An efficient map-reduce algorithm for spatio-temporal
analysis using Spark (GIS Cup)

Salles Viana Gomes
Magalhaes
Univ. Federal de Vigosa
Vigosa, MG, Brazil
salles@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.
Troy, NY, USA
mail@wrfranklin.org

Wenli Li
Rensselaer Polytechnic Inst.
Troy, NY, USA
liw9@rpi.edu

Marcus Vinicius Alvim
Andrade
Univ. Federal de Vigosa
Vicosa, MG, Brazil
marcus@ufv.br

ABSTRACT

We present an efficient parallel algorithm for performing
spatio-temporal analysis in a Spark cluster. It divides the
spatio-temporal cube into partitions and uses these parti-
tions as the elements of the Spark Resilient Distributed
Datasets (RDDs). As aresult, data presents a better locality
and the overheads are smaller than the overheads observed
when single cells are used as elements of the RDDs. When
used to find hotspots in the NYC Yellowcab data, our algo-
rithm is up to 52 times faster than algorithms using single
cells RDDs.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations

General Terms
Algorithms, Experimentation, Performance

Keywords

Big data, spatio-temporal analysis, distributed processing

1. INTRODUCTION

The availability of big datasets due to advances in data col-
lecting techniques allows the computation of several kinds of
spatio-temporal analysis, with applications in crime avoid-
ance, marketing, traffic modeling, etc. However, while the
amount of information increases (and, consequently, the qual-
ity of the analysis improves) the processing of the data be-
comes harder. Thus, it is important to develop techniques
to efficiently process information.

An example of big dataset is the New York City Taxi and
Limousine Commission Yellow Cab trip data [5], containing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
(©2016 ACM ISBN 978-1-4503-4589-7/16/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2996913.3004062

information about taxi trips in New York City (NYC). Each
record in this dataset represents one taxi trip in NYC and
contains information such as the length of the trip, the num-
ber of passengers, and the pickup and drop-off locations and
times.

The public availability of this dataset, its size (more than one
billion records), and the importance of NYC public trans-
portation make the Yellow Cab trip data particularly inter-
esting for analysis. For example, Salnikov et al. [7] presented
a study where this dataset is analyzed and the costs of taxi
trips are compared with the estimated costs of similar Uber
trips. Ferreira et al. [3] presented a model that allows users
to visually analyze the NYC taxi trip dataset.

In the ACM GISCUP 2016 programming competition [9],
the organizers proposed the development of efficient algo-
rithms for performing hot-spot analysis on the NYC taxi trip
data. The objective is to develop a map-reduce algorithm
that can run on a Spark cluster to quickly (and accurately)
find the 50 most statistically significant hot-spots (in both
time and space) according to the G} statistic[6].

2. THE PROBLEM

The objective is to process the NYC taxi records, to aggre-
gate the drop-offs into cells according to their time and geo-
graphic coordinates. One drop-off may involve several pas-
sengers. Define an event to be one passenger being dropped
off. Since the data may be noisy, the events are filtered to
remove events outside a time bound or outside a bounding-
box encompassing the five New York City boroughs.

The filtering bounding-box defines a spatio-temporal cube,
which is partitioned into cells with given dimensions (the
spatial dimensions are given in degrees and the temporal is
given in days). The events are then aggregated into these
cells.

After the aggregation, each spatio-temporal cell ¢ should
store the count c; of the number of events in that cell. Based
on the counts stored in each cell and on statistics such as
the average number of events per cell, the G} statistic (a z-

score) of each cell i is computed using Equation 1. The cells
with highest G} scores will represent the hot-spots while the
cells with lowest scores will be the cold-spots.

Z;-Lzl W;,jCj — 52?21 Wy, 5

Gi = 2 2 1)
ny n_ w? —(zn wi, ;)
S\/ j=1 .7n71 j=1 J

c= i G and S =y ==t _ g (2)
n n

In the above equations, n is the total number of cells in the
area of analysis and w;,; is the weight between two cells ¢
and j. The analysis proposed by the GISCUP competition
organizers [9] sets w;,; to a constant, say w; ; = 1, when the
cells are neighbors in the L°°-norm, and 0 otherwise. Two
cells are considered neighbors iff the maximum distance be-
tween 7 and j in any of the 3 coordinates (longitude, latitude
and time) < 1. A cell is also its own neighbor.

Let v; be the number of neighbors of cell i. Then v; = 27
for cells in the interior of the cube, and 8, 12, or 18 for cells
on the boundary. Let
g; = Z Wi,5C5
j=1

i.e., the number of events in a 3 x 3 x 3 box centered on
cell 4. This is the only term of Equation 1 that depends
on the number of events in cell . The other terms depend
only on statistics about the input data (such as average and
standard deviation of the number of events in each cell),
or on v;. Thus, the main challenge for computing G; is
computing o;, G; can be computed as follows.

o; — CU;
2

S nv; —v;

n—1

G =

3. MAPREDUCE AND SPARK

MapReduce is a parallel programming model that has re-
cently been used in architectures ranging from multi-core
computers to GPUs and clusters. The concept has been ob-
vious for decades; the Thinking Machines CM-2 Connection
Machine implemented parallel reduction in 1990 [8].

Applications that can be modeled using MapReduce usually
share a common pattern: they require a series of operations
that can be performed independently (map), followed by an
operation that combines the individual results (reduce) [2].

The main advantage of this model is that it abstracts and
simplifies the development of parallel applications. As a
result, it has been recently used to not only allow the devel-
opment of efficient parallel algorithms but also to improve
the productivity of the programmers, who do not need to
directly deal with low-level details inherent of the different
parallel programming architectures. For example, the de-
velopment of parallel algorithms for CUDA-enabled GPUs
can be simplified using the Thrust library [4], that uses sev-
eral MapReduce concepts to abstract the development of
these algorithms. Another advantage of this abstraction is
the interoperability: algorithms implemented using Thrust

can not only be compiled for GPUs but also for multi-core
computers, two completely different architectures.

In fact because of its modest size, cloud-based techniques
are not necessary to process this dataset. The 1,000,000,000
drop-off events in the complete 7 year dataset (of which this
contest used only one year), if encoded into binary at 6 bytes
per event, would fit into the 32GB main memory of a high-
end multi-core laptop. Then the G scores could be calcu-
lated in parallel with Thrust using OpenMP as a backend.
By far the slowest part of the process would be reading the
200GB of ASCII files to extract the drop-off data. The ac-
tual statistical computation would be relatively trivial. Nev-
ertheless, a distributed file system would improve the per-
formance. Also, for datasets too large to fit even into the
2TB main memory of a serious compute server, a distributed
architecture like Apache Spark would be required.

“Apache Spark is a fast and general-purpose cluster comput-
ing system” [1]. It provides APIs in languages such as Java
and Scala for the development of Map-Reduce applications.
By presenting an efficient processing engine and performing
in-memory computation, Spark’s applications can usually
present good performance and scalability.

The most important concept in Spark is the RDD - Resilient
Distributed Dataset, a distributed data structure that ab-
stracts a dataset stored across the Spark cluster. It can be
created, for example, from an input dataset stored in HDFS
(a distributed file system). Furthermore, RDDs can be cre-
ated from transformations of other RDDs. For example, if a
RDD A stores integers and a transformation (mapping) op-
eration is performed such that each integer is squared, then
the square operation will be applied in parallel to all ele-
ments from A and a new RDD B will be created such that
the elements in B represents the elements in A squared.

RDDs also support actions, i.e., operations that return a
single value (instead of a new RDD). Example of these op-
erations are counting the number of elements in the dataset
or performing a reduction operation (such as finding the
maximum element).

Finally, it is possible to create RDDs of key-value pairs.
These special datasets support some operations such as the
reduce by key transformation that uses a reduction operation
to aggregate values sharing the same key. The algorithms
presented in this paper use several of these functions to ef-
ficiently compute the hot-spots.

4. OUR SOLUTIONS
4.1 Simple MapReduce solution

After many preliminary experiments testing assorted data
structures and algorithms, we developed the following MapRe-
duce algorithm using Java and Spark:

1. Read the input file from HDFS, compute the cell co-
ordinates of each drop-off, and create a RDD con-
taining (¢,x,y) as key and numPassenger as value.
(t,z,y) represents the cell coordinates of the drop-
off and numPassenger is the number of passengers
dropped off at that event.

2. Perform a reduction by key operation to create a RDD
counts. In this RDD, for each key (coordinates (¢, x,y))
the value will be the total number of events at that co-
ordinate (count).

3. Compute statistics such as the average and standard
deviation of the number of events in each cell using the
previous RDD.

4. Create a new RDD by generating 27 versions of each
cell i = ((¢, z,y), count), each with the same count, but
the following various coordinates ((t + dt,z + dz,y +
dy), count), for dt = —1..1,dz = —1..1,dy = —1..1.

5. Reduce this new RDD by key, creating an RDD
sumNeigh that will contain, for each cell ¢, o;, the
sum of the number of events in the neighbors of .

6. Finally, from the statistics in step 3, compute the G}
score of each cell in the RDD sumNeigh and write the
cells with highest scores to the output.

Several optimizations were performed to improve the algo-
rithm’s performance. First, a typical algorithm implemented
in Java or Scala usually parses the input dataset by using
the Spark function map to transform each line of the input
into a parsed object. The drawback of this solution is that it
is necessary to allocate one parser object for each input line.
For performance, we used the mapPartitions function, that
allows the re-use of the parser in all lines of a RDD partition.
Furthermore, we implemented a custom parser specifically
designed to parse the Taxi trip data. One of the advantages
of this custom class is that it does not create wrapper Java
objects (Integers or Doubles) such as the default java parser
does. Our parser, instead, uses primitive types (such as ints
and doubles) that are faster and uses less memory.

Second, custom classes were created to represent all the data
required by our algorithm. For example, the coordinate of
cells could be represented using a Tuple3<Integer,Integer,
Integer> (available in the Spark API) but, instead, we cre-
ated a custom class storing 3 primitive ints. The Tuple3
object needs 3 pointers to reference the Integer wrappers
it stores (the memory used by the pointers will usually be
larger than the memory used to store the contents of the
tuple), while our custom class does not need any pointer.

Third, if the size of the spatio-temporal cube is small enough,
we optimized by representing each coordinate triple with
one 4-byte integer, instead of with three integers. Since
a single integer can represent 2 billion different numbers
(ignoring negative numbers), if the grid resolution is, say,
36 x 2000 x 2000 any cell in this grid can be uniquely rep-
resented using a single integer. This strategy not only saves
space but also makes the algorithm faster. Indeed, compar-
ing two cells keyed by an integer is faster than comparing
two cells with keys represented by 3 coordinates.

Finally, several configuration parameters present in Spark
were used to try to improve the performance. For exam-
ple, the Kryo serializer [1] was employed to serialize objects
faster than the Java default serializer. Furthermore, the
hash shuffler [1] was employed to partition the data when
information needs to be shuffled across the cluster.

4.2 TImproved solution

Preliminary experiments showed that the bottlenecks of the
above algorithm are the fourth and fifth steps, where a list
with size equal to approximately 27 times the number of
cells in the spatio-temporal cube is created and reduced by
key.

We developed an improved version of the previous algorithm,
which tries to accelerate this process by storing, as elements
of the RDDs, a matrix representing a partition of the spatio-
temporal cube. Figures 1, 2 and 3 illustrate this strategy
for representing the number of events in each cell (shown in
2D for simplicity): in the algorithm described in Section 4.1
(Figure 2), each element of the RDD represents a cell of the
spatio-temporal cube while in this new strategy (Figure 3)
each element represents a partition of the cube.

This strategy has several advantages. First, it is more com-
pact and has less overhead. Instead of explicitly storing the
coordinates of each cell, only the coordinate of the partition
of the cube is stored explicitly. Second, since each element of
the RDD stores a partition of the cube (with several cells),
the RDDs will have fewer elements (but each element will
be larger).

Finally, and most importantly, o; can be computed faster.
Since the neighbors of most of the cells are stored in the same
element, a RDD representing sumNeigh can be created by
simply processing the partitions of the spatio-temporal cube,
and for each partition, adding (locally) the count in each
cell to its 27 neighbors (most of the neighbors will be in
the same matrix). The only special case that needs to be
treated are the cells on the boundary of the partition. Since
these cells will have some neighbors in other partitions, an
aggregation operation will be necessary to add the count of
these boundary cells to some of their neighbors.

5. EXPERIMENTS

We performed experiments with a Spark cluster created on
Amazon EC2, using an instance of 25 m2.2zlarge nodes.
Each node is composed of a 4 virtual CPUs, 34.2 GB of
RAM and a 850 GB rotational hard drive.

In these experiments, the same dataset used to evaluate so-
lutions in the GISCUP contest was processed. More specif-
ically, the whole taxi data for 2015 (containing about 150
million records) was stored in HDFS, and our algorithms
were employed to compute the hot-spots considering differ-
ent spatial and temporal resolutions.

Table 1 presents the results (all times are in seconds). Col-
umn Spat. size and Time size are, respectively, the spatial
(in degrees) and temporal (in days) size of the grid cells.
E.g., a cell with width 0.0001 degrees represents an 8x11
meter rectangle.

Column Simple presents the time obtained by our simplest
algorithm (described in section 4.1) using Spark’s default
configuration. The other algorithms are described by the
combination of the following optimizations employed in the
implementation:

e K: the Kryo serializer was employed instead of the
standard Java serializer.

(0,0),2;(1,0),4;(2,0),2;(3,0),1;(4,0),9;(5,0),4;(1,0),1; ...

327|817

21319 9.3 Figure 2: Each element represents a cell
4541110

938|721 9 38 721 327 817
124127 7 (0,0),|1 2 4|;(1,0),12 7 71;(0,1),J2 1.3{;(1,1),]9 9 3
242|194 242 194 454 110

Figure 1: Spatio-temporal grid

Table 1: Running-times (in seconds) for different combina-
tions of techniques to accelerate the hot-spot analysis and
for different resolutions of the spatio-temporal cube

Spat. Time Algorithm
size size Simple K+4+H K+4+H+C K+H+CP
0.01 30 18 20 19 21
0.01 7 18 20 19 19
0.01 1 26 20 20 19
0.001 30 20 20 19 25
0.001 7 27 23 22 22
0.001 1 37 27 24 24
0.0003 30 39 27 22 28
0.0003 7 65 42 25 25
0.0003 1 114 70 51 33
0.0001 30 84 61 30 25
0.0001 7 321 212 49 27
0.0001 1 675 455 - 33
0.00005 30 229 147 45 28
0.00005 7 1102 712 - 31
0.00005 1 1921 1318 - 37

e H: the Hash shuffler was employed instead of the de-
fault shuffler.

e C: the coordinates of the cells were coded together in a
single integer. A dash shows when this was not possible
because there were more than 23! cells.

e CP: the spatio-temporal cube was partitioned and each
element of the RDDs stored a partition of the cube
(instead of a single cell). Based on preliminary exper-
iments we always used partitions with 10% cells.

As can be seen, the first three algorithms in the Table 1 work
well for lower resolution grids (since, in these situations, the
RDDs contain few elements and, thus, I/O dominates the
time). However, as the resolution increases the difference
between the different versions of the algorithms increases
and the more sophisticated algorithm that uses as elements
of the RDDs, partitions, the spatio-temporal cubes becomes
much faster than the other ones, being up to 52 times faster
than the simplest algorithm.

Considering the algorithms that use single cells as the ele-
ments of the RDDs (first 3 algorithms on Table 1), in gen-
eral, the fastest one is the one that codes the coordinates in
single integers. This can be explained because this represen-
tation is more compact than the representation that stores
the 3 coordinates in separate integers (and, therefore, uses 3

Figure 3: Each element represents a partition of the cube (matrix in 2D)

times more space to represent the coordinates than to store
the integer representing the number of events in each cell).
Besides being more compact, comparison and hashing op-
erations can be performed faster on single integers than on
triples of integers.

It is also interesting to observe that the simplest algorithm
can be easily improved by simply changing some Spark con-
figurations. Indeed, the use of a hash shuffler associated
with the Kryo serializer reduced the processing time of the
simple algorithm in up to 36%.

6. CONCLUSIONS

We have presented efficient map-reduce algorithms for per-
forming hot-spot analysis on the New York Taxi dataset.
Initially, we developed a simple map-reduce algorithm, and
then employed a series of techniques to further improve this
algorithm. As a result, we achieved a speedup of up to 52
times over the simplest algorithm for the highest resolution
grid evaluated.

Acknowledgment
This research was partially supported by NSF grant IIS-
1117277, by CAPES (Ciencia sem Fronteiras) and FAPEMIG.

7. REFERENCES

[1] Apache. Spark - lightning-fast cluster computing.
https://spark.apache.org/ (accessed on Sep-2016).

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107-113,
Jan. 2008.

[3] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva.
Visual exploration of big spatio-temporal urban data: A
study of new york city taxi trips. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2149-2158,
Dec. 2013.

[4] J. Hoberock and N. Bell. Thrust: A parallel template
library, 2010. Version 1.7.0.

[6] NYC Taxi and Limousine Commission. TLC trip record
data. http://www.nyc.gov/html/tlc (accessed on Sep-2016).

[6] J. K. Ord and A. Getis. Local spatial autocorrelation
statistics: distributional issues and an application.
Geographical analysis, 27(4):286-306, 1995.

[7] V. Salnikov, R. Lambiotte, A. Noulas, and C. Mascolo.
Openstreetcab: Exploiting taxi mobility patterns in new
york city to reduce commuter costs. CoRR, abs/1503.03021,
2015.

[8] Thinking Machines Corp. Connection Machine Model CM-2
Technical Summary, version 6.0, Nov. 1990.
http://people.csail.mit.edu/bradley/cmbdocs/nov06/
ConnectionMachineModelCM-2TechnicalSummary.pdf.

[9] R. R. Vatsavai, E. Hoel, M. Werner, R. Whitman, and
M. Park. GISCUP - ACM SIGSPATIAL CUP 2016.
http://sigspatial2016.sigspatial.org/giscup2016 /home
(accessed on Sept—2016).

