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M

Fast exact parallel 3D mesh intersection algorithm 
using only orientation predicates

RPI UFV

W Randolph Franklin, RPI
Salles V. G. de Magalhães, UFV/RPI

Marcus V. A. Andrade, UFV
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M Mesh intersection
● Polygonal map overlay/intersection: important 

CAD/GIS problem

● 2D intersection also extends to 3D.

● Applications: CAD, Additive Manufacturing, GIS, 
cross-interpolation after remeshing in CFD

● Our focus: 3D triangulated meshes

Source: Autodesk

Source: Rockworks
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M EPUG-Overlay: 2D planar graph overlay
Previous step, presented at 2015 ACM BIGSPATIAL

Biggest example:
● USWaterBodies:  21,652,410 vertices, 219,831 faces, with
● USBlockBoundaries: 32,762,740 vertices, 518,837 faces.
● (Images are of simpler similar datasets):

Time (w/o I/O): 
● 1342 secs (1 thread)
● 149 secs (16 cores, 32 threads).   9X parallel speedup
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M PINMESH: 3D point location 
● Previous step, presented at 2016 Berlin Geometry Summit
● Uses rational numbers, Simulation of Simplicity, uniform grid, 

parallelism, simple data structures
● Biggest example: sample dataset with 50 million triangles. 

● Preprocessing: 14 elapsed seconds on 16-core Xeon processor.
● Query time: 0.6 μs per point.
● Some test datasets:
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M Roundoff Challenge
● Finite precision of floating point →roundoff errors.

● Common techniques (snap rounding, epsilon tweaking, etc): 
no guarantee.

● Big amount of data & 3D→ increase problem.

● Exactness and performance: very important (e.g. guaranteed 
subroutine)

Source: Kettner et al., Classroom 
examples of robustness problems in 
geometric computations

6
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Examples from CGAL mailing list (there are several other 
similar threads): People want exactness and performance!

}
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M Key techniques
● We've been using a combination of 5 techniques

● Arbitrary precision rational numbers: for exactness.
● Simulation of Simplicity: for ensuring all the special cases are properly 

handled.
● Simple data representation and local information: parallelization and 

correctness.
● Parallel programming: explore better the computing capability of 

current hardware.
● Two-level uniform grid: accelerate computation; quickly constructed in 

parallel.
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M Rational numbers
● Each component of each coordinate is a ratio of integers

● No rounding or finite precision errors.
● Each integer: array of groups of digits
● Uses GMPXX
● Rationals double in size with each operation: 2/3+4/5=22/15
● However depth of computation tree is small
● Problem: GMPXX liberally constructs new objects on heap
● Heap is superlinear time in number of objects, and parallel hostile.
● We minimize heap constructions.
● Increased execution time is tolerable.
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M Current hardware

Massive shared memory 
● is an underappreciated resource.
● External memory algorithms not needed for many problems.
● Virtual memory is obsolete.
● $40K buys a workstation with 80 cores and 1TB of memory.

Parallel computing
● Almost all processors, even my smart phone, are parallel.
● Algorithms that don't parallelize are obsolete.
● Nvidia GPUs are almost ubiquitous.
● However, 1 Xeon core is 20x more powerful than 1 CUDA 

core.
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M Component: computing 2D intersections
● “Brute force”: O(|A| x |B|)
● Other possible techniques: 

● Sweep-line
● Complicated and doesn't parallelize

● Uniform grid
● Theoretical and experimentally: very efficient
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M Uniform Grid
● Insert edges in grid cells (edge may be in several cells).
● For each grid cell c, compute intersections in c.
● 3D version is analogous
● Provably efficient for I.i.d. input
● Experimentally more efficient on irregular data than octrees

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges
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M 3D-EPUG-OVERLAY 
● Apply the key techniques mentioned before for 3D mesh intersection

● Rational numbers
● “3D maps” represented by a set of triangles
● Triangles: left/right objects
● 3D uniform grid for intersection and point location
● Simulation of Simplicity
● Algorithm designed to be parallel

source: wikipedia

Source: Autodesk

Source: Rockworks
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M First step: triangle-triangle intersections
● A 3D uniform grid is created.
● Triangles from both meshes are inserted into the cells an enclosing cube 

intersects.
● Cells with “too many” pairs of triangles are refined, creating a second 

level grid (because the enclosing cube above is suboptimal).
● Intersection tests: Moller's algorithm for performance.
● Cells do not influence each other → process them in parallel

Red mesh: only one 
triangle intersects 
green
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M Second step: retesselation
● Triangles are then split at the intersections.

● Intersection on each triangle → planar subdivision → retriangulation.

● Again, this step can be done in parallel on the triangles.

Red intersecting triangle: 
split into 2 polygons → 7 triangles
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M Second step: retesselation
● Retesselated mesh: equivalent to the original

● Union of each split triangle is equal to the original triangle
● Non split triangles will also be in retesselated mesh

● After retesselation: intersections will only happen at common 
vertices/edges.

Red intersecting triangle: 
split into 2 polygons → 7 triangles
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M Third step: classification
● Finally, triangles are classified.

● Similar to edge classification in EPUG-OVERLAY.
● Only two basic cases for each triangle t (bounding A,B):

● t outside other mesh → t will not be in the output.
● t inside region R of the other mesh → t will bound R∩A and R∩B.

Outside green region
→ not in the output

Inside green region
→ bound (Green ∩ Red), exterior

Triangles in the output
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M Third step: classification
● How to locate a triangle?

● Simple and fast solution: point location (PinMesh)

Outside green region
→ not in the output

Inside green region
→ bound (Green ∩ Red), exterior
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M Special cases (geometric degeneracies)

● Ad-hoc enumerating special cases is error-prone.
● How many ways can a line intersect a polyhedron?
● Local rules must lead to a globally consistent result.
● Testing a point against a line must give a consistent result 

when comparing two polylines.
● Existing programs can get complicated cases wrong.
● Need a general solution.
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M Simulation of Simplicity
●  Edelsbrunner and Mücke:

● Simple and efficient general purpose technique.
● Globally consistent 
● Basic idea: if points are perturbed, the degeneracies in 

geometrical problems will disappear and do not need to be 
treated.

Global consistency (uw, uv were coincident):
- w' is on the positive side of uv
- w' is closer to x than v' is
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M Simulation of Simplicity ctd
● Perturbation

● Points are perturbed using orders of infinitesimals ɛi

● Infinitesimal: indeterminate (code simulates the effect of the 
infinitesimals – we do not actually use specific 
infinitesimals).  
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M Simulation of Simplicity - 3
● SoS has been successfully employed in the 2D version of the problem

● Idea: translate one of the maps by (ɛ,ɛ2) → no common 
edges/intersection at endpoints

● Example: two coincident polygons → translation  (ɛ,ɛ2) → no 
coincidence.
● Perturbation is only conceptual → resulting rectangle is actually equal 

to input triangles!

u

v v

u
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M SoS + 3D
● Mesh 0 is not perturbed, mesh 1 is translated by (ɛ,ɛ2,ɛ3) 

● This perturbation presents some properties:
● Examples: 

● A vertex from a mesh will never be on a triangle of the other one.
● Two co-planar triangles from distinct meshes never intersect.

● These properties →no coincidence between the two meshes.
● Example of consequence: intersection of two triangles (if exist) is 

always a line segment with non-zero length.
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M Implementing SoS
● In a predicate:

● No coincidence → unperturbed result = perturbed result ≠ 0
● Coincidence → unperturbed result = 0, unperturbed result ≠ 0

● For performance:
● Two versions of each predicate: 

● One developed for efficiency (standard algorithms from literature)
● One for simplicity (using as few predicates as possible).

● The simpler version: used when a coincidence is detected.
● Consequence: implement SoS only in few predicates.
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M Implementing SoS
● It is possible to implement all the steps of the algorithm employing only 

orientation (1D, 2D and 3D) predicates.
● Example: intersection of two triangles → check if each edge of one 

triangle intersects the other triangle.
● Intersection of line ED with ABC?
● orientation(A,B,E,D)=orientation(B,C,E,D)=orientation(C,A,E,D) ?
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M Implementing SoS
● Challenge:

● If a vertex of mesh 0 has coordinates (x,y,z), what is its perturbed 
coordinate?   Ans: (x,y,z)

● If a vertex of mesh 1 has coordinates (x,y,z), what is its perturbed 
coordinate?   Ans: (x+ɛ,y+ɛ2,z+ɛ3)

● If a vertex generated by an intersection of a triangle with an edge has 
coordinates (x,y,z), what is its perturbed coordinate?
● Ans: ???
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M Implementing SoS
● Challenge:

● If a vertex of mesh 0 has coordinates (x,y,z), what is its perturbed 
coordinate?   Ans: (x,y,z)

● If a vertex of mesh 1 has coordinates (x,y,z), what is its perturbed 
coordinate?   Ans: (x+ɛ,y+ɛ2,z+ɛ3)

● If a vertex generated by an intersection of a triangle with an edge has 
coordinates (x,y,z), what is its perturbed coordinate?
● Ans: ???

→ store these coordinates 
implicitly
→ process implicit coordinates 
in the predicates
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M Experiments
● Algorithm implemented in C++.

● OpenMP (parallel) + GMPXX (exact coordinates)

● Experiments on a workstation
● Dual Intel Xeon E5-2687 processors, 8 cores, 2 threads/core
● 128 GB of RAM.
● Ubuntu Linux 16.04.

● Comparison with:
● LibiGL: recent, exact, parallel and resolves self-intersections. 
● CGAL Nef Polyhedra: exact
● QuickCSG: fast, parallel, but may fail (floating-point errors/do not 

handle special cases).

28

Experiments
● Up to 37x faster than LibiGL
● Up to 281x faster than CGAL (935x including conversion)



29

Experiments
● Slightly slower than LibiGL when a mesh is intersected with itself: too 

many SoS calls (non-optimmized, future work)

30

Experiments
● Up to 3x slower than QuickCSG (tests without reported failures), but exact.



31

Experiments
● Up to 3x slower than QuickCSG (tests without reported failures), but exact.

● * → QuickCSG failed and reported failure
● If a failure is not reported → result may still have errors

32

Experiments
● Can process meshes with millions of triangles in few seconds.
● Can handle tetra-meshes (461112_tetra: 8 M triangles, 4 M tetrahedra).



33

Experiments
● Memory efficient: 

● Neptune vs Neptune translated: 3D-EPUG: 5GB of RAM, LibiGL: 
22.5GB, CGAL: 110GB, QuickCSG: 4.5GB
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M Example of result
● Intersection of two big meshes from AIM@SHAPE:

● Ramesses: 1.7 million triangles
● Neptune: 4 million triangles
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M Example of result
● Hard to process triangles → roundoff errors 
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M Example of result
● Hard to process triangles → roundoff errors 
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M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● No error reported
● Several failures
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M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● To mitigate: numerical perturbation
● Does not work always (figure: max perturbation = 10-1)
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M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● To mitigate: numerical perturbation
● Does not work always (figure: max perturbation = 10-3)
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M Example of result
● QuickCSG: Ramesses vs Ramesses translated.

● To mitigate: numerical perturbation
● Does not work always (figure: max perturbation = 10-12)
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M The perturbed result
● Result with SoS.

● Result is valid considering the perturbed data.
● If perturbation is removed → possible topological errors, 

triangles with area 0, polyhedra with volume 0, etc.
● Solution:

● Do not remove the perturbation (i.e., other algorithms should 
know how the dataset was perturbed).

● Use regularization and other techniques to clean the results.

Self intersection, 2 regions/mesh

Infinitesimal area
0  w/o SoS
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M Conclusions
● 3D-EPUG-OVERLAY

● Exact
● Parallel 
● Uniform grid

● Part of a bigger project
● Exact and parallel geometric algorithms
● Applications in GIS, CAD and AM

● Fast and exact

● Future work:
● Improve performance (mainly of SoS calls)
● Use similar ideas for other problems
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M Thank you!

Acknowledgement:

i5 i6

0 ∩ 5

6 ∩ 5
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M Simulation of Simplicity
● Example: how to check if a point q is directly “below” the interior of a 

triangle t?
● Project q and t to z=0, check if q' is inside t' (also check q

z
).

● Is q' inside t' ?  → barycentric coordinates → 0 < λ
i
 < 1 for i=1,2 and 3 ?
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M Simulation of Simplicity
● Degeneracies: det = 0 → vertical triangle
● Point on boundary of t' ( λ

i
 = 0 or 1).

● SoS → q(x,y,z) → q
ε
(x+ε,y+ε2,z+ε3), q'(x,y) → q'

ε
(x+ε,y+ε2)

● q'
ε 
will never be on a vertex or edge of t'.

 

● q' is not on vertex/edge → q'
ε 
is also not on vertex/edge 

(infinitesimal).
● q' is on vertex/edge → q'

ε 
is not on vertex/edge (infinitesimal/slope).

● Ex: q' is on an edge → q'
ε 
cannot be on the same edge (slope would 

be infinitesimal)
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M Simulation of Simplicity
● SoS implementation:

● q'
ε 
will never be on a vertex or edge of t' → if det=0 → false

● Replace q' with q'
ε 
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M Simulation of Simplicity
● SoS implementation:

● q'
ε 
will never be on a vertex or edge of t' → if det=0 → false

● Replace q' with q'
ε   

→  λ
i 
with λ

εi

● E.g.: is   0 < λ
ε0

?

● λ
0 
≠ 0 → check  λ

0 

● λ
0 
= 0 → check  t'

1y
- t'

2y

● t'
1y

- t'
2y 

= 0 → check  t'
2x

- t'
1x

● Both can't be 0.
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