
F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M

Rensselaer Polytechnic Institute, Troy NY USA
Universidade Federal de Vicosa, MG, Brasil

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M

Fast exact parallel 3D mesh intersection algorithm
using only orientation predicates

RPI UFV

W Randolph Franklin, RPI
Salles V. G. de Magalhães, UFV/RPI

Marcus V. A. Andrade, UFV

SIAM GD 2017 2

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Mesh intersection
● Polygonal map overlay/intersection: important

CAD/GIS problem

● 2D intersection also extends to 3D.

● Applications: CAD, Additive Manufacturing, GIS,
cross-interpolation after remeshing in CFD

● Our focus: 3D triangulated meshes

Source: Autodesk

Source: Rockworks

SIAM GD 2017 3

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M EPUG-Overlay: 2D planar graph overlay
Previous step, presented at 2015 ACM BIGSPATIAL

Biggest example:
● USWaterBodies: 21,652,410 vertices, 219,831 faces, with
● USBlockBoundaries: 32,762,740 vertices, 518,837 faces.
● (Images are of simpler similar datasets):

Time (w/o I/O):
● 1342 secs (1 thread)
● 149 secs (16 cores, 32 threads). 9X parallel speedup

SIAM GD 2017 4

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M PINMESH: 3D point location
● Previous step, presented at 2016 Berlin Geometry Summit
● Uses rational numbers, Simulation of Simplicity, uniform grid,

parallelism, simple data structures
● Biggest example: sample dataset with 50 million triangles.

● Preprocessing: 14 elapsed seconds on 16-core Xeon processor.
● Query time: 0.6 μs per point.
● Some test datasets:

SIAM GD 2017 5

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Roundoff Challenge
● Finite precision of floating point →roundoff errors.

● Common techniques (snap rounding, epsilon tweaking, etc):
no guarantee.

● Big amount of data & 3D→ increase problem.

● Exactness and performance: very important (e.g. guaranteed
subroutine)

Source: Kettner et al., Classroom
examples of robustness problems in
geometric computations

6

RP
I -

 R
en

ss
el

ae
r P

ol
yt

ec
hn

ic
 In

st
tu

te

Examples from CGAL mailing list (there are several other
similar threads): People want exactness and performance!

}

SIAM GD 2017 7

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Key techniques
● We've been using a combination of 5 techniques

● Arbitrary precision rational numbers: for exactness.
● Simulation of Simplicity: for ensuring all the special cases are properly

handled.
● Simple data representation and local information: parallelization and

correctness.
● Parallel programming: explore better the computing capability of

current hardware.
● Two-level uniform grid: accelerate computation; quickly constructed in

parallel.

SIAM GD 2017 8

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Rational numbers
● Each component of each coordinate is a ratio of integers

● No rounding or finite precision errors.
● Each integer: array of groups of digits
● Uses GMPXX
● Rationals double in size with each operation: 2/3+4/5=22/15
● However depth of computation tree is small
● Problem: GMPXX liberally constructs new objects on heap
● Heap is superlinear time in number of objects, and parallel hostile.
● We minimize heap constructions.
● Increased execution time is tolerable.

SIAM GD 2017 9

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Current hardware

Massive shared memory
● is an underappreciated resource.
● External memory algorithms not needed for many problems.
● Virtual memory is obsolete.
● $40K buys a workstation with 80 cores and 1TB of memory.

Parallel computing
● Almost all processors, even my smart phone, are parallel.
● Algorithms that don't parallelize are obsolete.
● Nvidia GPUs are almost ubiquitous.
● However, 1 Xeon core is 20x more powerful than 1 CUDA

core.

SIAM GD 2017 10

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Component: computing 2D intersections
● “Brute force”: O(|A| x |B|)
● Other possible techniques:

● Sweep-line
● Complicated and doesn't parallelize

● Uniform grid
● Theoretical and experimentally: very efficient

SIAM GD 2017 11

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Uniform Grid
● Insert edges in grid cells (edge may be in several cells).
● For each grid cell c, compute intersections in c.
● 3D version is analogous
● Provably efficient for I.i.d. input
● Experimentally more efficient on irregular data than octrees

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges

SIAM GD 2017 12

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M 3D-EPUG-OVERLAY
● Apply the key techniques mentioned before for 3D mesh intersection

● Rational numbers
● “3D maps” represented by a set of triangles
● Triangles: left/right objects
● 3D uniform grid for intersection and point location
● Simulation of Simplicity
● Algorithm designed to be parallel

source: wikipedia

Source: Autodesk

Source: Rockworks

SIAM GD 2017 13

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M First step: triangle-triangle intersections
● A 3D uniform grid is created.
● Triangles from both meshes are inserted into the cells an enclosing cube

intersects.
● Cells with “too many” pairs of triangles are refined, creating a second

level grid (because the enclosing cube above is suboptimal).
● Intersection tests: Moller's algorithm for performance.
● Cells do not influence each other → process them in parallel

Red mesh: only one
triangle intersects
green

SIAM GD 2017 14

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Second step: retesselation
● Triangles are then split at the intersections.

● Intersection on each triangle → planar subdivision → retriangulation.

● Again, this step can be done in parallel on the triangles.

Red intersecting triangle:
split into 2 polygons → 7 triangles

SIAM GD 2017 15

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Second step: retesselation
● Retesselated mesh: equivalent to the original

● Union of each split triangle is equal to the original triangle
● Non split triangles will also be in retesselated mesh

● After retesselation: intersections will only happen at common
vertices/edges.

Red intersecting triangle:
split into 2 polygons → 7 triangles

SIAM GD 2017 16

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Third step: classification
● Finally, triangles are classified.

● Similar to edge classification in EPUG-OVERLAY.
● Only two basic cases for each triangle t (bounding A,B):

● t outside other mesh → t will not be in the output.
● t inside region R of the other mesh → t will bound R∩A and R∩B.

Outside green region
→ not in the output

Inside green region
→ bound (Green ∩ Red), exterior

Triangles in the output

SIAM GD 2017 17

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Third step: classification
● How to locate a triangle?

● Simple and fast solution: point location (PinMesh)

Outside green region
→ not in the output

Inside green region
→ bound (Green ∩ Red), exterior

SIAM GD 2017 18

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Special cases (geometric degeneracies)

● Ad-hoc enumerating special cases is error-prone.
● How many ways can a line intersect a polyhedron?
● Local rules must lead to a globally consistent result.
● Testing a point against a line must give a consistent result

when comparing two polylines.
● Existing programs can get complicated cases wrong.
● Need a general solution.

SIAM GD 2017 19

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity
● Edelsbrunner and Mücke:

● Simple and efficient general purpose technique.
● Globally consistent
● Basic idea: if points are perturbed, the degeneracies in

geometrical problems will disappear and do not need to be
treated.

Global consistency (uw, uv were coincident):
- w' is on the positive side of uv
- w' is closer to x than v' is

SIAM GD 2017 20

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity ctd
● Perturbation

● Points are perturbed using orders of infinitesimals ɛi

● Infinitesimal: indeterminate (code simulates the effect of the
infinitesimals – we do not actually use specific
infinitesimals).

SIAM GD 2017 21

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity - 3
● SoS has been successfully employed in the 2D version of the problem

● Idea: translate one of the maps by (ɛ,ɛ2) → no common
edges/intersection at endpoints

● Example: two coincident polygons → translation (ɛ,ɛ2) → no
coincidence.
● Perturbation is only conceptual → resulting rectangle is actually equal

to input triangles!

u

v v

u

SIAM GD 2017 22

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M SoS + 3D
● Mesh 0 is not perturbed, mesh 1 is translated by (ɛ,ɛ2,ɛ3)

● This perturbation presents some properties:
● Examples:

● A vertex from a mesh will never be on a triangle of the other one.
● Two co-planar triangles from distinct meshes never intersect.

● These properties →no coincidence between the two meshes.
● Example of consequence: intersection of two triangles (if exist) is

always a line segment with non-zero length.

SIAM GD 2017 23

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Implementing SoS
● In a predicate:

● No coincidence → unperturbed result = perturbed result ≠ 0
● Coincidence → unperturbed result = 0, unperturbed result ≠ 0

● For performance:
● Two versions of each predicate:

● One developed for efficiency (standard algorithms from literature)
● One for simplicity (using as few predicates as possible).

● The simpler version: used when a coincidence is detected.
● Consequence: implement SoS only in few predicates.

SIAM GD 2017 24

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Implementing SoS
● It is possible to implement all the steps of the algorithm employing only

orientation (1D, 2D and 3D) predicates.
● Example: intersection of two triangles → check if each edge of one

triangle intersects the other triangle.
● Intersection of line ED with ABC?
● orientation(A,B,E,D)=orientation(B,C,E,D)=orientation(C,A,E,D) ?

SIAM GD 2017 25

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Implementing SoS
● Challenge:

● If a vertex of mesh 0 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x,y,z)

● If a vertex of mesh 1 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x+ɛ,y+ɛ2,z+ɛ3)

● If a vertex generated by an intersection of a triangle with an edge has
coordinates (x,y,z), what is its perturbed coordinate?
● Ans: ???

SIAM GD 2017 26

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Implementing SoS
● Challenge:

● If a vertex of mesh 0 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x,y,z)

● If a vertex of mesh 1 has coordinates (x,y,z), what is its perturbed
coordinate? Ans: (x+ɛ,y+ɛ2,z+ɛ3)

● If a vertex generated by an intersection of a triangle with an edge has
coordinates (x,y,z), what is its perturbed coordinate?
● Ans: ???

→ store these coordinates
implicitly
→ process implicit coordinates
in the predicates

SIAM GD 2017 27

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Experiments
● Algorithm implemented in C++.

● OpenMP (parallel) + GMPXX (exact coordinates)

● Experiments on a workstation
● Dual Intel Xeon E5-2687 processors, 8 cores, 2 threads/core
● 128 GB of RAM.
● Ubuntu Linux 16.04.

● Comparison with:
● LibiGL: recent, exact, parallel and resolves self-intersections.
● CGAL Nef Polyhedra: exact
● QuickCSG: fast, parallel, but may fail (floating-point errors/do not

handle special cases).

28

Experiments
● Up to 37x faster than LibiGL
● Up to 281x faster than CGAL (935x including conversion)

29

Experiments
● Slightly slower than LibiGL when a mesh is intersected with itself: too

many SoS calls (non-optimmized, future work)

30

Experiments
● Up to 3x slower than QuickCSG (tests without reported failures), but exact.

31

Experiments
● Up to 3x slower than QuickCSG (tests without reported failures), but exact.

● * → QuickCSG failed and reported failure
● If a failure is not reported → result may still have errors

32

Experiments
● Can process meshes with millions of triangles in few seconds.
● Can handle tetra-meshes (461112_tetra: 8 M triangles, 4 M tetrahedra).

33

Experiments
● Memory efficient:

● Neptune vs Neptune translated: 3D-EPUG: 5GB of RAM, LibiGL:
22.5GB, CGAL: 110GB, QuickCSG: 4.5GB

SIAM GD 2017 34

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● Intersection of two big meshes from AIM@SHAPE:

● Ramesses: 1.7 million triangles
● Neptune: 4 million triangles

SIAM GD 2017 35

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● Hard to process triangles → roundoff errors

SIAM GD 2017 36

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● Hard to process triangles → roundoff errors

SIAM GD 2017 37

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● No error reported
● Several failures

SIAM GD 2017 38

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● To mitigate: numerical perturbation
● Does not work always (figure: max perturbation = 10-1)

SIAM GD 2017 39

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● To mitigate: numerical perturbation
● Does not work always (figure: max perturbation = 10-3)

SIAM GD 2017 40

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● To mitigate: numerical perturbation
● Does not work always (figure: max perturbation = 10-12)

SIAM GD 2017 41

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M The perturbed result
● Result with SoS.

● Result is valid considering the perturbed data.
● If perturbation is removed → possible topological errors,

triangles with area 0, polyhedra with volume 0, etc.
● Solution:

● Do not remove the perturbation (i.e., other algorithms should
know how the dataset was perturbed).

● Use regularization and other techniques to clean the results.

Self intersection, 2 regions/mesh

Infinitesimal area
0 w/o SoS

SIAM GD 2017 42

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Conclusions
● 3D-EPUG-OVERLAY

● Exact
● Parallel
● Uniform grid

● Part of a bigger project
● Exact and parallel geometric algorithms
● Applications in GIS, CAD and AM

● Fast and exact

● Future work:
● Improve performance (mainly of SoS calls)
● Use similar ideas for other problems

SIAM GD 2017 43

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Thank you!

Acknowledgement:

i5 i6

0 ∩ 5

6 ∩ 5

SIAM GD 2017 44

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity
● Example: how to check if a point q is directly “below” the interior of a

triangle t?
● Project q and t to z=0, check if q' is inside t' (also check q

z
).

● Is q' inside t' ? → barycentric coordinates → 0 < λ
i
 < 1 for i=1,2 and 3 ?

E
X

A
C

T
 I

N
T

E
R

S
E

C
T

IO
N

 O
F

 3
D

 G
E

O
M

E
T

R
IC

 M
O

D
E

L
S

SIAM GD 2017 45

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity
● Degeneracies: det = 0 → vertical triangle
● Point on boundary of t' (λ

i
 = 0 or 1).

● SoS → q(x,y,z) → q
ε
(x+ε,y+ε2,z+ε3), q'(x,y) → q'

ε
(x+ε,y+ε2)

● q'
ε
will never be on a vertex or edge of t'.

● q' is not on vertex/edge → q'
ε
is also not on vertex/edge

(infinitesimal).
● q' is on vertex/edge → q'

ε
is not on vertex/edge (infinitesimal/slope).

● Ex: q' is on an edge → q'
ε
cannot be on the same edge (slope would

be infinitesimal)

E
X

A
C

T
 I

N
T

E
R

S
E

C
T

IO
N

 O
F

 3
D

 G
E

O
M

E
T

R
IC

 M
O

D
E

L
S

SIAM GD 2017 46

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity
● SoS implementation:

● q'
ε
will never be on a vertex or edge of t' → if det=0 → false

● Replace q' with q'
ε

E
X

A
C

T
 I

N
T

E
R

S
E

C
T

IO
N

 O
F

 3
D

 G
E

O
M

E
T

R
IC

 M
O

D
E

L
S

SIAM GD 2017 47

F
A

S
T

, E
X

A
C

T
, P

A
R

A
L

L
E

L
 M

E
SH

 I
N

T
E

R
S

E
C

T
IO

N
 A

L
G

O
R

IT
H

M Simulation of Simplicity
● SoS implementation:

● q'
ε
will never be on a vertex or edge of t' → if det=0 → false

● Replace q' with q'
ε

→ λ
i
with λ

εi

● E.g.: is 0 < λ
ε0

?

● λ
0
≠ 0 → check λ

0

● λ
0
= 0 → check t'

1y
- t'

2y

● t'
1y

- t'
2y

= 0 → check t'
2x

- t'
1x

● Both can't be 0.

E
X

A
C

T
 I

N
T

E
R

S
E

C
T

IO
N

 O
F

 3
D

 G
E

O
M

E
T

R
IC

 M
O

D
E

L
S

