
Exact intersection of 3D geometric models

Salles V. G. de Magalhães 1,2, Marcus V. A. Andrade 1,
W. Randolph Franklin2, Wenli Li2, Maurı́cio G. Gruppi 1

1Departamento de Informática – Universidade Federal de Viçosa (UFV)
Viçosa – MG – Brazil

2Rensselaer Polytechnic Institute (RPI), Troy – NY – USA

{salles,marcus,mauricio.gruppi}@ufv.br, mail@wrfranklin.org,
liw9@rpi.edu

Abstract. This paper presents 3D-EPUG-OVERLAY, an exact and parallel al-
gorithm for computing the intersection of 3D triangulated meshes, a problem
with applications in several fields such as GIS and CAD. 3D-EPUG-OVERLAY
presents several innovations: it employs exact arithmetic and, thus, the compu-
tations are completely exact, which avoids topological impossibilities that are
often created by floating point arithmetic. Also, it uses a uniform grid to index
the geometric data and was designed to be easily parallelizable. Furthermore,
we propose the use of Simulation of Simplicity to effectively ensure that all the
special cases are properly handled by the algorithm.

1. Introduction
Computing intersections or overlays is a very important operation for CAD systems, GIS,
computer games and computational geometry. In 2D, given a pair of maps A and B, that
are composed of faces or polygons representing partitions of the E2 plane, the overlay
of A with B is a map C where each polygon is the intersection of a polygon of A with a
polygon of B. For example, the intersection of a map representing the states of the United
States with a map representing the American drainage basins is another map where the
polygons represent the portion of each basin that is in each state. These operations also
extend to 3D datasets. An example of application in 3D is to compute the intersection
between solids representing layers of soil with a solid representing a section of the soil
that will be excavated.

According to Feito et al. [Feito et al. 2013], although 3D models have been widely
used in computer science, processing them is still a challenge. Due to the algorithm imple-
mentation complexity (that usually needs to handle several special cases), the necessity of
processing big volumes of data and precision problems caused by floating point arithmetic,
software packages occasionally “fail to give a correct result, or they refuse to give a result
at all” [Feito et al. 2013]. The likelihood of failure increases as datasets get bigger.

Even though in some situations an algorithm that occasionally fails is acceptable,
it is often important to have an algorithm that is both efficient and robust. This is mainly
important when the algorithm is used as subroutines for other algorithms.

Since in many applications it is important to have exact algorithms,
[Hachenberger et al. 2007] presented an algorithm for computing the exact intersec-
tion of Nef polyhedra. The basic idea of a Nef polyhedron is to represent the



polyhedron as a finite sequence of complement and intersection operations on half-
spaces [Hachenberger et al. 2007]. Because of their importance, the algorithms proposed
by Hachenberger were implemented in the CGAL library[CGAL 2016]. According to
Leconte et al. [Leconte et al. 2010], even though these algorithms are exact they have some
limitations such as their poor performance. Besides the performance problems, another
limitation of the Hachenberger’s algorithms is the fact that they were designed to han-
dle geometric data represented as Nef Polyhedra, what is not as widely used as other
representations such as triangular meshes.

[Bernstein and Fussell 2009] also presented an intersection algorithm that tries
to achieve robustness. Their basic idea is to represent the polyhedra using binary
space partitioning (BSP) trees with fixed-precision coordinates. As the authors men-
tion [Bernstein and Fussell 2009], the main limitation is that the process to convert BSPs
to widely used representations (such as meshes) is slow and inexact.

In previous works we have developed exact and efficient algorithms for processing
2D (polygonal maps) and 3D models (triangulated meshes). More specifically, we have
successfully developed algorithms for intersecting polygonal maps [Magalhães et al. 2015]
and performing point location queries [Magalhães et al. 2016] in both polygonal maps
and 3D meshes. These algorithms employ a combination of 5 separate techniques to
achieve both robustness and efficiency. Exact arithmetic is employed to completely avoid
errors caused by floating point numbers. Special cases are treated using Simulation of
Simplicity (SoS) [Edelsbrunner and Mücke 1990]. The computation is performed using
simple local information to make the algorithm easily parallelizable and to easily ensure
robustness. Since the use of exact arithmetic is expected to add an overhead, efficient
indexing techniques and High Performance Computing (HPC) are used to mitigate this.

In all these algorithms our spatial data is represented using simple topological
formats. The 2D maps are represented using sets of oriented edges where each edge
contains the information (labels) of the polygons on its positive and negative sides. In 3D,
the meshes are represented using a set of oriented triangles and each triangle has labels to
the polyhedra on its positive and negative sides.

In this paper we will present a brief description of these previous works and present
our current research: 3D-EPUG-OVERLAY (3D-Exact Parallel Uniform Grid-Overlay), a
parallel algorithm for exactly intersecting 3D triangulated meshes.

2. Roundoff errors
Usually, non-integer numbers are approximately represented in computers with floating-
point values. The difference between the value of a non-integer number and its approxima-
tion is often referred as roundoff error. Even though these differences are usually small,
arithmetic operations frequently create more errors, which accumulate becoming larger.

In geometry, roundoff errors can generate topological inconsistencies caus-
ing globally impossible results for predicates like point inside polygon. For exam-
ple, [Kettner et al. 2008] presented an interesting study of the failures caused by roundoff
errors in geometric problems such as the planar orientation computation.

Several techniques have been proposed in order to overcome this problem. The
simplest one consists of using an ε tolerance to consider two values x and y are equal if |x−



y| ≤ ε. However this is a formal mess because equality is no longer transitive, nor invariant
under scaling. In practice, epsilon-tweaking fails in several situations [Kettner et al. 2008].

Snap rounding is another method to approximate arbitrary precision segments
into fixed-precision numbers [Hobby 1999]. However, snap rounding can generate in-
consistencies and deforms the original topology if applied consecutively on a data set.
Some variations of this technique attempt to get around these issues [Hershberger 2013,
Belussi et al. 2016].

[Shewchuk 1996] presents the Adaptive Precision Floating-Point technique, that
focus on exactly evaluating predicates. The idea is to perform this evaluation using the
minimum amount of precision necessary to achieve correctness. As mentioned by the
author, this technique focus on geometric predicates and it is not suitable to solve all
geometric problems. For example, “a program that computes line intersections requires
rational arithmetic” [Shewchuk 1996].

The formally proper way to eliminate roundoff errors and guarantee robustness is
to use exact computation based on rational number with arbitrary precision [Li et al. 2005,
Hoffman 1989, Kettner et al. 2008]. In this work, our algorithms perform computation
using arbitrary precision rationals provided by GMP library. Computing in the algebraic
field of the rational numbers over the integers, with the integers allowed to grow as long
as necessary, allows the traditional arithmetic operations to be computed exactly, with no
roundoff error. The cost is that the number of digits in the result of an operation is about
equal to the sum of the numbers of digits in the two inputs. This behavior is acceptable if
the depth of the computation tree is small, which is true for the algorithms we will present.

Besides ensuring exact results in the predicates and arithmetic computations, the
use of arbitrary precision rational numbers has other advantages. First, Simulation of
Simplicity [Edelsbrunner and Mücke 1990], the technique we use for treating the special
cases, requires exact arithmetic. Second, our algorithms will be able to support input
geometrical data where the coordinates are represented using rationals and, thus, we will be
able to process meshes that cannot be exactly represented using floating point arithmetic.

3. Previous works
In this section, EPUG-OVERLAY [Magalhães et al. 2015] and PIN-
MESH [Magalhães et al. 2016], two previous algorithms developed for, respectively,
intersecting maps and performing point location queries in 3D meshes will be presented.

Before presenting these two algorithms, two important techniques applied in these
works will be briefly described: the use of a uniform grid for indexing the data and the
application of the Simulation of Simplicity technique for handling special cases. Both
techniques will be also applied in the intersection algorithm described in this paper.

The understanding of EPUG-OVERLAY, PINMESH and of the sections 3.1 and 3.2
is important because techniques similar to the ones described in these sections are applied
on 3D-EPUG-OVERLAY.

3.1. Indexing data with a uniform grid

[Franklin et al. 1989] proposed a uniform grid to accelerate his algorithm for computing
the area of overlaid polygons. When a polygonal map (or triangular mesh) is indexed with



a uniform grid, a 2D grid (or 3D grid for meshes) is created, superimposed over the input
datasets and, then, the edges (or triangles) intersecting each cell c are inserted into c. After
the grid is created, it can be employed to accelerate the geometric algorithms. For example,
given two maps indexed by the grid, the intersection of pairs of edges from the two maps
can be found by processing each cell and comparing the edges in that cell pair-by-pair (one
edge from each map) to compute the intersection points.

The uniform grid works well even for unevenly distributed data for various rea-
sons [Akman et al. 1989, Franklin et al. 1988]. First, the total time is the sum of one com-
ponent (constructing the grid) that runs slower with a finer grid, plus other components
(e.g., intersecting edges) that run faster. The total running-time varies slowly with changing
grid resolutions. Second, an empty grid cell is very inexpensive, so that sizing the grid so
that the geometric objects in the dense part of the data are well distributed works.

Nevertheless, to process very uneven data, in EPUG-OVERLAY and PINMESH
we have incorporated a second level grid into those few cells that are densely populated.
The exact criteria for determine what cell to refine depends on the algorithm that will use
the grid. For example, since in the intersection computation pairs of edges in the cells are
tested for intersection, one could refine the grid cells where the number of intersection
tests (i.e, the number of pairs of edges from the two maps) is greater than a threshold.

This nesting could be recursively repeated until all grid cells have fewer ele-
ments than a given threshold, creating a structure similar to quadtree (or octree), al-
though with more branching. However, the general solution uses more space for point-
ers (or is expensive to modify) and is irregular enough that parallelization is difficult.
Also, experiments have shown that the best performance is achieved using just a second
level [Magalhães et al. 2015]. This can be explained because the first level grid, in general,
has many cells with more elements than the threshold justifying the second level refinement.
But, in the second level, only a few number of cells exceed the threshold and the overhead
(processing time and memory use) to refine those cells is never recaptured.

3.2. Simulation of Simplicity
To correctly handle the special cases (for example, coincident edges or triangles) we apply
the Simulation of Simplicity (SoS) [Edelsbrunner and Mücke 1990] technique. This is a
general purpose symbolic perturbation technique designed to treat special (degenerate)
cases. The inspiration for SoS is that if the coordinates of the points are perturbed the
degeneracies disappear. However, too big a perturbation may create new problems, while a
too small one may be ineffective because of the limited precision of floating point numbers.

SoS is a solution that uses a symbolic perturbation by an indeterminate infinitesimal
value εi, for some natural number i. Its mathematical formalization extends some exactly
computable field, such as rationals, by adding orders of infinitesimals, εi. Floating point
numbers with roundoff error cannot be the base. The infinitesimal ε is an indeterminate. It
has no meaning apart from the rules for how it combines. All positive first-order infinitesi-
mals are smaller than the smallest positive number. All positive second-order infinitesimals
are smaller than the smallest positive first-order infinitesimal, and so on. All this is logically
consistent and satisfies the axioms of an abstract algrebra field.

The result of SoS is that degeneracies are resolved in a way that is globally con-
sistent. For example, consider Figure 1 : two identical rectangles (abcd represented using



solid edges and efgh represented using dashed edges) are overlaid, but all the vertices of
efgh are slightly translated using the vector (ε, ε2). This translation is globally consistent,
i.e., even if the rectangle is stored as separate edges an intersection test with edge ef will
return true only when this test is performed against the edge ad while an intersection test
performed with gf will return true only when the test is performed against cd.

Figure 1. Effect caused by SoS during the intersection computation.

a

b c

d

e

f g

h

The infinitesimals do not need to be explicitly used in the program since they will
be used only to determine signs of expressions. The only time that the infinitesimals change
the result is when there is a tie in a predicate. Then, the infinitesimals break the tie. The
effect is to make the code harder to write and longer. However, unless a degeneracy occurs,
the execution speed is the same. When a degeneracy does occur, the code is slightly slower.

3.3. Point location
PINMESH [Magalhães et al. 2016] is an exact and efficient algorithm for performing point
location queries in 3D meshes. It is based on the idea of ray-casting: given a query point
q, a semi-infinite vertical ray r starting on q is traced and, then, the mesh triangle t that
intersects r in the lowest point is used to determine q’s location. Since t is the lowest
triangle to intersect r, because of the Jordan Curve Theorem, q will necessarily be on the
polyhedron below t (this polyhedron can be quickly determined since all triangles contain
the labels of the two polyhedra it bounds).

For performance, a uniform grid is applied to reduce the amount of ray-triangle
intersection computation tests. Furthermore, empty grid cells (that will, necessarily, be
completely inside a polyhedron) are labeled with the polyhedra where they are located
(these labeles are used to accelerate the queries). As a result of a careful implementation and
use of parallelization, PINMESH is very efficient, being able to index a dataset and perform
1 million queries on a 16-core processor up to 27 times faster than RCT [Liu et al. 2010],
a sequential and inexact algorithm (that was the current fastest one).

In PINMESH all coordinates are represented using rational numbers and, as a
consequence, there is no roundoff error. Furthermore, special cases are handled using
simulation of simplicity: the idea is that all the triangles are translated using an infinitesimal
vector (ε,ε2,ε3) and, as showed in [Magalhães et al. 2016], after this translation no special
case (for example, the one that happens when r hits a triangle vertex and, thus, there is a
tie in the process of selecting the lowest triangle hit by r) will happen.

3.4. Exact 2D map overlay
EPUG-OVERLAY [Magalhães et al. 2015] is an exact and efficient algorithm for over-
laying two polygonal maps. Given two maps A and B composed of faces represented
implicitly as a set of edges, the goal is to create a map where each face represents the inter-
section of a face of A with a face of B. Parallel programming associated with an efficient



indexing made EPUG-OVERLAY very efficient. Indeed, according to the experiments
shown in [Magalhães et al. 2015], it was able to process maps with more than 50 million
edges faster than GRASS GIS (that is sequential, but does not use exact arithmetic).

As described in [Magalhães et al. 2015], EPUG-OVERLAY is composed of the
following basic steps:

• Create the 2-level uniform grid: First, a two-level uniform grid is created to index the
edges from the two input maps A and B.
• Compute the intersection points between all edges of maps A and B: the uniform

grid is applied to accelerate the process of computing the intersection of the edges in the
two maps. For each grid cell c, pairs of edges (from the two input maps) in c are tested
for intersection and the intersections are computed. The intersecting edges are split at
the intersection point and, after that, edges intersections will happen only in vertices.
• Classify the resulting edges: after the input edges are split at the intersection points,

the labels indicating the polygons bounded by each edge are updated.

Figure 2 illustrates this process: the map A (in dotted blue) contains 4 edges and
two polygons (polygonA1 and polygonA0, representing the exterior of the map) while map
B (solid black lines) contains 7 edges and 4 polygons. After the intersections are detected
and the edges are split at the intersection points (in red) the resulting edges are classified.
For example, the edge (u,w) bounds polygons A0 (positive side) and A1 (negative side).
Edge (i2, i3) (generated after (u,w) was split) is inside polygon B2 of the other map and,
thus, in the output map (i2, i3) will bound polygon A0 ∩B2 (this polygon is equivalent to
the exterior of the resulting map) on its positive side and A1 ∩B2 on the negative side.

Since the edges are split at the intersection points, after this process all the edges
will be completely inside a polygon of the other map. Thus, one strategy to determine in
what polygon an edge e is consists in using a fast 2D point location algorithm to locate a
point from e in the other map (for example, the location of m3 from Figure 2 can determine
in what polygon (i2, i3) is).

Figure 2. Intersecting two polygonal maps.

B1

A1

B2 B3

u
w

i1 i2
i3 i4m3

m5

B0

A0

This strategy uses only local information to compute the intersection, i.e., instead
of intersecting pairs of faces the individual edges are intersected and classified and the
resulting faces will be represented implicitly by the edges. This has several advantages.
First, it is easier to test a pair of edges for possible intersection than to test a pair of faces
(which would devolve to testing pairs of edges anyway). Second, knowing an intersection
of a pair of edges contributes information about four output faces. Third, as an edge is
fixed size but a face is not, parallel operations on edges are more efficient.

Degenerate cases are handled with Simulation of Simplicity (SoS). The idea is to
pretend that map A is slightly below and to the left of map B. Thus no edge from A
will coincide with an edge from B during the intersection computation. Oversimplified
slightly, the process proceeds by translating map B by (ε, ε2), where ε is an infinitesimal.



As mentioned before, we do not actually compute with infinitesimals, but instead determine
the effect that they would have on the predicates in the code, and modify the predicates to
have the same effect when evaluated as if the variables could have infinitesimal values. For
instance, the test for (a0 ≤ b0)&(b0 ≤ a1) becomes (a0 ≤ b0)&(b0 < a1). With SoS, no
point in A is identical to any point in B neither do two any edges coincide.

4. Exact 3D mesh intersection
Similarly to our 2D intersection algorithm, in 3D the computation is performed using only
local information stored in the individual triangles. That is, the triangles from one mesh
are intersected with the triangles from the other one. Then, a new mesh containing the
triangles from the two original meshes is created and the original triangles are split in
the intersection points. That is, if a pair of triangles in this new mesh intersect, then this
intersection will happen necessarily in a common edge or vertex. Finally, the adjacency
information stored in each triangle is updated to ensure that the new mesh will consistently
represent the intersection of the original ones.

4.1. Intersecting triangles and remeshing
For performance, a strategy similar to the one used in EPUG-OVERLAY was adopted:
for each uniform grid cell, the intersections between pairs of triangles from the two
triangulations are computed. The pairs of triangles are intersected using the algorithm
presented by Möller [Möller 1997], that uses several techniques to avoid unnecessary
computation by detecting as soon as possible if the pair of triangles does not intersect.

More specifically, a two-level 3D uniform grid is employed to accelerate the com-
putation using an strategy similar to the one we used in the 2D map intersection algorithm.
That is, the grid will be created by inserting in its cells triangles from both meshes M1 and
M2. Then, for each grid cell c, the pairs of triangles from both meshes in c are intersected. If
the resolution of the uniform grid is chosen such that the expected number of triangles per
grid cell is a constant K, then it is expected that each triangle will be tested for intersection
with the other K triangles in its grid cell. Thus, the expected total number of intersections
tests performed will be linear on the size of the input maps.

Since there is no influence of one cell in the other ones, the process of intersecting
the triangles can be trivially parallelized: the grid cells can be processed in parallel by
different threads using a parallel programming API such as OpenMP.

After computing the intersections between each pair of triangles, the next step is to
split the triangles where they intersect (creating new ones) such that, after this processing,
all the intersections will happen only in common vertices or edges. When a triangle is
split, the attributes (that is, the ids of the two objects it bounds) will be copied to the new
triangles. This process is similar to the 2D map overlay step where the edges are split at
the intersection points to ensure that all intersections happen in vertices.

Figure 3 presents an example of intersection computation. In Figure 3 (a), we have
two meshes representing two tetrahedral with one region in each one: the brown mesh
(mesh M1) bounds the exterior region and region 1 while the yellow mesh (mesh M2)
bounds the exterior region and region 2.

After the intersections between the triangles are computed, the triangles from one
mesh that intersect triangles from the other one are split in several triangles, creating meshes



Figure 3. Computing the intersection of two tetrahedra.

(a) (b)

(c) (d)

M ′
1 and M ′

2 (for clarity, these two meshes are displayed separately in Figures 3 (b) and
(c), respectively). The only triangle from mesh M1 that intersects mesh M2 is the triangle
BCD. Since BCD intersects three triangles from M2, it was split in 7 triangles when M ′

1

was created (triangles LMN , CLN , CBN , BDN , DMN , DLM and CDL). Similarly,
each of the three triangles from M2 intersecting M1 was split in 3 smaller triangles.

4.2. Classifying triangles

After the intersections are detected and all the triangles that intersect other triangles are
split at the intersection points, two new meshes M ′

1 and M ′
2 are created such that each new

mesh M ′
i will have the following two kinds of triangles:

• Triangles from the original mesh: if a triangle t from Mi did not intersect any triangle
from the other mesh (or if this intersection was located on a vertex or edge), then t will
be in M ′

i .
• New triangles: if a triangle t from Mi intersects one or more triangles from the other

mesh (and this intersection is not located on a common vertex or edge), then t will be
split into several smaller triangles and these smaller triangles will be inserted into M ′

i .



It is clear that each mesh M ′
1 will exactly represent the same regions that M1

represents. In fact, if no triangle from M1 intersects the mesh M2, then M ′
1 will be equal

to M1. Otherwise, each triangle t from Mi that intersects M2 will be split in n triangles
t1, t2, ..., tn and these new triangles will be inserted into M ′

i instead of t. Since the union
of the triangles t1, t2, ..., tn is t and these split triangles contain the same attributes as t,
then M ′

1 represents the same regions M1 represents. This observation is also valid for M ′
2.

Thus, computing the intersection between M ′
1 and M ′

2 is equivalent to computing
the intersection of M1 with M2. However, M ′

1 and M ′
2 are easier to process: since the

triangles from one mesh intersect with the triangles of the other one only in common
vertices or edges, then each triangle t from M ′

1 will be completely inside a region from M ′
2.

Suppose a triangle t from M ′
1 bounds regions Ra and Rb and is completely inside region

Rc from mesh M ′
2. When M ′

1 is intersected with M ′
2, t will be in the resulting mesh and

it will bound regions Ra ∩Rc and Rb ∩Rc. The same process can be performed with the
triangles from M2.

Therefore, the process of classifying the triangles to create the output mesh consists
in processing each triangle t from the mesh M ′

1, determining in what region of M ′
2 t is

and, then, updating the information about the regions t bounds such that we will have a
consistent mesh. The same process needs to be performed with triangles from M ′

2.

To determine in what region from the other mesh a triangle is, the point location
algorithm presented in section 3.3 is applied. That is, since point location queries can be
quickly performed, an efficient way to locate a triangle that is completely inside a region
consists in locating one of its interior points (for example, its centroid).

Similarly to the other steps, the classification can also be performed in parallel:
since updating the regions that a triangle bounds does not influence other triangles, all the
triangles from the two meshes can be processed in parallel.

If a triangle t is in the exterior of the other mesh, in the resulting mesh the two
regions t bounds will be the exterior region. To maintain the mesh consistency, the triangles
bounding only the exterior region can be ignored and not stored in the output mesh.

Figure 3 (d) illustrates the classification step. All the intersections happen in
common edges and the only triangle from M ′

1 that is completely inside region 2 (of M ′
2) is

triangle LMN . Since LMN bounds region 1 and the exterior region inM ′
1, in the resulting

intersection LMN will bound region 1 ∩ 2 and the exterior region. All the other triangles
from M ′

1 are in the exterior region of M ′
2 and, thus, they will only bound the exterior

region in the resulting intersection (therefore, they will be ignored when the output mesh is
computed). Similarly, in M ′

1 the only triangles that are inside region 1 of M ′
1 are triangles

EMN , ELM and ELN . These three triangles will also bound the exterior region and
region 1 ∩ 2 in the resulting mesh.

4.3. Handling the special cases
The current version of 3D-EPUG-OVERLAY does not handle special cases (degeneracies)
yet. However, the ideas we intend to apply in order to handle these cases have already been
successfully implemented for EPUG-OVERLAY and PINMESH and, therefore, we believe
they will suitable to 3D-EPUG-OVERLAY.

Since it is usually difficult to guarantee that all degeneracies are considered (this is



particularly true in 3D, where more special cases may happen than in 2D), we intend to
develop a symbolic perturbation scheme similar to the one used to ensure the special cases
in the point location algorithm (PINMESH) are treated. The idea is that one of the meshes
will be infinitesimally translated and, as a result, singularities such as the one that happens
when a triangle from one mesh intersects a co-planar triangle from the other mesh (and,
thus, the intersection of them is not necessarily a line segment) will never happen.

An adequate perturbation scheme associated with the use of exact arithmetic and a
careful implementation will ensure our intersection algorithm is robust.

5. Preliminary results
3D-EPUG-OVERLAY was implemented in C++ and several experiments have been
performed. Figure 4 presents an example of intersection computed using 3D-EPUG-
OVERLAY: the model Ramesses (a) and Neptune (b) were intersected. These two models
were downloaded from the AIM@SHAPE repository [AIM@SHAPE 2016] and were
produced by, respectively, the users Marco Attene and Laurent Saboret. The Ramesses
model contains more than 1 million triangles while the Neptune model contains more than
4 million triangles. Figure 4 (c) presents the result of the intersection.

Figure 4 (d) presents a zoom that detaches the region of the resulting mesh where
the triangles from the two models intersect. As it can be seen, the remeshing process
generate several thin triangles (displayed in the vertical center of the figure), that are
usually hard to process mainly by methods based on floating-point arithmetic.

Figure 4. Computing the intersection of two 3D models.

(a) (b)

(c) (d)

Since some features of 3D-EPUG-OVERLAY (such as the use of SoS to handle
special cases) are still under implementation and the main feature of 3D-EPUG-OVERLAY
is its exactness, we have decided to optimize its performance after these features are



implemented. However, we intend to employ as the main optimization techniques the
same strategies that were successfully employed to optimize previous works such as
EPUG-OVERLAY and PINMESH: trading memory for computation, i.e., pre-computing
results that will be necessary often such that these results can be reused; parallelization
of the bottlenecks of the algorithm using OpenMP: similarly to our previous work, 3D-
EPUG-OVERLAY was designed specifically for being easily parallelizable ; reduction
of the memory allocations on the heap: heap allocations cannot be performed in parallel
efficiently and, thus, our previous experience has showed that it should be avoided mainly
inside parallelized blocks of code. Since as rationals grows memory needs to be allocated,
in previous works we pre-allocated the temporary rationals necessary in computations and,
thus, avoided creating them inside the parallelized functions.

Since these techniques were sucessfully applied to our previous works (and, as
result, they even outperformed inexact algorithms), we believe they will also make 3D-
EPUG-OVERLAY very efficient.

6. Conclusions and future works
This paper presented 3D-EPUG-OVERLAY, an exact and parallel algorithm for computing
the intersection of 3D models represented by triangulated meshes. 3D-EPUG-OVERLAY
uses arbitrary precision rational numbers to store all the geometric coordinates and perform
computation and, thus, is roundoff error free.

Even though the current implementation of 3D-EPUG-OVERLAY does not treat
special cases, preliminary experiments have indicated that 3D-EPUG-OVERLAY can
successfully intersect some big meshes available in public repositories.

As future work, we intend to implement a symbolic-perturbation scheme on 3D-
EPUG-OVERLAY to ensure that all the special cases are properly handled. Furthermore,
optimization techniques similar to the ones applied in some of previous works will be also
applied to 3D-EPUG-OVERLAY.

7. Acknowledgement
This research was partially supported by CNPq, CAPES (Ciência sem Fronteiras),
FAPEMIG and NSF grant IIS-1117277.

References
AIM@SHAPE (2016). AIM@SHAPE-VISIONAIR Shape Repository. http://
visionair.ge.imati.cnr.it// (accessed on Sep-2016).

Akman, V., Franklin, W. R., Kankanhalli, M., and Narayanaswami, C. (1989). Geometric
computing and the uniform grid data technique. Comput. Aided Design, 21(7):410–420.

Belussi, A., Migliorini, S., Negri, M., and Pelagatti, G. (2016). Snap rounding with restore:
An algorithm for producing robust geometric datasets. ACM Trans. Spatial Algorithms
Syst., 2(1):1:1–1:36.

Bernstein, G. and Fussell, D. (2009). Fast, exact, linear booleans. Eurographics Symposium
on Geometry Processing, 28(5):1269–1278.

CGAL (2016). CGAL, Computational Geometry Algorithms Library. http://www.cgal.org
(accessed on Sep-2016).



Edelsbrunner, H. and Mücke, E. P. (1990). Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics (TOG),
9(1):66–104.

Feito, F., Ogayar, C., Segura, R., and Rivero, M. (2013). Fast and accurate evaluation
of regularized boolean operations on triangulated solids. Computer-Aided Design,
45(3):705 – 716.

Franklin, W. R., Chandrasekhar, N., Kankanhalli, M., Seshan, M., and Akman, V. (1988).
Efficiency of uniform grids for intersection detection on serial and parallel machines. In
Magnenat-Thalmann, N. and Thalmann, D., editors, New Trends in Computer Graphics
(Proc. Computer Graphics International’88), pages 288–297. Springer-Verlag.

Franklin, W. R., Sun, D., Zhou, M.-C., and Wu, P. Y. (1989). Uniform grids: A technique
for intersection detection on serial and parallel machines. In Proceedings of Auto Carto
9, pages 100–109, Baltimore, Maryland.

Hachenberger, P., Kettner, L., and Mehlhorn, K. (2007). Boolean operations on 3d selective
nef complexes: Data structure, algorithms, optimized implementation and experiments.
Computational Geometry, 38(1):64–99.

Hershberger, J. (2013). Stable snap rounding. Computational Geometry, 46(4):403–416.

Hobby, J. D. (1999). Practical segment intersection with finite precision output. Comput.
Geom., 13(4):199–214.

Hoffman, C. M. (1989). The problems of accuracy and robustness in geometric computation.
Computer, 22(3):31–40.

Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., and Yap, C. (2008). Classroom examples
of robustness problems in geometric computations. Comput. Geom. Theory Appl.,
40(1):61–78.

Leconte, C., Barki, H., and Dupont, F. (2010). Exact and efficient booleans for polyhedra.
Citeseer.

Li, C., Pion, S., and Yap, C.-K. (2005). Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming, pages 85–111.

Liu, J., Chen, Y. Q., Maisog, J. M., and Luta, G. (2010). A new point containment test
algorithm based on preprocessing and determining triangles. Comput. Aided Des.,
42(12):1143–1150.

Magalhães, S. V., Andrade, M. V., Franklin, W. R., and Li, W. (2016). Pinmesh - fast and
exact 3d point location queries using a uniform grid. Computers & Graphics, 58:1 – 11.
Shape Modeling International 2016.

Magalhães, S. V. G., Andrade, M. V. A. A., Franklin, W. R., and Li, W. (2015). Fast exact
parallel map overlay using a two-level uniform grid. In Proc. of the 4th ACM Bigspatial,
BigSpatial ’15, New York, NY, USA. ACM.

Möller, T. (1997). A fast triangle-triangle intersection test. Journal of graphics tools,
2(2):25–30.

Shewchuk, J. R. (1996). Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18:305–363.


