
10/27/16 FWCG 2016 1

October 27-28, 2016
CUNY Graduate Center

New York, NY

Computing approximate horizons on a GPU

Wenli Li, W. Randolph Franklin, Salles V. G. Magalhães
Rensselaer Polytechnic Institute, Troy, NY, USA

liw9@rpi.edu, mail@wrfranklin.org, vianas2@rpi.edu

mailto:liw9@rpi.edu
mailto:mail@wrfranklin.org
mailto:vianas2@rpi.edu

10/27/16 FWCG 2016 2

Introduction

● Digital Elevation Model (DEM)

● Horizon: largest elevation angle

10/27/16 FWCG 2016 3

References

● [Ste98] A. J. Stewart. Fast horizon computation at all points
of a terrain with visibility and shading applications. IEEE
Transactions on Visualization and Computer Graphics,
4(1):82–93, Mar. 1998.

● [TRZ11] S. Tabik, L. F. Romero, and E. L. Zapata. High-
performance three-horizon composition algorithm for large-
scale terrains. International Journal of Geographical
Information Science, 25(4):541–555, Apr. 2011.

● [BH86] J. Barnes and P. Hut. A hierarchical O(N log N)
force-calculation algorithm. Nature, 324:446–449, Dec.
1986.

10/27/16 FWCG 2016 4

Motivation

● Approximate horizon:
constant in each sector

● Applications: shading,
visibility [Ste98], solar
irradiance [TRZ11]

 3 2
4 1
5 8
 6 7

P

10/27/16 FWCG 2016 5

Motivation
● Stewart's algorithm: O(snlog2(n))

– s sectors and n points

– Approximate the horizon by the largest elevation
angle in each sector

– Parallel for the sectors and sequential for each sector
● Tabik et al.'s algorithm: dividing a terrain into blocks and

using Stewart's algorithm

– Compute “near” horizons for each block

– Compute “far” horizons on a lower-resolution terrain

– Parallel for the blocks and the sectors of a block

10/27/16 FWCG 2016 6

Motivation
● Barnes-Hut algorithm: O(nlog(n))

– N-body simulation

– Divide the space in an octree and store the
center of mass and total mass in each
internal node

– Recursively traverse the tree to
approximate the gravitational force on a
body

– Treat an internal node as a single body if
w/d < θ

● w: width of the node
● d: distance between the body and the

node's center of mass

http://insidehpc.com/2015/05
/direct-n-body-simulation/

http://15418.courses.cs.cmu
.edu/spring2013/article/18

http://insidehpc.com/2015/05/direct-n-body-simulation/
http://insidehpc.com/2015/05/direct-n-body-simulation/
http://15418.courses.cs.cmu.edu/spring2013/article/18
http://15418.courses.cs.cmu.edu/spring2013/article/18

10/27/16 FWCG 2016 7

GPU-friendly algorithms

● Brute-force algorithm: O(n2)

foreach point p do

 foreach point q do

 find the sector s of p containing q;

 update the horizon of p in s using q;

● Narrow sectors [Ste98]

– Underestimate the horizon

10/27/16 FWCG 2016 8

GPU-friendly algorithms
● Narrow sectors

– Stewart's solution: checking about s/2π bordering points on each side

– Our solution: checking s/2π points along the bisector
● Brute-force algorithm

foreach point p do

 foreach sector s do

 foreach point q of a few points along the bisector do

 update the horizon of p in s using q;

 foreach point q do

 find the sector s of p containing q;

 update the horizon of p in s using q;

10/27/16 FWCG 2016 9

GPU-friendly algorithms
● Quadtree-forest algorithm: O(nlog(n))

– Like a 2D Barnes-Hut algorithm

– Divide a terrain into blocks and build a largest-value
quadtree for each block

– Recursively traverses each quadtree to compute a horizon

– Use a fixed-sized stack to simulate recursion on the GPU

– Use a quadtree-forest instead of a quadtree
● First few levels of a quadtree are not treated as points
● Higher trees require a larger stack and more stack

operations

10/27/16 FWCG 2016 10

GPU-friendly algorithms
● Quadtree-forest algorithm

divide the terrain into blocks and build a quadtree for each block;

foreach point p do

 foreach sector s do

 foreach point q of a few points along the bisector do

 update the horizon of p in s using q;

 foreach quadtree t do

 push the root of t on stack;

 while the stack is not empty do

 pull a node n from stack;

 foreach child c of n do

 if c is not a leaf and w/d > θ then

 push c on stack;

 else

 find the sector s of p containing c;

 update the horizon of p in s using c;

if n is not a leaf and w/d > θ then
foreach child c of n do

push c on stack;
else

find the sector s of p containing n;
update the horizon p in s using n;

10/27/16 FWCG 2016 11

Results
● Implementations

– Sequential programs on CPU

– CUDA programs on GPU
● Hardware

– Intel Xeon E5-2660 v4 CPU

– NVIDIA GeForce GTX 1080 GPU
● Dataset: 1024x1024 DEM

– 10-meter resolution

– [274.7, 1846.8]-meter range

– 64 sectors

10/27/16 FWCG 2016 12

Results

● θ, running time, and accuracy of the quadtree-forest
algorithm

● Block width and running time of the quadtree-forest
algorithm (θ = 0.1)

10/27/16 FWCG 2016 13

Results

● Running time and relative speedup of the programs

– Quadtree-forest algorithm: θ = 0.1
● Sequential program: block width = 1024
● CUDA program: block width = 64

Algorithm Sequential time CUDA time Speedup

Brute force 55278 984 56

Quadtree forest 334 9 36

10/27/16 FWCG 2016 14

Conclusions
● Conclusions

– The quadtree-forest algorithm is asymptotically faster and more
suitable for the GPU

– The result of the quadtree-forest algorithm is very close to that
of the brute-force algorithm

● Future work

– O(n) algorithm?
● W. Dehnen. A hierarchical O(N) force-calculation algorithm.

Journal of Computational Physics, 179(1):27–42, Jun. 2002.
– Applications of approximate horizons

10/27/16 FWCG 2016 15

Thank you

● Visible sky area ● Casting shadows

This research was partially supported by NSF grant IIS-1117277 and
CAPES (Ciência sem Fronteiras).

