degree
6, where the coefficient of degree 0 represents the result that would

SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade

be obtained if the meshes were not perturbed. The signum of the
determinant will be the signum of the non-vanishing coefficient of
smaller degree, or 0 if all coefficients vanish.

Given an orientation predicateorientation(p0ϵ ,p1ϵ , ...,pdϵ), there
are only two possibilities for the perturbation of each vertex pjϵ . If
pjϵ is an input vertex, then pjϵ will be either perturbed (translated)
if it belongs to mesh 1 or it will not be translated if it belongs to
mesh 0. If pjϵ is a vertex from the intersection, then either the edge
that generated pjϵ or the triangle that generated pjϵ will be trans-
lated by (ϵ, ϵ2, ϵ3). Since the number of combinations is relatively
small, we decided to generate a different predicate to handle each
combination instead of evaluating the perturbations at runtime.

For the 2D orientation, for example, there will be eight possible
combinations of perturbation schemes used in the three param-
eters. Furthermore, each of the three parameters may be either
input vertices or vertices from the intersection, which results in
eight combinations for the parameter types (since the parameters
may be sorted, the actual number of combinations that have to be
implemented is four). Finally, since the orientation 2D deals with
3D points projected onto one of the planes x = 0, y = 0 or z = 0,
one version of the predicate will have to be implemented for each
plane. Thus the total number of functions will be 96. For the 3D
orientation, at least three of the parameters will be input vertices
and, thus, the number of predicates that will be implemented is 32.
Finally, in the 1D orientation the number of predicates will be 36.

One may argue that implementing 164 functions is a hard (and
error-prone) task. However, all the functions are very regular and
a program to generate them automatically can be implemented.
Indeed, during the implementation of this mesh intersection algo-
rithm a Wolfram Mathematica script was developed and the code
for all the predicates was created automatically by the script.

9 EXPERIMENTS

3D-EPUG-Overlay was implemented in C++ and compiled using
g++. Parallel programming was provided by OpenMP and multiple
precision rational number were provided by GNU GMPXX. All
the experiments were performed on a workstation with dual Intel
Xeon E5-2687 processors, each with 8 physical cores, each core able
to run 2 threads using the Intel Hyper-threading technology. The
workstation has 128 GiB of RAM and runs Ubuntu Linux 16.04.

We evaluated 3D-EPUG-Overlay, by comparing it against three
state of the art intersection algorithms: the exact and parallel method
developed by Zhou et al. [21] and distributed in LibiGL, the exact
algorithm for Nef Polyhedra available in CGAL, and the fast and par-
allel algorithm available in QuickCSG [7]. Even though QuickCSG
is not an exact algorithm and does not process special cases [7], we
compared 3D-EPUG-Overlay against it to verify how our exact
algorithm compared with a fast approximate algorithm.

Experiments were performed with a variety of meshes down-
loaded from 3 datasets. All these meshes are non self-intersecting
and watertight. Meshes whose names are numbers were down-
loaded from the Thingi10k dataset [22] (the number represents the
id of the mesh). The ones with the sufix kf were obtained from
the dataset provided by Barki [3]. All the other meshes were down-
loaded from the AIM@SHAPE-VISIONAIR Shape Repository [1].
Observe that some meshes are available in different datasets with

different resolutions (e.g., there is a version of Armadillo with 331
thousand triangles and another one with 52 thousand).

Also, some of the meshes (the ones with sufix tetra) were tetra-
hedralized using GMSH. For example, ArmadilloTetra is the tetrahe-
dralization of the Armadillo mesh.

Table 1 presents the running-times (in seconds, excluding I/O) of
the algorithms during the processing of 17 pairs of meshes. Since
the CGAL exact intersection algorithm deals with Nef Polyhedra,
we also included the time it spent converting the triangulating
meshes to this representation (it often takes more time to convert
the dataset than to compute the intersection).

3D-EPUG-Overlay was up to 37 times faster than LibiGL. The
only test cases where LibiGL was slightly faster than 3D-EPUG-
Overlay was during the computation of the intersections of a
mesh with itself. This can be explained because in this situation
the intersecting triangles from the two meshes are never in general
position and, thus, the computation have to frequently trigger the
SoS version of the predicates (that were not optimized yet) in order
to evaluate them considering the perturbed meshes. As future work
we intend to optimize these functions in order to be faster even in
unusual situations where the special cases happen frequently.

It is worth mentioning that, as mentioned in section 2, differently
from other algorithms, LibiGL also repairs meshes (by resolving
self-intersections) during the overlay computation. Since in the
representation employed by 3D-EPUG-Overlay (where each trian-
gle stores the ids of the two polyhedra it bounds) self-intersecting
meshes are ambiguous, we do not attempt to repair them (as men-
tioned before, experiments were performed only with non self-
intersecting meshes).

Because of the overhead associated with the Nef Polyhedra and
since it is a sequential algorithm, CGAL was always the slowest
one. When computing the intersections, 3D-EPUG-Overlay was
up to 281 times faster than CGAL. The difference is much higher
if the time CGAL spends converting the triangulated mesh to Nef
Polyhedra is taken into consideration.

Except for the self-intersection experiments (where QuickCSG
reported errors), QuickCSG was up to 3 times faster than 3D-EPUG-
Overlay. The relatively small performance difference between
3D-EPUG-Overlay and an inexact method (that was specifically
designed to be very fast) indicates that 3D-EPUG-Overlay presents
a reasonable performance. As it will be mentioned later, QuickCSG
also failed in situations where errors have not been reported.

Finally, to intersect meshes containing more than one material
(objects with unique identification numbers), we performed ex-
periments with tetra-meshes. Each tetrahedron in these meshes is
considered to be a different object and, thus, the output of 3D-EPUG-
Overlay is a mesh where each object represents the intersection
of two tetrahedra (from the two input meshes). These meshes are
particularly hard to process because of their internal structure,
which generates many triangle-triangle intersections. For example,
during the intersection of the Neptune with the Neptune translated
datasets, there are 78 thousand pairs of intersecting triangles, while
in the intersection of 518092_tetra (a mesh with 6 million triangles
and 3 million tetrahedra) with 461112_tetra (a mesh with 8 million

Fast exact parallel 3D mesh intersection algorithm using only orientation predicates SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA

triangles and 4 million tetrahedra) there are 5 million pairs of inter-
secting triangles. To the best of our knowledge, LibiGL, CGAL and
QuickCSG were not designed to handle meshes with multi-material.

Besides being fast, 3D-EPUG-Overlay is also memory efficient.
For example, during the intersection of the Neptune dataset with
Nept.Translated it used 5GB of RAM, while LibiGL used 22.5 GB,
CGAL used 110 GB and QuickCSG used 4.5 GB.

9.1 Comparing the results

To validate the accuracy of the outputs generated by 3D-EPUG-
Overlay, we compared them with reference solutions obtained
by LibiGL. This comparison was performed using the Hausdorff
distance reported by the sampling tool Metro [6]. For all datasets
Metro reported a distance 0 between LibiGL’s results and ours.

We also employed tools such as MeshLab and CGAL to perform
validations on the meshes (example: by checking if they are closed,
properly oriented, etc.). The resulting meshes passed all validation
tests.

As mentioned before, QuickCSG reported failures during the
intersection of several meshes. Furthermore, even during some
intersections where errors have not been reported the output results
were frequently inconsistent, presenting open meshes, inconsistent
orientations, etc. Others researchers have reported similar errors in
QuickCSG and in other inexact algorithms such as the commercial
package Maya [3, 21].

For example, Figure 4 presents a zoom in the output of QuickCSG
for the intersection of the Ramesses dataset with Ramesses Trans-
lated. As can be seen, some triangles are oriented incorrectly. These
errors may be created either by floating-point errors or because
QuickCSG doesn’t handle the coincidences.

Tomitigate this later problem, QuickCSG provides options where
the user can apply a random perturbation in the input dataset. In
contrast to the symbolic perturbations employed by 3D-EPUG-
Overlay (that are conceptual and use indeterminate infinitesimals),
these numerical perturbations are not guaranteed to work and the
user has to chose the maximum range for them. A too small range
may not eliminate all errors while a too big range may modify the
mesh too much. Figures 4 (b) and (c) and (d) display the result when
perturbations 10−1, 10−3 and 10−6 were employed. As it can be
seen, none of these perturbations removed all errors and the bigger
perturbation (10−1) even created undesirable artifacts.

9.2 Other considerations

Even though all the computation is performed exactly, common file
formats for 3D objects such as OFF represent data using floating-
point numbers. The process of converting the rational output into
floating-point numbers may introduce errors since not all rationals
can be represented exactly as floating-point numbers. Approaches
to solve this problem include avoiding the conversion (i.e., always
employing multiple-precision rationals in the representations) or
using heuristics such as the one presented by Zhou et. al. [21].

A limitation of the use of symbolic perturbation technique is that
the results are consistent considering the perturbed dataset, not
necessarily considering the original one. Thus, if the perturbation in
the mesh resulting from the intersection is ignored, the unperturbed
mesh may contain degeneracies such as triangles with area 0 or

polyhedra with volume 0 (these polyhedra would have infinitesimal
volume if the perturbation was not ignored).

An interesting direction for future work is to develop an algo-
rithm for cleaning the perturbed output dataset when the user does
not want a perturbed output, generating an unperturbed mesh that
is consistent with the non-degenerate features of the perturbed
one. Another alternative is to process the output mesh using only
algorithms that are aware of the symbolic perturbation (i.e., the
pipeline of algorithms processing a dataset should consider the
perturbed coordinates during the computations).

10 CONCLUSION AND FUTUREWORK

We have presented an algorithm to intersect a pair of 3D trian-
gulated meshes. Except for the indexing, we showed that all the
geometric functions employed by the algorithm can be expressed
using 1D, 2D and 3D orientation predicates.

Implementing the symbolic perturbation is simplified since fewer
lower level predicates are used, and only these predicates have to
directly deal with the perturbation. Since the perturbations are not
expected to modify the results of the functions when there is no
coincidence, one can implement the higher level functions using
possibly faster strategies and only employ the implementation using
orientations when a coincidence is detected.

We showed that the symbolic perturbation eliminates the special
cases and, thus, the algorithm can handle correctly all valid inputs.
Since all the special cases are properly handled by the perturbation
and all computation is exact, the algorithm can exactly compute
the intersection of any valid input.

The algorithm was designed to parallelize very well. Since no
global topology needs to be maintained, the individual triangles
of the two meshes can be processed individually in parallel. The
process is mostly a series of map-reduce operations. Therefore
our implementation can build upon any of many existing, well
constructed, parallel tools.

A preliminary version of this algorithm was implemented in
C++ using OpenMP to parallelize the computation and GMPXX to
provide exact arithmetic. 3D-EPUG-Overlay was up to 37 times
faster than the parallel and exact algorithm available in LibiGL and
up to 281 times faster than the exact algorithm available in CGAL.
This is comparable to the performance of QuickCSG (a very fast,
but inexact, algorithm).

This excellent performance allied with its robustness makes 3D-
EPUG-Overlay suitable to be used as a subroutine in larger systems
such as 3D GIS or CAD systems.

While we decided to focus on the problem of computing inter-
sections, 3D-EPUG-Overlay can be trivially adapted to compute
other kinds of overlays (such as union, difference, exclusive-or, etc).
Indeed, the only required modification is in the classification step.

Future work includes developing an algorithm to consistently
remove the symbolic perturbation of the outputs and improve the
performance of the SoS version of the predicates.

ACKNOWLEDGMENTS

This researchwas partially supported by FAPEMIG, CAPES (Ciencia
sem Fronteiras - grant 9085/13-0), CNPq, and NSF under grant IIS-
1117277.

SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA Salles V. G. Magalhães, W. Randolph Franklin, and Marcus V. A. Andrade

Table 1: Running-times (I/O not included) of the 4 algorithms to process the meshes. Column Out and Inter. tests present,

respectively, the number of triangles in the output meshes and the number of intersection tests performed by 3D-EPUG-

Overlay. QuickCSG reported errors during the intersections whose times are flagged with *.

Running times (s)

Triangles (thousands) CGAL

Mesh 0 Mesh 1 Mesh 0 Mesh 1 Out Inter.tests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting10kf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*

Armadillo52kf Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horse40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 24.1 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*

Camel Armadillo 69 331 43 33 0.4 14.3 189.9 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9*

461112 461115 805 822 808 876 2.8 64.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 1.2 36.3 819.8 329.6 1.0
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0*

Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2*

Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.Transl 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092_tetra 461112_tetra 5938 8495 23181 255703 333.0 - - - -

(a) (b) (c) (d)

Figure 4: Detail of the intersection of Ramesses with Ramesses Translated generated by QuickCSG using different ranges for

the numerical perturbation: no perturbation (a), 10−1 (b), 10−3 (c) and 10−6 (d)

REFERENCES

[1] AIM@SHAPE-VISIONAIR Shape Repository 2017. AIM@SHAPE-VISIONAIR
Shape Repository. http://visionair.ge.imati.cnr.it// (accessed on Jun-2017). (2017).

[2] V. Akman, Wm. Randolph Franklin, Mohan Kankanhalli, and Chandrasekhar
Narayanaswami. 1989. Geometric Computing and the Uniform Grid Data Tech-
nique. Comput. Aided Design 21, 7 (1989), 410–420.

[3] Hichem Barki, Gael Guennebaud, and Sebti Foufou. 2015. Exact, robust, and
efficient regularized Booleans on general 3D meshes. Computers & Mathematics
with Applications 70, 6 (2015), 1235–1254.

[4] Gilbert Bernstein and Don Fussell. 2009. Fast, exact, linear booleans. Eurographics
Symposium on Geometry Processing 28, 5 (2009), 1269–1278. https://doi.org/10.
1111/j.1467-8659.2009.01504.x

[5] CGAL 2016. Cgal, Computational Geometry Algorithms Library. (2016).
http://www.cgal.org (accessed on Apr-2017).

[6] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1998. Metro: Measuring
error on simplified surfaces. In Computer Graphics Forum, Vol. 17. Wiley Online
Library, 167–174.

[7] Matthijs Douze, Jean-Sébastien Franco, and Bruno Raffin. 2015. QuickCSG: Arbi-
trary and faster boolean combinations of n solids. Ph.D. Dissertation. Inria-Research
Centre Grenoble–Rhône-Alpes; INRIA.

[8] David Eberly. 2008. Triangulation by ear clipping. Geometric Tools (2008).
[9] Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of simplicity: a

technique to cope with degenerate cases in geometric algorithms. ACM Transac-
tions on Graphics (TOG) 9, 1 (1990), 66–104.

[10] F.R. Feito, C.J. Ogayar, R.J. Segura, and M.L. Rivero. 2013. Fast and accurate
evaluation of regularized Boolean operations on triangulated solids. Computer-
Aided Design 45, 3 (2013), 705 – 716. https://doi.org/10.1016/j.cad.2012.11.004

[11] Wm. Randolph Franklin, Narayanaswami Chandrasekhar, Mohan Kankanhalli,
Manoj Seshan, and Varol Akman. 1988. Efficiency of uniform grids for inter-
section detection on serial and parallel machines. In New Trends in Computer
Graphics (Proc. Computer Graphics International’88), Nadia Magnenat-Thalmann
and D. Thalmann (Eds.). Springer-Verlag, 288–297.

[12] Peter Hachenberger, Lutz Kettner, and Kurt Mehlhorn. 2007. Boolean operations
on 3D selective Nef complexes: Data structure, algorithms, optimized implemen-
tation and experiments. Computational Geometry 38, 1 (2007), 64–99.

[13] X.Y. Jiang and H. Bunke. 1993. An optimal algorithm for extracting the regions
of a plane graph. Pattern Recognition Letters 14, 7 (1993), 553 – 558. https:
//doi.org/10.1016/0167-8655(93)90104-L

[14] Cyril Leconte, Hichem Barki, and Florent Dupont. 2010. Exact and Efficient
Booleans for Polyhedra. Citeseer.

[15] Salles V.G. Magalhães, Marcus V.A. Andrade, W. Randolph Franklin, and Wenli
Li. 2016. PinMesh - Fast and exact 3D point location queries using a uniform grid.
Computers & Graphics 58 (2016), 1 – 11. https://doi.org/10.1016/j.cag.2016.05.017
Shape Modeling International 2016.

[16] Salles V. G. Magalhães, Marcus V. A. A. Andrade, W. Randolph Franklin, and
Wenli Li. 2015. Fast exact parallel map overlay using a two-level uniform grid. In
Proc. of the 4th ACM Bigspatial (BigSpatial ’15). ACM, New York, NY, USA.

[17] Salles V. G. Magalhães, Marcus V. A. A. Andrade, W. Randolph Franklin, Wenli
Li, and Maurıcio G. Gruppi. 2016. Exact intersection of 3D geometric models.
(2016), 44 – 55.

http://visionair.ge.imati.cnr.it//
https://doi.org/10.1111/j.1467-8659.2009.01504.x
https://doi.org/10.1111/j.1467-8659.2009.01504.x
https://doi.org/10.1016/j.cad.2012.11.004
https://doi.org/10.1016/0167-8655(93)90104-L
https://doi.org/10.1016/0167-8655(93)90104-L
https://doi.org/10.1016/j.cag.2016.05.017

Fast exact parallel 3D mesh intersection algorithm using only orientation predicates SIGSPATIAL’17, Nov 2017, Redondo Beach, CA USA

[18] Rafael J Segura and Francisco R Feito. 2001. Algorithms to test ray-triangle
intersection. Comparative study. (2001).

[19] SFCGAL 2017. SFCGAL. (2017). http://www.sfcgal.org/ (accessed on Jun-2017).
[20] Chee-Keng Yap. 1988. Symbolic treatment of geometric degeneracies. Springer

Berlin Heidelberg, Berlin, Heidelberg, 348–358. https://doi.org/10.1007/
BFb0042803

[21] Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh
Arrangements for Solid Geometry. ACM Transactions on Graphics (TOG) 35, 4
(2016).

[22] Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-
Printing Models. arXiv preprint arXiv:1605.04797 (2016).

https://doi.org/10.1007/BFb0042803
https://doi.org/10.1007/BFb0042803

	Abstract
	1 Introduction
	2 Related work
	3 Data representation
	4 Roundoff errors
	5 Geometric degeneracies
	5.1 The symbolic perturbation

	6 Implementing intersection with simple geometric predicates
	6.1 Orientation predicates

	7 The mesh intersection algorithm
	7.1 Intersecting triangles
	7.2 Retesselating the triangles
	7.3 Classifying triangles

	8 Implementing Symbolic Perturbation
	9 Experiments
	9.1 Comparing the results
	9.2 Other considerations

	10 Conclusion and future work
	Acknowledgments
	References

