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ABSTRACT
We use an O(n log(n)) quadtree-forest algorithm to compute
approximate horizons at all points of a DEM, and achieve
more than 30 times speedup on a GPU. The result of the
algorithm is very close to that of the brute-force algorithm.

1. INTRODUCTION
Given a terrain represented as a Digital Elevation Map
(DEM), the horizon at a point is the largest elevation angle
to another point in all directions. To save time and space, the
horizon can be approximated as a constant value in each of
a number of sectors. Approximate horizons at all points of a
terrain are useful in shading, visibility, and solar irradiation
applications. For example, they can be used to render a
shaded terrain with any sky radiance function [3]. They can
be used to compute the occlusion regions of terrain quads
for visibility culling [2]. And they can be used to estimate
the global solar irradiance at all points of the terrain [4].

Stewart [3] proposed an O(sn log2(n)) algorithm to compute
approximate horizons at all points of a terrain, where s is
the number of horizon sectors and n is the number of terrain
points. The algorithm approximates the horizon of a point by
the highest point in each sector, and computes the horizons
of all points sector by sector. It is parallel for the sectors
and sequential for each sector, and not ideal for massively-
parallel architectures like the GPU. Tabik et al. [4] proposed
a parallel horizon algorithm for large terrains. It divides a
terrain into blocks, computes ‘near’ horizons for each block
using Stewart’s algorithm, and computes ‘far’ horizons on
a lower-resolution terrain using Stewart’s algorithm. The
blocks can be processed on multiple compute nodes and the
sectors of a block can be processed on multiple compute cores.
How to process a block on the GPU remains a problem.

This paper uses the brute-force algorithm and a quadtree-
forest algorithm to compute approximate horizons on a GPU.
The second algorithm is inspired by the Barnes-Hut algorithm
for N-body simulation [1]. The algorithm divides the space
in an octree such that each leaf node contains at most one
body, and stores in each internal node the center of mass
and total mass of the group of bodies. To approximate the
gravitational force on a body, it recursively traverses the
tree from the root. Let w be the width of an internal node
and d be the distance between the body and the node’s
center of mass. If w/d is less than a threshold θ, the node is
treated as a single body, otherwise the children of the node
are examined. It takes O(logn) time to compute the force
on one body and O(n logn) time on all bodies.

2. BRUTE-FORCE ALGORITHM
Stewart defined the approximate horizon as follows: At each
point, divide the terrain into s sectors ([0, 2π/s], [2π/s, 4π/s],
. . . ) and project the points in each sector onto a vertical
plane through the bisector. The approximate horizon of
the point in a sector is the largest elevation angle from the

point to a projected point on the vertical plane. Therefore,
the approximate horizon is constant in each sector. Stewart
showed it is better to consider all points in a sector than
points in a single direction for terrains with sharp spikes.

The brute-force algorithm computes the horizon of each point
using each other point. The algorithm is slow but GPU-
friendly, because each horizon is computed independently.
We define the sectors as [0, 2π/s), [2π/s, 4π/s), . . . and do
not project the points in a sector onto a vertical plane, which
is required for Stewart’s algorithm but not for the brute-
force algorithm. If the sectors are narrow, they may not
contain a point until some distance, causing the horizon to
be underestimated. Stewart solved the problem by checking
a fixed number of points bordering a sector near the sector
vertex. The number of bordering points is about s/π (s/2π
on one side). We deal with the problem by checking s/2π
points whose cells are intersected by the bisector. Only
boundary points have undefined horizons, which can be set
to 0 for rendering. The complexity of the algorithm is O(n2),
where n is the number of points.

Algorithm 1: Brute-force algorithm

Data: a DEM
Result: approximate horizons at all points
foreach point p do

foreach sector s do
foreach point q of a fixed number of points along the
bisector of s do

update the horizon of p in s using q;

foreach point q do
find the sector s of p containing q;
update the horizon of p in s using q;

3. QUADTREE-FOREST ALGORITHM
The quadtree-forest algorithm uses quadtrees to approximate
individual points like the 2D Barnes-Hut algorithm. The
algorithm divides the terrain into blocks and constructs a
largest-value quadtree for each block. To compute the horizon
of a point, it recursively traverses each quadtree and visits
the children of an internal node if w/d > θ. A fixed-sized
stack is used to simulate recursion on the GPU. The reason
for using a quadtree forest instead of a quadtree is twofold:
the first few levels of a quadtree would not be used as points,
and a higher tree would require a larger stack and more stack
operations. The algorithm builds the quadtrees in O(n) time
and computes the horizons in O(n log(n)) time.

4. RESULTS
The algorithms are implemented in C++ as sequential pro-
grams on the CPU and CUDA programs on the GPU. The
hardware includes an Intel Xeon E5-2660 v4 CPU and an
NVIDIA GeForce GTX 1080 GPU. A 1024 × 1024 DEM is
used as the data, and the result horizons have 64 sectors. Ta-



Algorithm 2: Quadtree-forest algorithm

Data: a DEM
Result: approximate horizons at all points
divide the DEM into blocks and create a largest-value
quadtree for each block;
foreach point p do

foreach sector s do
foreach point q of a fixed number of points along the
bisector of s do

update the horizon of p in s using q;

foreach quadtree t do
push the root of t onto a stack;
while the stack is not empty do

pop a node n from the stack;
foreach child c of n do

if c is not a leaf and w/d > θ then
push c onto the stack;

else
find the sector s of p containing the
center of c;
update the horizon of p in s using the
center of c;

Table 1: θ, running time (seconds), and accuracy
(radians) of the quadtree-forest algorithm. Accuracy
is the average absolute difference between the result
and the result of the brute-force algorithm.

θ Sequential time CUDA time Accuracy

0.2 125 3.82 0.012
0.1 334 9.35 0.005
0.05 997 27.9 0.002

ble 1 shows θ and the running time (excluding file I/O) and
accuracy of the quadtree-forest algorithm. When θ = 0.1,
the average absolute difference between the result and that
of the brute-force algorithm is only 0.005 radians. Figure 1
shows block width (32, 64, . . . , 1024) and the running time
(excluding file I/O) of the quadtree-forest algorithm. The
sequential program does not benefit from a quadtree-forest,
but the CUDA program runs faster as block width decreases
to 64. Table 2 shows the running time (excluding file I/O)
and relative speedup of the brute-force algorithm and the
quadtree-forest algorithm (θ = 0.1 and block width = 1024
for the sequential program or 64 for the CUDA program).
The quadtree-forest algorithm is significantly faster on both
the CPU and the GPU. Figure 2 shows the relative area of
the visible sky, calculated from the approximate horizon, at
all points of the DEM.

5. CONCLUSIONS
We use a quadtree-forest algorithm to compute approximate
horizons at all points of a DEM. The algorithm is not only
faster but also more suitable for the GPU than some existing

Table 2: Running time (seconds) and relative
speedup of the algorithms.

Algorithm Sequential time CUDA time Speedup

Brute force 55278 984 56.1
Quadtree forest 334 9.34 35.7
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Figure 1: Block width and running time (seconds)
of the quadtree-forest algorithm.
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Figure 2: Relative area of the visible sky.

algorithms. We will look for alternative algorithms and
applications of the approximate horizon.
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