Lo & O . .
nt = Rensselaer Polytechnic Institute, Troy NY USA
= Tl . . .
i ‘gt 43 Universidade Federal de Vicosa, MG, Brasil
828"
RPI

Fast exact parallel 3D mesh intersection algorithm
using only orientation predicates

W Randolph Franklin, RPI
Salles V. G. de Magalhaes, UFV/RPI
Marcus V. A. Andrade, UFV

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM

Society for Industrial and Applied Mathen

* Polygonal map overlay/intersection: important
CAD/GIS problem

* 2D intersection also extends to 3D.

* Applications: CAD, Additive Manufacturing, GIS,
cross-interpolation after remeshing in CFD

* Our focus: 3D triangulated meshes
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EPUG-Overlay: 2D planar graph overlay

~ Previous step, presented at 2015 ACM BIGSPATIAL
Biggest example:

* USWaterBodies: 21,652,410 vertices, 219,831 faces, with

* USBlockBoundaries: 32,762,740 vertices, 518,837 faces.

Time (w/o0 1/O):
* 1342 secs (1 thread)
* 149 secs (16 cores, 32 threads). 9X parallel speedup
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PINMESH: 3D point location

* Previous step, presented at 2016 Berlin Geometry Summit

* Uses rational numbers, Simulation of Simplicity, uniform grid,
parallelism, simple data structures

* Biggest example: sample dataset with 50 million triangles.
* Preprocessing: 14 elapsed seconds on 16-core Xeon processor.

* Query time: 0.6 us per point.

W

* Some test datasets:
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Roundoff Challenge

* Finite precision of floating point —roundoff errors.

* Common techniques (snap rounding, epsilon tweaking, etc):
no guarantee.

Source: Kettner et al., Classroom
examples of robustness problems in
geometric computations

* Big amount of data & 3D— increase problem.

* Exactness and performance: very important (e.g. guaranteed
subroutine)
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SIAM GD 2017 5
Examples from CGAL mailing list (there are several other
similar threads): People want exactness and performance!
—\
»Nov 10, 2015; 4:36am Boolean performance Reply | Threaded | M

| have implemented boolean operation using nef polyhedra. The
performance however leaves something to be desired. A simple union
between two spheres constructed from roughly 400 triangles each, take
almast 8 seconds to solve(in release mode). Is this expected or might
i be doing something to inhibit the performance. | am using an epec

! kernel which i know might impact performance. | have however been
unable to get it working with other kernels. Even so, 8 seconds seems
excessive for a simple union.

tim dekosser Dec 07, 2009; 10:50am Re: RE: Performance of boolean operations on Nef_polyhedron_3
_ > | have found and evaluated another GPL library that specializes in boolean
> pperations on Polyhedra. This library (CARVE) performed on average 100
Re: ‘ > (ONE
Tau J > HUNDRED) times faster than CGAL with the typical use-cases that apply to
NI
> application. It also proved completely computationably stable with our
. 19 posts > tests.
You For the record, | also evaluated Carve for our project, and found similar
To performance results (at least for low volumes of data). It's mostly
httg imputable to the overhead of using an exact arithmetic kernel.

some simple use cases. Our project required perfect robustness, and so

On the other hand | rapidly ran into instability and crashes even with
CGAL/Nef3 was ultimately retained for this reason.

Fred



Key techniques

* We've been using a combination of 5 techniques
* Arbitrary precision rational numbers: for exactness.

* Simulation of Simplicity: for ensuring all the special cases are properly
handled.

* Simple data representation and local information: parallelization and
correctness.

* Parallel programming: explore better the computing capability of
current hardware.

* Two-level uniform grid: accelerate computation; quickly constructed in
parallel.

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM
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Rational numbers

* Each component of each coordinate is a ratio of integers
* No rounding or finite precision errors.
* Each integer: array of groups of digits
* Uses GMPXX
* Rationals double in size with each operation: 2/3+4/5=22/15
* However depth of computation tree is small
* Problem: GMPXX liberally constructs new objects on heap
* Heap is superlinear time in number of objects, and parallel hostile.
* We minimize heap constructions.

* Increased execution time is tolerable.

SIAM GD 2017 8
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Current hardware

HM

Massive shared memory

* is an underappreciated resource.

* External memory algorithms not needed for many problems.

* Virtual memory 1s obsolete.

* $40K buys a workstation with 80 cores and 1TB of memory.
Parallel computing

* Almost all processors, even my smart phone, are parallel.

* Algorithms that don't parallelize are obsolete.

* Nvidia GPUs are almost ubiquitous.

* However, 1 Xeon core is 20x more powerful than 1 CUDA
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HM

Component: computing 2D intersections

* “Brute force”: O(|A| x |BJ)
* Other possible techniques:

* Sweep-line

* Complicated and doesn't parallelize
* Uniform grid

* Theoretical and experimentally: very efficient

SIAM GD 2017 10
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FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM
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Uniform Grid

* Insert edges in grid cells (edge may be in several cells).

* For each grid cell ¢, compute intersections in c.

* 3D version is analogous

* Provably efficient for I.1.d. input

* Experimentally more efficient on irregular data than octrees

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges

| pebmsimdstd sl st vl s v p i e |
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3D-EPUG-OVERLAY

* Apply the key techniques mentioned before for 3D mesh intersection
* Rational numbers

“3D maps” represented by a set of triangles

Triangles: left/right objects

3D uniform grid for intersection and point location

Simulation of Simplicity

Algorithm designed to be parallel
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First step: triangle-triangle intersections

* A 3D uniform grid is created.

* Triangles from both meshes are inserted into the cells an enclosing cube
intersects.

* Cells with “too many” pairs of triangles are refined, creating a second
level grid (because the enclosing cube above is suboptimal).

* Intersection tests: Moller's algorithm for performance.

* Cells do not influence each other — process them in parallel

Red mesh: only one

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM

triangle intersects A
green A
-
S sAMGD2017  q3

Second step: retesselation

* Triangles are then split at the intersections.
* Intersection on each triangle — planar subdivision — retriangulation.

* Again, this step can be done in parallel on the triangles.

Red intersecting triangle:
split into 2 polygons — 7 triangles

H

SIAM GD 2017 14
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Second step: retesselation

* Retesselated mesh: equivalent to the original
* Union of each split triangle is equal to the original triangle
* Non split triangles will also be in retesselated mesh

* After retesselation: intersections will only happen at common
vertices/edges.

Red intersecting triangle:
split into 2 polygons — 7 triangles

H

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM
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Third step: classification

* Finally, triangles are classified.
* Similar to edge classification in EPUG-OVERLAY.
* Only two basic cases for each triangle t (bounding A,B):
* t outside other mesh — t will not be in the output.
* t inside region R of the other mesh — t will bound RNA and RNB.

Inside green region
Outside green region — bound (Green n Red), exterior

— not in the output

SIAM GD 2017 16
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Third step: classification

* How to locate a triangle?
* Simple and fast solution: point location (PinMesh)

Inside green region
Outside green region — bound (Green n Red), exterior

— not in the output

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM
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Special cases (geometric degeneracies)

* Ad-hoc enumerating special cases is error-prone.
* How many ways can a line intersect a polyhedron?
* Local rules must lead to a globally consistent result.

* Testing a point against a line must give a consistent result
when comparing two polylines.

* Existing programs can get complicated cases wrong.

* Need a general solution.

SIAM GD 2017 18
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Simulation of Simplicity

+ Edelsbrunner and Miicke:
* Simple and efficient general purpose technique.
* Globally consistent

* Basic idea: if points are perturbed, the degeneracies in
geometrical problems will disappear and do not need to be
treated.

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM

Xe
w
Global consistency (uw, uv were coincident): M
- W' is on the positive side of uv ‘i/ N
- W' is closer to x than V' is V'
_____________________________________________________________ VESIESE I TS
SIAM GD 2017 19

Simulation of Simplicity ctd

* Perturbation
* Points are perturbed using orders of infinitesimals €'

* Infinitesimal: indeterminate (code simulates the effect of the
infinitesimals — we do not actually use specific
infinitesimals).

SIAM GD 2017 20
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Simulation of Simplicity - 3

* SoS has been successfully employed in the 2D version of the problem

* Idea: translate one of the maps by (E,Ez) — Nno common
edges/intersection at endpoints

* Example: two coincident polygons — translation (E,Ez) — No
coincidence.
* Perturbation is only conceptual — resulting rectangle is actually equal
to input triangles!

e h
a ? ......................... .?

A iq
b C

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM

* Mesh 0 is not perturbed, mesh 1 is translated by (8,82,83)

* This perturbation presents some properties:
* Examples:
* A vertex from a mesh will never be on a triangle of the other one.
* Two co-planar triangles from distinct meshes never intersect.
* These properties —no coincidence between the two meshes.
* Example of consequence: intersection of two triangles (if exist) is
always a line segment with non-zero length.

SIAM GD 2017 29
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Implementing SoS

* In a predicate:
* No coincidence — unperturbed result = perturbed result # 0
* Coincidence — unperturbed result = 0, unperturbed result # 0

* For performance:
* Two versions of each predicate:
* One developed for efficiency (standard algorithms from literature)
* One for simplicity (using as few predicates as possible).

* The simpler version: used when a coincidence is detected.
* Consequence: implement SoS only in few predicates.

SIAM GD 2017 23
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Implementing SoS

* It is possible to implement all the steps of the algorithm employing only
orientation (1D, 2D and 3D) predicates.
* Example: intersection of two triangles — check if each edge of one
triangle intersects the other triangle.
* Intersection of line ED with ABC?
* orientation(A,B,E,D)=orientation(B,C,E,D)=orientation(C,A,E,D) ?
E
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Implementing SoS

* Challenge:
* If a vertex of mesh 0 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x,y,z)
* If a vertex of mesh 1 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x+£,y+€2,z+83)
* If a vertex generated by an intersection of a triangle with an edge has

coordinates (X,y,z), what is its perturbed coordinate?
* Ans: 7?? 'S

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM
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Implementing SoS

* Challenge:
* If a vertex of mesh 0 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x,y,z)
* If a vertex of mesh 1 has coordinates (X,y,z), what is its perturbed
coordinate? Ans: (x+€,y+€2,z+83)
* If a vertex generated by an intersection of a triangle with an edge has

coordinates (X,y,z), what is its perturbed coordinate?
* Ans: 7?7? E

— store these coordinates
implicitly

— process implicit coordinates
in the predicates

SIAM GD 2017 26
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* Comparison with:
* LibiGL: recent, exact, parallel and resolves self-intersections.

* CGAL Nef Polyhedra: exact

* QuickCSG: fast, parallel, but may fail (floating-point errors/do not
handle special cases).

Experiments

* Algorithm implemented in C++.
* OpenMP (parallel) + GMPXX (exact coordinates)

* Experiments on a workstation
* Dual Intel Xeon E5-2687 processors, 8 cores, 2 threads/core
* 128 GB of RAM.
* Ubuntu Linux 16.04.

SIAM GD 2017 o7
* Up to 37x faster than LibiGL
* Up to 281x faster than CGAL (935x including conversion)
Running times (s)
Triangles (thousands) CGAL

Mesh 0 Mesh 1 Mesh0 Mesh1 Out Intertests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting1 okf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*
Armadillo52kf  Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horsed40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 241 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*
Camel Armadillo 69 331 43 33 0.4 14.3 189.9 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9*
461112 461115 805 8§22 808 876 2.8 04.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 1.2 36.3 819.8 329.6 1.0
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0%
Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2%
Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.TranSl 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092 _tetra 461112 _tetra 5938 8495 23181 255703 333.0 -




Experiments

* Slightly slower than LibiGL when a mesh is intersected with itself: too
many SoS calls (non-optimmized, future work)

Triangles (thousands)

Running times (s)

CGAL

Mesh 0 Mesh 1 Mesh0 Mesh1 Out Intertests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting1 okf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*
Armadillo52kf  Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horsed40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 241 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*
Camel Armadillo 69 331 43 33 04 143 1899 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9*
461112 461115 805 8§22 808 876 2.8 04.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 1.2 36.3 819.8 329.6 1.0
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0%
Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2%
Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.TranSl 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra  ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092 _tetra 461112 _tetra 5938 8495 23181 255703 333.0 - - - -
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* Up to 3x slower than QuickCSG (tests without reported failures), but exact.

Triangles (thousands)

Running times (s)

CGAL

Mesh 0 Mesh 1 Mesh0 Mesh1 Out Intertests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting1 okf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*
Armadillo52kf  Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horsed40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 241 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*
Camel Armadillo 69 331 43 33 0.4 14.3 189.9 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9*
461112 461115 805 8§22 808 876 2.8 04.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 12 36.3 819.8 329.6 10
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0%
Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2%
Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.TranSl 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092 _tetra 461112 _tetra 5938 8495 23181 255703 333.0 - - - -




Experiments

* Up to 3x slower than QuickCSG (tests without reported failures), but exact.
* * — QuickCSG failed and reported failure

* If a failure is not reported — result may still have errors

Triangles (thousands)

Running times (s)

CGAL

Mesh 0 Mesh 1 Mesh0 Mesh1 Out Intertests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting1 okf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*
Armadillo52kf  Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horsed40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 241 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*
Camel Armadillo 69 331 43 33 0.4 14.3 189.9 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9*
461112 461115 805 8§22 808 876 2.8 04.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 1.2 36.3 819.8 329.6 1.0
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0%
Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2%
Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.TranSl 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra  ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092 _tetra 461112 _tetra 5938 8495 23181 255703 333.0 - - - -
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* Can process meshes with millions of triangles in few seconds.

* Can handle tetra-meshes (461112 tetra: 8 M triangles, 4 M tetrahedra).

Triangles (thousands)

Running times (s)

CGAL

Mesh 0 Mesh 1 Mesh0 Mesh1 Out Intertests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting1 okf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*
Armadillo52kf  Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horsed40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 241 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*
Camel Armadillo 69 331 43 33 0.4 14.3 189.9 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9*
461112 461115 805 8§22 808 876 2.8 04.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 1.2 36.3 819.8 329.6 1.0
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0%
Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2%
Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.TranSl 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092 _tetra 461112 _tetra 5938 8495 23181 255703 333.0 - - - -




Experiments

* Memory efficient:
* Neptune vs Neptune translated: 3D-EPUG: 5GB of RAM, LibiGL.:
22.5GB, CGAL: 110GB, QuickCSG: 4.5GB

Running times (s)

Triangles (thousands) CGAL

Mesh 0 Mesh 1 Mesh0 Mesh1 Out Intertests 3D-EPUG LibiGL Convert Intersect QuickCSG

Casting1 okf Clutch2kf 10 2 6 8 0.1 1.4 4.5 1.1 0.1*
Armadillo52kf  Dinausor40kf 52 40 25 42 0.2 2.9 38.5 21.2 0.1
Horsed40kf Cow76kf 40 76 24 50 0.2 3.1 50.6 241 0.1
Camel69kf Armadillo52kf 69 52 16 54 0.2 3.3 51.0 26.0 0.1
Camel Camel 69 69 81 1181 20.0 16.7 60.8 228.6 1.0*
Camel Armadillo 69 331 43 33 0.4 14.3 189.9 80.0 0.3
Armadillo Armadillo 331 331 441 5351 94.2 75.8 339.7 1198.2 3.9%
461112 461115 805 8§22 808 876 2.8 04.7 753.2 473.2 1.0
Kitten RedCircBox 274 1402 246 27 1.2 36.3 819.8 329.6 1.0
Bimba Vase 150 1792 724 122 1.9 65.4 971.7 455.7 1.0
226633 461112 2452 805 1437 307 3.2 120.0 1723.7 905.5 2.0%
Ramesses Ramess.Trans. 1653 1653 1571 866 4.6 102.7 1558.8 946.1 2.2*
Ramesses Ramess.Rot. 1653 1653 1691 2275 6.6 122.5 1577.3 989.8 2.2
Neptune Ramesses 4008 1653 1112 814 5.5 150.0 3535.5 1535.6 3.5
Neptune Nept.TransI 4008 4008 3303 2924 10.9 247.9 5390.7 2726.2 5.4
ArmadilloTetra ArmadilloTetraTransl 1602 1602 61325 259436 420.3 - - - -
518092 _tetra 461112 _tetra 5938 8495 23181 255703 333.0 - - - -

Example of result

* Intersection of two big meshes from AIM@SHAPE:
* Ramesses: 1.7 million triangles
* Neptune: 4 million triangles

214 2
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Example of result

* Hard to process triangles — roundoff errors

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM

Example of result

* Hard to process triangles — roundoff errors

FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM




Ramesses vs Ramesses translated.
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* Does not work always (figure

* To mitigate

Example of result

* QuickCSG
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Example of result

* QuickCSG: Ramesses vs Ramesses translated.
* To mitigate: numerical perturbation
* Does not work always (figure: max perturbation = 107)
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FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM

* QuickCSG: Ramesses vs Ramesses translated.
* To mitigate: numerical perturbation
* Does not work always (figure: max perturbation = 10™?)
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FAST, EXACT, PARALLEL MESH INTERSECTION ALGORITHM
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The perturbed result

* Result with SoS.
* Result is valid considering the perturbed data.
* If perturbation is removed — possible topological errors,
triangles with area 0, polyhedra with volume 0, etc.

* Solution:

* Do not remove the perturbation (i.e., other algorithms should
know how the dataset was perturbed).

* Use regularization and other techniques to clean the results.

ﬁ\finitesimal area
U 0 w/o SoS
IS, smmnsm @ ¢
Self intersection, 2 regions/mesh
S slAM GD 2017 41
Conclusions
* 3D-EPUG-OVERLAY
* Exact
* Parallel

* Uniform grid

* Part of a bigger project
* Exact and parallel geometric algorithms
* Applications in GIS, CAD and AM

* Fast and exact

* Future work:
* Improve performance (mainly of SoS calls)
* Use similar ideas for other problems
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Thank you!
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Simulation of Simplicity

* Example: how to check if a point ¢ is directly “below” the interior of a
triangle ¢?
« Project g and 7 to z=0, check if ¢'is inside ' (also check ¢ ).

« Is q'inside t'? — barycentric coordinates — 0 <A <1 fori=1,2 and 3 ?

(1, = 13,) X (g = 1) + (6, = 1) X (g5, — 15)

Ao =
0 det
(8, — 1) X (¢, — 1) + ()~ 5) X (¢, ~ 1)
A =
det
bL=1-Ag—- 4

EXACT INTERSECTION OF 3D GEOMETRIC MODELS

SIAM GD 2017 44




Simulation of Simplicity

* Degeneracies: det = 0 — vertical triangle
« Point on boundary of ¢’ (1. = 0 or I).

e S0S — q(x,y,2) — q (x+ey+e’,z+e’), ¢'(xy) — q' (x+ey+e)
« q' will never be on a vertex or edge of t'
« ¢'is not on vertex/edge — ¢’ is also not on vertex/edge

(infinitesimal).
« ¢'1s on vertex/edge — ¢’ is not on vertex/edge (infinitesimal/slope).

« Ex: ¢'is on an edge — ¢’ cannot be on the same edge (slope would

be infinitesimal)

EXACT INTERSECTION OF 3D GEOMETRIC MODELS
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Simulation of Simplicity

* SoS implementation:
« q' will never be on a vertex or edge of t' — if det=0 — false

« Replace ¢’ with ¢’

(1), — 15,) X (g, — 15) + (6, — 17,) X (g}, — 13))

Ao =
0 det
(15, = 1oy) X (g — 1) + (65, — 1) X (g5, = 15))
A =
det
bL=1-Ag—- 4

7))
—
=
=
o
=
o
&
[
=
=
Q
=
&
=
o
=
o
Z
o
)
[
o
=
72]
&
=
[
Z
]
[
O
<
e
=

SIAM GD 2017 46




Simulation of Simplicity

* SoS implementation:
« q' will never be on a vertex or edge of t' — if det=0 — false

« Replace ¢'with g’ — A with &
« Egiis 0</ ?
. /lo;é 0 — check /10
e A =0—check ¢ -¢
0 Iy 2y
. t’ly— t'2y= 0 — check t’Zx— t’bC

* Both can't be 0. (tiy — téy) Xe€+ (), —1t )X €’
/160 = /l() +
det

’ / ’ / 2
(tzy — toy) X €+ (ty, — 1) Xe€
det

/161 = /11 +
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