
Intersecting meshes Implementation

An exact and efficient 3D mesh intersection algorithm
using only orientation predicates

Salles V. G. Magalhães1,2, W. Randolph Franklin2 , Marcus V. A. Andrade1

Acknowledgements

The algorithm

This work was partially supported by Capes (Ciência Sem Fronteiras), FAPEMIG and NSF
grant IIS-1117277

Tries to process triangles independently (
parallelism)

Intersect pairs of triangles
Grid index
Fast triangle-triangle intersection algorithm
(Möller)

Retesselation
Triangle split at intersection edges
Polygonal subdivision is created and
retriangulated (ear-clipping)

Triangle classification
Input and new triangles are classified.
If t was bounding objects (a,b) and is inside
object c of the other mesh, in the output t will
bound (a∩c,b∩c) (other booleans similar
strategy)

How to determine in what object of the other
mesh t is?  traverse mesh and label
accordingly
Start with an input vertex: point location 
location of triangle containing it.
Two triangles share a “regular edge”  they
are in the same object.
Two triangles share an edge generated from
an intersection  they are in different objects
(triangle labels give the locations).

Challenging, hard to treat

Solution: Simulation of Simplicity
Points symbolically perturbed with
infinitesimals (ε does not “exist”, simulated
effect)

If input is non-degenerate → no change.
 Performance
Otherwise → SoS no coincidence & globally
consistent result.

Meshes are symbolically perturbed
Mesh 0: (x,y,z)  (x,y,z)
Mesh 1: (x,y,z)  (x+ ε,y+ ε2,z+ ε3)

After perturbation:
A vertex from one mesh will never be on the
plane of a triangle from the other mesh.
An edge from one mesh will never intersect
an edge from the other mesh.
Two coplanar triangles from different meshes
will never intersect.

For the largest dataset (last row): 5 million pairs of triangles
tested for intersection, 78 thousand pairs of triangles intersect,
389 thousand triangles generated from retesselation.

Parallel and efficient machines --> we can afford exact
algorithms.

Future work:
Improve efficiency
Validate results
Experiments with huge meshes, tetrahedral meshes, etc.
Compare with more methods (CGAL. QuickCSG, etc)
Floating-point input exact and more efficient predicates
Result is valid for the symbolically perturbed input
If output is considered without the perturbation  it may
contain polyhedra with volume 0, triangles with area 0, etc.
Perturbed output: also useful
Future work: how to remove perturbation from output?

Source code: freely available (soon on Github)

Conclusions, limitations, future work

 Two versions of each algorithm: one using only orientation
predicates.

Tri-tri intersection: 5 3D orientations for each edge-triangle
(Segura and Feito).

Retesselation: sort intersection points along edges: 3D
orientation

Extracting faces from retesselation: 1D and 2D orientation.

Ear-clipping: detecting convex vertices and point in triangle →
2D orientation

Challenge: vertices generated from intersection may be
argument of the predicates  represent them as pairs
(edge,triangle).

Dual 8-core Xeon, 128 GB of RAM

Algorithm still under development (can be improved)

Comparison with LibiGL (exact algorithm, resolves self
intersections)

 Objective: Efficiently compute the exact
intersection between two triangular meshes.

Applications in CAD, GIS, Additive Manufacturing,
etc.

Example: 3D mesh may represent objects in a CAD
system.

Challenges
Special cases and roundoff errors
Applications may give inconsistent results or even
crash

People want exactness and performance.

Exact: rational coordinates.

Parallel: for multi-core computers

Grid indexing: efficient parallel uniform grid

Special cases: carefully treated using Simulation of
Simplicity (SoS).

All computation: exact (GMP rationals)

For triangulated meshes:
Widely used
Simple representation
Supports multi-material and “internal structure”

Triangular soup:
Oriented triangles.
Each triangle stores the ids of the two objects it
bounds (on the negative and positive sides).

Supports:
Multiple components
Components with different ids (“materials”)
Non-manifoldness
Nested components
× Self intersections contradictions

Special cases

1Universidade Federal de Viçosa, Brazil 2Rensselaer Polytechnic Institute, USA

Novelties

Data representation

0 and 2 cannot be both on

the negative side of a-b

Performance experiments

Input Thousand faces Times (s)
Speedup

Mesh 0 Mesh 1 Mesh 0 Mesh 1 Our alg. LibiGL

BumpySphere BumpyTorus 11 34 0.27 4.49 16.4

RoundOcta SharpSphere 33 21 0.09 1.74 18.4

Camel Camel 69 69 20.04 16.71 0.8

Bimba NewYear 150 10 0.24 5.13 21.5

Camel Armadillo 69 331 0.41 14.31 35.0

Armadillo Armadillo 331 331 94.16 75.81 0.8

Th10k:461112 Th10k:461115 805 822 2.79 64.69 23.1

Kitten RedCircBox 274 1402 1.23 36.28 29.5

Bimba Vase 150 1792 1.86 65.44 35.2

Th10k:226633 Th10k:461112 2452 805 3.22 119.97 37.3

Ramesses Ram.Transl 1653 1653 4.61 102.72 22.3

Ramesses Ram.Rotated 1653 1653 6.55 122.46 18.7

Horse Neptune 97 4008 4.42 103.25 23.4

Neptune Ramesses 4008 1653 5.49 150.03 27.3

Neptune Nept.Transl. 4008 4008 10.84 247.90 22.9

