
F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M Rensselaer Polytechnic Institute, Troy NY USA

Universidade Federal de Vicosa, MG, Brasil

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

 Exact fast parallel intersection of large
 3-D triangular meshes

RPI UFV

Salles V. G. de Magalhães, UFV/RPI
W Randolph Franklin, RPI

Marcus V. A. Andrade, UFV

• Our background: GIS, geometry, graphics, emphasizing fast parallel
algorithms on large datasets.
• This is Salles’s PhD work.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 2

● Intersect 3D meshes while
● Handling geometric degeneracies, including

● Mesh with itself
● Mesh with its translation
● Mesh with its rotation

● With no roundoff errors
● Fast in parallel
● Economical of memory

Example: Intersection of two big meshes from AIM@SHAPE:

Ramesses: 1.7 million triangles x Neptune: 4 million triangles.
5.5 seconds on multicore Xeon.

Contribution

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 3

●Arbitrary precision rational numbers: for exactness.
●Simulation of Simplicity: for ensuring all the special cases are
properly handled.
●Simple data representation and local information:
parallelization and correctness.
●Uniform grid: accelerate computation; quickly constructed in
parallel.
●Parallel programming

Hard part: making everything fit together.

Five key techniques
F

A
S

T
, E

X
A

C
T

, P
A

R
A

L
L

E
L

 M
E

S
H

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M

27 IMR 2018 4

Mesh intersection
● Polygonal map overlay/intersection:

important CAD/GIS problem

● 2D intersection also extends to 3D.

● Applications: CAD, Additive Manufacturing,
GIS, cross-interpolation after remeshing in
CFD

● Our focus: 3D triangulated meshes

Source: Autodesk

Source: Rockworks

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 5

Initial step:

EPUG-Overlay: 2D planar graph overlay

Previous step, presented at 2015 ACM BIGSPATIAL

Biggest example:
● USWaterBodies: 21,652,410 vertices, 219,831 faces, with
● USBlockBoundaries: 32,762,740 vertices, 518,837 faces.
● (Images are of simpler similar datasets):

● Time (w/o I/O): 1342 secs (1 thread)
● 149 secs (16 cores, 32 threads). 9X parallel speedup

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 6

Another initial step:

PINMESH: 3D point location
● Previous step, presented at 2016 Berlin Geometry Summit
● Uses rational numbers, Simulation of Simplicity, uniform grid,

parallelism, simple data structures
● Biggest example: sample dataset with 50 million triangles.

● Preprocessing: 14 elapsed seconds on 16-core Xeon.
● Query time: 0.6 μs per point.s per point.
● Some test datasets:

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 7

Problem: Roundoff errors
● Finite precision of floating point →roundoff errors.

● Common techniques (snap rounding, epsilon tweaking, etc): no
guarantee.

● Big amount of data & 3D→ increase problem.

● Exactness and performance: very important (e.g. guaranteed
subroutine)

Source: Kettner et al., Classroom
examples of robustness problems in
geometric computations

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 8

Our solution: Rational numbers

Each component of each coordinate is a ratio of integers
● No rounding or finite precision errors.
● Each integer: array of groups of digits
● Uses GMPXX
● Rationals double in size with each operation: 2/3+4/5=22/15
● However depth of computation tree is small
● Problem: GMPXX liberally constructs new objects on heap
● (Have these packages been used on large examples before?)
● Heap: superlinear time in number of objects, and parallel hostile.
● We minimize heap constructions.
● Increased execution time is tolerable.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 9

Problem: Geometric degeneracies

● Ad-hoc enumerating special cases is error-prone.
● How many ways can two line segments intersect?
● That must be usable for comparing two polylines.
● Local rules must lead to a globally consistent result.
● Existing programs can get complicated cases wrong.
● Need a general solution.

overlap

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 10

Simulation of Simplicity

● Edelsbrunner and Mücke
● Simple and efficient general purpose technique.
● Globally consistent
● Basic idea: if points are perturbed, the degeneracies in geometrical

problems will disappear and do not need to be treated.
● Points are perturbed using orders of infinitesimals ɛi

● Infinitesimal: indeterminate (code simulates the effect of the
infinitesimals – we do not actually use specific infinitesimals).

Global consistency (uw, uv were coincident):
- w' is on the positive side of uv
- w' is closer to x than v' is

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 11

Simulation of Simplicity, ctd

u

v v

u

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 12

Implementing SoS
● In a predicate:

● No coincidence → unperturbed result = perturbed result ≠ 0
● Coincidence → unperturbed result = 0, unperturbed result ≠ 0

● For performance:
● Two versions of each predicate:

● One developed for efficiency (standard algorithms from
literature)

● One for simplicity (using as few predicates as possible).

● The simpler version: used when a coincidence is detected.
● Consequence: implement SoS only in few predicates.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 13

Implementing SoS
● Challenge:

● If a vertex of mesh 0 has coordinates (x,y,z), what is its
perturbed coordinate? Ans: (x,y,z)

● If a vertex of mesh 1 has coordinates (x,y,z), what is its
perturbed coordinate? Ans: (x+ ,ɛ y+ɛ2,z+ɛ3)

● If a vertex generated by an intersection of a triangle with an
edge has coordinates (x,y,z), what is its perturbed coordinate?
● Ans: ???

→ store these coordinates
implicitly
→ process implicit
coordinates in the
predicates

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 14

Problem: Coincidence detection

• Point location:

– Preprocess a 2D partition, then

– Locate query point.

Ideal time: linear preprocess, constant query.

• Intersection culling:

– Given a large set of small elements (2D edges, 3D
triangles),

– Find the small set of pairs that might intersect.

Ideal time: linear in input plus output sizes.
● Current solution: quadtrees, octrees, sweep lines

● Construction doesn’t parallelize well; time too high.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 15

Solution: uniform grid

• Select integer G depending on statistics of data. 4<=G<=1000

• Superimpose GxG or GxGxG grid on data.

• For each of N input elements (line segment, triangle, …),
record which grid cells it intersects.

• Use a ragged array (read twice, write once).

• Desired G: constant average number of elements per cell,
independent of N.

• Equivalent to grid cell size proportional to element size.

• Time to process one element: constant.

• Total preprocessing time: linear.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 16

Uniform Grid - query
● Insert edges in grid cells (edge may be in several cells).
● For each grid cell c, compute intersections in c.
● 3D version is analogous
● Provably efficient for I.i.d. input
● Experimentally more efficient on irregular data than octrees

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 17

Uniform grid time analysis (2D)

• Assume: input elements are uniform I.i.d.

• Average number of elements per cell is constant, by
construction.

• Number of elements per grid cell has a Poisson dist.

• Mean of the square of number of elements per cell is constant.

• Time to test all pairs of elements in one cell is constant.

• Expected number of actual intersections per cell is constant.

• Total query time is linear in number of actual intersections.

• Still true for non I.i.d. data satisfying a Lipschitz condition.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 18

Uniform grid time variant

• Exactly and quickly computing the grid cells an oblique 3D
triangle intersects was too tedious, so:

• Enclose the triangle with a minimal box and intersect that with
the grid, however:

• That finds too many cells, especially when the cells are small,
so:

• Use a two-level grid for cells with many elements.

• We tested 3-level grids and octrees (because that’s what
everyone wants to know).

• They’re slower.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 19

Problem: complex data structures don’t
parallelize well

• Especially on SIMT machines like Nvidia GPUs.

• Prefer arrays of Plain Old Datatypes.

• Disparage pointers, links, trees.

• This work uses multicore Xeons and OpenMP, but we have
other algorithms implemented on Nvidia GPUs, and would like
to transition this one also.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 20

Minimal explicit topology

• What’s the simplest representation that permits a solution?

• To test whether a point is in a polygon, the set of unoriented
edges suffices.

• Multiple disconnected nested components ok.

• No global connectivity info is stored.

• To compute mass properties, set of oriented edges suffices.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 21

Minimal explicit topology 2

• What’s the simplest representation that permits a solution?

• Area of a rectilinear polygon:

• A = Σi si xi yi

• Volume of a general polyhedron:

• M= -1/6 Σ V.T V.N V.B

• V: vertex position

• T: unit tangent along edge; N: unit normal

in face plane; B: unit normal into interior

• Sum over all incidences

• E.g. 48 for cube.

• No loops, shells, edges, faces stored.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 22

3D-EPUG-OVERLAY Algorithm
● Input: 2 meshes, either polyhedron surfaces

 or tetrahedrulated.
● Internal data structure: set of triangles.
● Insert triangles into uniform grid.
● Find triangle-triangle intersections.
● Retesselate intersecting faces.
● Classify new triangles.

source: wikipedia

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 23

Triangle classification
● How to locate a triangle?

● Simple and fast solution: point location (PinMesh)

Outside green region
→ not in the output

Inside green region
→ bound (Green ∩ Red), exterior

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 24

Experiments

● Algorithm implemented in C++.
● OpenMP (parallel) + GMPXX (exact coordinates)

● Experiments on a workstation
● Dual Intel Xeon E5-2687 processors, 8 cores, 2 threads/core
● 128 GB of RAM.
● Ubuntu Linux 16.04.

● Comparison with:
● LibiGL: recent, exact, parallel and resolves self-intersections.
● CGAL Nef Polyhedra: exact
● QuickCSG: fast, parallel, but may fail (floating-point errors/do

not handle special cases).

25

Experiments
● Up to 37x faster than LibiGL
● Up to 281x faster than CGAL (935x including conversion)
● Slightly slower than LibiGL when a mesh is intersected with itself:

too many SoS calls (non-optimized, future work).

26

Experiments
● Up to 3x slower than QuickCSG (tests without reported failures), but

exact.
● * → QuickCSG failed and reported failure
● If a failure is not reported → result may still have errors

27

Experiments
● Can process meshes with millions of triangles in few seconds.
● Can handle tetra-meshes (461112_tetra: 8 M triangles, 4 M tets).
● Memory efficient: Neptune vs Neptune translated: 3D-EPUG: 5GB of

RAM, LibiGL: 22.5GB, CGAL: 110GB, QuickCSG: 4.5GB

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 28

Example of result
● Intersection of two big meshes from AIM@SHAPE:

● Ramesses: 1.7 million triangles
● Neptune: 4 million triangles
● 5.5 seconds

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 29

Example of result
● Hard to process triangles → roundoff errors

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 30

Example of result
● QuickCSG: Ramesses vs Ramesses translated.
● No error reported, yet several failures

● To mitigate: use numerical perturbation
● Does not work always (figure: max perturbation = 10-1)

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 31

Correctness evaluation

● Compare output to LibiGL using Metro to measure Hausforff
distances.
● We passed; QuickCSG sometimes failed.
● Visual inspection, ditto.
● Rotation invariance: rotate meshes (by angles with rational sin and
cos), intersect, rotate back, compare to nonrotated intersection.
● No difference.
● Intersect meshes with rotated versions of themselves.

● Big stress test, can crash CAD systems
● Our result is identical to LibiGL.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 32

Limitations

● Non watertight or other bad input causes bad output. (Some other
systems patch some things automatically.)

● Converting output from rationals to floats might require snapping
to maintain topology. However this sort of ill conditioned data will
probably cause worse problems for any system computing in
floats. We, at least, compute a correct result expressed in
rationals.

● SoS output might need regularizing to delete generated objects
with zero volume etc. That’s doable.

● Some projective geometry-like configurations can not be
converted to rational coordinates (because a cross ratio is
irrational) but floats are also inexact, and these probably don’t
occur in meshing.

● These techniques do not extend to curved objects.
● This prototype is not yet nearly optimized.

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
S

H
 I

N
T

E
R

S
E

C
T

IO
N

 A
L

G
O

R
IT

H
M

27 IMR 2018 33

Conclusions
● 3D-EPUG-OVERLAY

● Exact with rationals
● Handles geometric deneracies with SoS
● Minimal explicit topology → simple compact data structures
● Parallel on multicore shared memory Xeons with OpenMP
● Uniform grid to filter possible coincidences fast.

● Future work:
● Improve performance (mainly of SoS calls)
● Grid oblique triangles optimally
● Test much larger datasets
● Use similar ideas for other problems

