Rensselaer Polytechnic Institute
Universidade Federal de Vicosa

EXACT INTERSECTION OF 3D GEOMETRIC
MODELS

Salles V. G. de Magalhaes, UFV/RPI
Marcus V. A. Andrade, UFV

W Randolph Franklin, RPI

Wenli Li, RPI

Mauricio G. Gruggii UFV

EOINFO 2016

razilian Symposmm on Geolnformatics
November 27" to 30", Campos do Jord&o, SP, Brazil

EXACT INTERSECTION OF 3D GEOMETRIC MODELS

Mesh intersection

* Polygonal map overlay/intersection: important GIS
problem

* 2D intersection also extends to 3D.

e

Source: Autodesk
* Examples:

* CAD: intersection of industrial parts.

* QGIS: terrain models (layers of soil in a mine,
volume that will be dug, city models, etc)

79}
—
=
=)
Q
=
o
|
-
o
=
=
Q
=
Q
=
e
=
=)
Z
=)
(
o
@)
=
72!
-
=
o
Z
p(
o
o
<
e
=

* Our focus: 3D triangulated meshes

GEOINFO 2016 — 3D-EPUG-OVERLAY 2

Challenge

* Finite precision of floating point —roundoff errors.

* Common techniques (snap rounding, epsilon tweaking, etc):
no guarantee.

Source: Kettner et al., Classroom
examples of robustness problems in
geometric computations

* Big amount of data & 3D— increase problem.

79}
—
=
=)
Q
=
o
=
b=
=
=
Q
=
Q
=
e
=
=)
Z
=)
(
b=
o
=
72!
-
=
o
Z
p(
o
o
<
e
=

* Exactness and performance: very important (e.g. guaranteed
subroutine)

GEOINFO 2016 — 3D-EPUG-OVERLAY 3

Examples from CGAL mailing list (there are several other
similar threads): People want exactness and performance!

AN

pNov 10, 2015; 4:36am Boolean performance Reply | Threaded | M

| have implemented boolean operation using nef polyhedra. The
performance however leaves something to be desired. A simple union
between two spheres constructed from roughly 400 triangles each, take
almost 8 seconds to solve(in release mode). Is this expected or might

| be doing something to inhibit the performance. | am using an epec
kernel which i know might impact performance. | have however been
unable to get it working with other kernels. Even so, 8 seconds seems
excessive for a simple union.

ﬁ;.? dekosser Dec 07, 2009; 10:50am Re: RE: Performance of boolean operations on Nef_polyhedron_3
. > | have found and evaluated another GPL library that specializes in boolean
> operations on Polyhedra. This library (CARVE) performed on average 100
Re fa > (ONE
Tal > HUNDRED) times faster than CGAL with the typical use-cases that apply to
Sol :‘ N : > our
> application. It also proved completely computationably stable with our
19 posts > tests.
Yol For the record, | also evaluated Carve for our project, and found similar
To performance results (at least for low volumes of data). It's mostly
httg imputable to the overhead of using an exact arithmetic kernel.

On the other hand | rapidly ran into instability and crashes even with
some simple use cases. Our project required perfect robustness, and so
CGAL/Nef3 was ultimately retained for this reason.

Fred

Key techniques

* We've been using a combination of 5 techniques
* Arbitrary precision rational numbers: for exactness.

* Simulation of Simplicity: for ensuring all the special cases are
properly handled.

* Simple data representation and local information: parallelization and
correctness.

* Parallel programming: explore better the computing capability of
current hardware.

* Two-level uniform grid: accelerate computation; quickly constructed
in parallel.

79}
—
=
=)
Q
=
o
=
b=
=
=
Q
=
&
=
e
=
=)
Z
=)
(
b=
o
=
72!
R~
=
o
Z
p(
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 5

Example: computing intersections

* “Brute force”: O(|A| x |B|)
* Other possible techniques:

* Sweep-line

* Complicate and doesn't parallelize
* Uniform grid

* Tests: very efficient

79}
—
=
=)
Q
=
o
=
b=
=
=
Q
=
Q
=
e
=
=)
Z
=)
(
b=
o
=
72!
-
=
o
Z
p(
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 6

Uniform grid

* Insert edges 1n grid cells (edge may be 1n several cells).

* For each grid cell ¢, compute intersections in c.
* 3D version is analogous

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 7

— - —

|
|
|
|
|
I,+*
|
|
|
|

s
—ll-l"‘-.
£ e - = -

GEOINFO 2016 - 3D-EPUG.OVERLAY T

* Uniform Grids work well for uneven data.
* For very uneven data: 2-level uniform grid.

Uniform grid

STHAON DIRILANOHED A€ AO NOILLOASHHALNI LOVXH

Simulation of Stmplicity
* Special/degenerate cases
* Usually difficult to handle

* Mainly 1in 3D
* How to handle them efficiently and effectively?

* Simulation of Simplicity (SoS), Edelsbrunner and Miicke:
* Simple and efficient general purpose technique.
* Globally consistent

* Basic 1dea: if points are perturbed, the degeneracies in
geometrical problems will disappear and do not need to be

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 9

Simulation of Simplicity

* Perturbation
* Points are perturbed using orders of infinitesimals €

* Infinitesimal: indeterminate (code simulates the effect of the
infinitesimals — we do not actually use specific
infinitesimals).

5}
)
=
2
o
=
o
p
-
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 10

Our previous works using these techniques

* EPUG-OVERLAY
* Exact. TN _
* Parallel. , R i |

* Uniform Grid. B

* PinMesh

* Exact and efficient point location

* EPLSimp o .

* Map simplification | D >

5}
)
=
=)
o
=
o
p
o
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

* Exact, topologically correct and parallel

GEOINFO 2016 — 3D-EPUG-OVERLAY 11

3D Point Location - PinMesh

* Input:

* A mesh (set of triangles, each one with labels of the region
on 1its positive and negative sides)

* A set of query points

* Objective determine where the query points are.

5}
)
=
=)
o
=
o
p
o
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 12

3D Point Location - PinMesh

* Idea:
* Trace a vertical ray from each point
* Find the lowest triangle above the point

* Use orientation to locate the point

* Techniques:

* Uniform grid: reduce ray-triangle intersection tests.
* Parallel programming: grid creation and queries.

* Rational numbers: exact computation.

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

* Result: PinMesh 1s very efficient and robust

GEOINFO 2016 — 3D-EPUG-OVERLAY 13

2D map overlay algorithm - EPUG-OVERLAY

* Given two polygonal maps, compute their intersection

* Idea:
* Find all intersections using a uniform grid.
* Split edges at intersection points.
* Locate vertices/edges in the other map (using grid).

* Compute output polygons.

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 14

2D map overlay algorithm - EPUG-OVERLAY

* Given two polygonal maps, compute their intersection

* Idea:
* Find all intersections using a uniform grid.
* Split edges at intersection points.
* Locate vertices/edges in the other map (using grid).

* Compute output polygons.

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 15

2D map overlay algorithm - EPUG-OVERLAY

* Given two polygonal maps, compute their intersection

* Idea:
* Find all intersections using a uniform grid.
* Split edges at intersection points.
* Locate vertices/edges in the other map (using grid).

* Compute output polygons.

S ——— ——

i i3 g |is P

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
R
=
-
Z
p
o
o
<
e
=

1 2 3 4 5 * (u,w) divided into 7 segments.
——o ® ® ¢ ® * 5 will be in output.

GEOINFO 2016 — 3D-EPUG-OVERLAY 16

2D map overlay algorithm - EPUG-OVERLAY

* Given two polygonal maps, compute their intersection

* Idea:
* Find all intersections using a uniform grid.
* Split edges at intersection points.
* Locate vertices/edges in the other map (using grid).

* Compute output polygons.
u W
._:' z : z : : ' Case 1: inside polygon 5

i i3 g |is P
&»_ On5
I @0 g

5}
)
=
=
o
=
o
=
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
=
=
-
Z
p
o
o
<
e
=

6N5
— = . = = - 60
1 2 3 4 5 * (u,w) divided into 7 segments.
——o ® ® ¢ ® * 5 will be in output.

GEOINFO 2016 — 3D-EPUG-OVERLAY 17

2D map overlay algorithm - EPUG-OVERLAY

* Given two polygonal maps, compute their intersection

* Idea:
* Find all intersections using a uniform grid.
* Split edges at intersection points.
* Locate vertices/edges in the other map (using grid).

* Compute output polygons.

I ——————
i (2 I3 fla |5 l6 Case 2
(i6,w) — outside other

map

5}
)
=
=
o
=
o
=
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
=
=
-
Z
p
o
o
<
e
=

1 2 3 4 5 * (u,w) divided into 7 segments.
——o ® ® ¢ ® * 5 will be in output.

GEOINFO 2016 — 3D-EPUG-OVERLAY 18

Current work: 3D-EPUG-OVERLAY

* Apply the same techniques, but for 3D mesh intersection
* Rational numbers

“3D maps” represented by a set of triangles

Triangles: left/right objects

3D uniform grid for intersection and point in polygon

Simulation of Simplicity

Algorithm designed to be parallel

Source: Autodesk
Source: Rockworks

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
Z
o
p(
b=
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 19

First step: triangle-triangle intersections

* A 3D uniform grid is created.

* Triangles from both meshes are inserted into the cells their AABB
intersect.

* Cells with “too many” triangles are refined, creating a second level grid.

* Pairs of triangles in each cell are tested for intersection — “Too many” =
number of pairs of triangles.

* Intersection tests: Moller's algorithm for performance.

* Cells do not influence each other — process them in parallel

Red mesh: only one
triangle intersects
green

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
4
o
p(
b=
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 20

Second step: retesselation

* Triangles are, then, split at the intersections.
* Similar to splitting edges in EPUG-OVERLAY.
* Intersection on each triangle — planar subdivision — retriangulation.
* Again, this step can be done in parallel on the triangles.

Red intersecting triangle:
split into 2 polygons — 7 triangles

H

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
Z
o
p(
b=
@)
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 21

Second step: retesselation

* Retesselated mesh: equivalent to the original
* Union of each split triangle is equal to the original triangle
* Non split triangles will also be in retesselated mesh

* After retesselation: intersections will only happen at common
vertices/edges.

Red intersecting triangle:
split into 2 polygons — 7 triangles

H

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
Z
o
p(
b=
@)
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 29

Third step: classification

* Finally, triangles are classified.
* Similar to edge classification in EPUG-OVERLAY.
* Only two basic cases for each triangle t (bounding A,B):
* t outside other mesh — t will not be in the output.
* t inside region R of the other mesh — t will bound RN A and RNB.

Inside green region

Outside green region — bound (Green n Red), exterior

— not in the output

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
Z
o
p(
b=
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 3D-EPUG-OVERLAY 23

Third step: classification

* How to locate a triangle?
* Simple and fast solution: PinMesh

Inside green region

Outside green region — bound (Green n Red), exterior

— not in the output

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
Z
o
p(
b=
@)
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 24

Special cases

* Under development
* Proposed solution: SoS
* SoS was successfully employed in EPUG-OVERLAY
* Idea: translate one of the maps by (E,Ez) — NO0 common
edges/intersection at endpoints
* Example: two coincident polygons — translation (E,Ez) — non
coincident

9
- :
...............':-

(@)

5}
)
=
=
o
=
o
=
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 25

Special cases

* Example: two coincident polygons — translation (E,Ez) — non
coincident
* Intersection computation: two intersections u and v

d

\"/

c

—h

.Illlllllllll.j

\ &
(@

5}
)
=
=
o
=
o
p
o
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 26

Special cases

* Example: two coincident polygons — translation (E,Ez) — non

coincident
* Intersection computation: two intersections u and v
* Retesselation: a-d split into a-u, u-d
* Classification:

* a-u 1s outside the other polygon — not in output

* u-d is inside the other polygon — u-d in the output

* u-d will bound the interior and the exterior of the output polygon

d

\'"/

c

—h

.Illlllllllll.j

\ &
(@]

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 27

Special cases

* Example: two coincident polygons — translation (E,Ez) — non

coincident
* Intersection computation: two intersections u and v
* Retesselation: a-d split into a-u, u-d
* Classification:

* a-u 1s outside the other polygon — not in output

* u-d is inside the other polygon — u-d in the output

* u-d will bound the interior and the exterior of the output polygon

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 28

Special cases

* Example: two coincident polygons — translation (E,Ez) — non
coincident
* But... a-b-c-d is equal to e-f-g-h
* u-f-v-d should also represent the same polygon!
* The translation is only conceptual! It only affects the conditionals
* u=a=e and v=c=g — the polygons are the same!

5}
)
=
=
o
=
o
=
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 29

Special cases

é * In PinMesh we also employ a similar idea: all the query points are
S translated by (8,82,83)

5 * We believe this same perturbation scheme will be suitable for
E intersecting 3D meshes.

=

=

=

&)

a e

g a ? ------------------------- ..

5 : U d L Hu

3 f f

= O S,/ W S S
=

= o) C

Z

e

O

=

4

&

GEOINFO 2016 — 3D-EPUG-OVERLAY 30

Example of result

* Intersection of two big meshes from AIM@SHAPE:
* Ramesses: 1.7 million triangles
* Neptune: 4 million triangles

I\

GEOINFO 2016 — 3D-EPUG-OVERLAY 31

7))
=
=
-
o
=
O
—
-
ot
=
=
)
=
O
=2
en
=
O
4
o
p—
ot
o
-
AN
-
=
ot
Z
p—
-
O
<
o
=

EXACT INTERSECTION OF 3D GEOMETRIC MODELS

Example of result

* Hard to process triangles — roundoft errors

GEOINFO 2016 — 3D-EPUG-OVERLAY

EXACT INTERSECTION OF 3D GEOMETRIC MODELS

Example of result

* Hard to process triangles — roundoft errors

EXACT INTERSECTION OF 3D GEOMETRIC MODELS

Example of result

* Hard to process triangles — roundoft errors

Current work

* Employ techniques successfully applied in our previous works.

* This algorithm —few data dependency —very parallelizable.
* Uniform grid creation: edges in parallel.
* Locate vertices in polyhedra.
* Compute intersections: cells in parallel.
* Compute output triangles: process input triangles in parallel.

* Most of computers: multicore — OpenMP. isE ok 7 fiiokh

5}
)
=
=
o
=
o
p
o
b=
=
=
Q
=
&
=
e
=
=)
4
o
p(
b=
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 35

Conclusions

* 3D-EPUG-OVERLAY
* Exact
* Parallel
* Uniform grid

* Part of a bigger project
* Exact and parallel geometric algorithms
* Applications in GIS, CAD and AM

* Ongoing/future work
* SoS perturbation scheme
* Code optimizations
* Application of these 1deas to other algorithms

5}
)
=
=
o
=
o
p
o
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 36

Thank you!

Polygon 3

9!
—
=
2
o
=
O
e
-
i
=
=
O
=
&
-
e
=
O
4
o
e
ot
o
=
N
-
=
ot
4
pu
-
o
<
o
=

P1 P1e Polygon 2 Poly. 4
F
A 2 Bl EY
P2 :
Polygon 1 "ip3e iip“
P3 Pa

GEOINFO 2016 — 3D-EPUG-OVERLAY 37

Simulation of Simplicity

* Example: how to check if a point g 1s directly “below” the interior of a
triangle #?
e Project g and 7 to z=0, check if ¢'1s mside 7’ (also check g).

« Is q'inside t'? — barycentric coordinates — 0 <A <1 fori=1,2and 3 ?

(t}, = 15) X (g, — 1y,) + (13, = 11) X (¢}, — 1))

An =
0 det
(1, = 1o,) X (g = 15,) + (f5, — 15) X (g}, — 1))
A =
det
L=1-2 -1

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 38

Simulation of Simplicity

* Degeneracies: det = 0 — vertical triangle
« Point on boundary of#' (4. = 0or 1).

e S0S — q(xyz) — q (xtey+e'zte), q'(xy) — q' (x+ey+e)
« q' will never be on a vertex or edge of t'.
« ¢'1s not on vertex/edge — ¢’ 1s also not on vertex/edge

(infinitesimal).
e ¢'1s on vertex/edge — ¢’ 1s not on vertex/edge (infinitesimal/slope).

« Ex: g'1s on an edge — ¢’ cannot be on the same edge (slope would

be infinitesimal)

5}
)
=
2
o
=
o
=
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 39

Simulation of Simplicity

* SoS implementation:
« ¢ will never be on a vertex or edge of t' — 1f det=0 — false

« Replace ¢’ with ¢’

(ty, = 1) X (g, — 1) + (5, = 17,) X (g}, = 1))

An =
0 det
(1, = 1o,) X (g = 15,) + (f5, — 15) X (g}, — 1))
A =
det
b=1-1 -4

5}
)
=
=
o
=
o
p
o
[
=
=
Q
=
&
=
e
=
=)
4
o
p(
[
o
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 40

Simulation of Simplicity

* SoS implementation:
« ¢ will never be on a vertex or edge of t' — 1f det=0 — false

° Replace q "with q ’8 — }\‘i with }\‘81'
« BEgiis 0<4 ?
o 1,# 0 — check 7

e L =0 — check ¢ -t
0 1y 2y
e t' -t' =0 —check ¢t' -¢
Iy 2y 2 Ix
° 2
Both can't be 0. . . (r’iy — téy) Xe+ (1, —1)Xe
= A
0 det
’ ’ ’ ’ 2
. . +(t2 —toy)xe+(t0x—t2x)><e
€] — 1

det

5}
)
=
2
o
=
o
p
-
[
=
=
O
=
&
=
e
=
O
Z
o
p(
[
O
=
75!
-
=
-
Z
p
o
o
<
e
=

GEOINFO 2016 — 3D-EPUG-OVERLAY 41

