
An efficient map-reduce algorithm for spatio-temporal analysis using Spark

Rensselaer Polytechnic Institute
Universidade Federal de Viçosa

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

An efficient map-reduce algorithm for
spatio-temporal analysis using Spark

(GIS Cup)

Prof. Dr. W Randolph Franklin, RPI
Salles Viana Gomes de Magalhães, PhD. Student

Wenli Li, PhD. Student
Prof. Dr. Marcus V. A. Andrade, UFV

2An efficient map-reduce algorithm for spatio-temporal analysis using Spark

NYC taxi trip dataset
● NYC Taxi and Limousine Commission (TLC)
● > 1 billion records
● Since 2009

● Several CSV files containing:
● Drop-off lat/long/time
● Pick-up lat/long/time
● Number of passengers
● Trip distance
● Fare
● Payment type
● Tolls
● Etc.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Source: http://www.nyc.gov

3An efficient map-reduce algorithm for spatio-temporal analysis using Spark

NYC taxi trip dataset
● Big amount of information → many possibilities of analysis

● Example:
● What is the average price of trips from JFK to LGA?
● Is the most used type of payment different for different

neighborhoods/days/hours?
● What is the most frequent destination from Penn Station?
● Hotspots for full taxis?

● Some interesting observations (2015 dataset).
● Most frequent fare: $7.80 (3,804,101 times)
● 195 trips cost more than $1,000

(noise?)
● # trips costing (0,$1] : 35,893
● Average # of passengers per trip: 1.6

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Source: http://www.nyc.gov

4An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Has some errors.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Pickup Drop-off Dist. Pickup Pickup Fare Tip

 time time (miles) long. lat. (USD) (USD)

03/29/2015
00:14:32

03/29/2015
00:28:41

1030 0.0000 0.0000 4800.21 0

09/20/2015
21:50:26

09/20/2015
21:52:57

1.2 0.0000 0.0000 8004.5 1200.8

11/25/2015
08:24:50

11/25/2015
08:51:53

7.5 -73.8705 40.7736 93977.3 0

12/27/2015
03:45:54

12/27/2015
03:45:54

0 -73.9289 40.7061 825998.61 0

01/18/2015
19:24:15

01/18/2015
19:51:55

5.3 -74.0021 40.7395 22 3950588.8

NYC taxi trip dataset

5An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Given the 2015 dataset → what are the top 50 spatio-temporal
hotspots?

● Consider the number of passengers being dropped-off.
● Clip the dataset to eliminate noise; consider only the 5 boroughs –

remove dropoffs in the Atlantic Ocean.
● Filter drop-offs that happened in 2015. (e.g. remove New Years'

Eve)

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Source: GISCUP 2016

GISCUP 2016

6An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Filtering bounding-box (5 boroughs, only 2015) → spatio-temporal
cube.

● Aggregation: cell i → compute c
i
 (# passengers dropped-off)

● We can optionally always assume that c
i
 =1.

● Compute the Getis-Ord G
i
* statistic.

● It’s a z-score measure of statistical significance.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Hot-spot analysis

7An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Map-reduce: Functional Programming (FP) concept.
● FP applies nested functions to sets of data..

● Reduction: component of high level languages at least since the
APL language, proposed in 1957, operated on vectors and arrays.

● Implemented by IBM in 1965, widely used for some years.

● Thinking Machines CM-2 (Connection Machine 2) implemented
hardware reduction in 1990.

● Google adopted map-reduce in 2004.

● Map-reduce is implemented well in parallel libraries like OpenMP
and CUDA/Thrust.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Map-reduce history

8An efficient map-reduce algorithm for spatio-temporal analysis using Spark

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Parallelism
● Serial processors have scarcely gotten faster in 5 years.
● It’s a physics problem; must go parallel.
● Or use more efficient algorithms, or make a fundamental discovery.

● Communication dominates computation: keep the data close.

● 1st choice: large amounts of memory (2TB workstations exist).
● Plus multicore Intel Xeon CPUs. (I have a dual 14-core machine).

● 2nd choice: Nvidia GPUs
● 1000s of slow CUDA cores. (20 CUDA cores = 1 Xeon core)..
● Very complicated programming.

● 3rd choice: more distributed systems.

9An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● w
i,j
 : 1 for neighbor cells, 0 for other pairs

● Interior cells: 26+1 neighbors; border cells: 8, 12, or 18.
● Let v

i
 be the number of neighbors of i.

● We can optionally always use v
i
 =27.

● Let the sum of neighbors be

● Computing that is by far the hardest step.
● Then

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Hot-spot analysis

10An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Simple map-reduce algorithm
● First step:

1.Read files from HDFS and create a pair RDD: ((t,x,y),drop_off)
2.Reduce by key
3.Now: {((t,x,y) , c)}
4.Compute statistics

● Second step (sum of neighbors):
1.Each cell ((t,x,y) , c) → {((t+d

t
,x+d

x
,y+d

y
) , c), d

t
,d

x
,d

y
=-1..1}

2.Reduce by key
3.Now: {((t,x,y) , σ)}

● Third step:
1.Compute G

i
* using σ/statistics

2.Get top cells
● Implemented in Java+Spark

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Computing the “sum of neighbors”
“cell” coordinates

11An efficient map-reduce algorithm for spatio-temporal analysis using Spark

Optimization:

● Java Tuple3<Integer,Integer,Integer> (generic class)
internally uses three pointers to reference the integers.

● Big overhead for a class that simply stores three integers.

● Customized classes avoid pointers.

● Therefore we create a custom class with 3 integers

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Optimizing the coordinate representation

12An efficient map-reduce algorithm for spatio-temporal analysis using Spark

Optimization:

● Represent “small coordinate tuple” as a single integer.
● (t,x,y) → t x (1+MAX

y
) x (1+MAX

x
) + y x (1+MAX

x
) + x

● Easily handles 2G cells (4G would be possible).
● Note that ARCGIS space-time cubes have same limitation.
● Saves memory and I/O.
● Faster comparison/hashing.
● We also implement the general and slow data structure in case

the user wants over 2G cells.G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Optimizing the coordinate representation

13An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Reading and parsing is the slowest step.
● Use a custom parser (up to 2x speedup)
● Recommendation: store the data in binary, not CSV.

● Spark configuration:

● Kryo serializer
● Convert between internal Java object and byte stream for file.
● Many systems use it.
● It trades security for speed, but that’s ok here.

● Hash shuffler
● To get the data from the mapper to the reducer.
● Various shufflers are available.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Computing the “sum of neighbors”

14An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Most important optimization:
● create an RDD with 27 times # of cells
● Each cell ((t,x,y) , c) → {((t+d

t
,x+d

x
,y+d

y
) , c), d

t
,d

x
,d

y
=-1..1}

● Before: element type stored in the RDD is a cell
● Now: each element is a partition of the

space-time cube.

● From:

● To: G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Computing the “sum of neighbors”

15An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Improved solution:

● More locality:
● Sum of neighbors: for loop to add elements
● Cells in boundary: special case (separate list and aggregate)

● Fewer (but larger) elements:
● Less overhead (implicit coordinates)

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Computing the “sum of neighbors”

16An efficient map-reduce algorithm for spatio-temporal analysis using Spark

Before settling on the previous algorithm, we tested several other
ideas, but they were bad.

Failed idea: sample the data.

● Sampling large datasets is a common operation in statistics.
● Relative error falls with sqrt(sample size).
● So: Compute the hot spots for only some of the data.
● However: the list of hot spots changes.
● Fail.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Failed idea: sample the data

17An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Failed idea: Instead of storing ((t,x,y), count) tuples, allocate a
complete array to store the counts.

● However most of the array would be 0.

● This would take more space (= more time).

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Failed idea: allocate complete array of counts

18An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Perhaps a cell with high G
i
* will itself have many events.

● That is, regions of many events are several cells wide.
● So, count number of events for all cells.
● Pick the top 1000 cells.
● Count neighbors and

compute G
i
* for

only them.
● However, this

doesn’t always
 work.

● Some cells are like
a donut hole.

● Plot: 2015 top 50,
res: 0.001°, 1 day.

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Failed idea: count neighbors for only hot cells

19An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Amazon EC2

● 25x (1+24) m2.2xlarge
● 4 CPUs
● 34.2 GB of RAM
● 850 GB rotational hard drive

● 2015 dataset (stored in HDFS)

● Algorithms/improvements:
● Simple algorithm
● K: Kryo serializer
● H: Hash shuffler
● C: Compressed coordinates
● CP: Cube partitioning

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Experiments

20An efficient map-reduce algorithm for spatio-temporal analysis using Spark

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Experiments

21An efficient map-reduce algorithm for spatio-temporal analysis using Spark

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Experiments
● 0.0001°→ ~ 8m x 11m

● 0.0001°, 1 day→Bounding-box with: 4000 x 5500 x 365 - 8G cells!
● ~146 million trips in 2015
● ~144 million filtered events (bounding-box)
● → 0.02 trips per cell, 0.03 drop-offs/cell
● Hotspots:

● long, lat, days from 1/1/2015, z-score, sum_neighbors
● -73.9913,40.7501,352,1427.6,4207
● -73.9913,40.7501,353,1413.1,4164
● -73.9912,40.7502,114,1324.5,3903
● -74.0001,40.7585,11,1323.1,3899
● -73.9913,40.7501,114,1314.3,3873
● -74.0000,40.7586,11,1311.9,3866
● -73.9913,40.7502,352,1307.2,3852
● -73.9912,40.7502,93,1306.8,3851
● -73.9912,40.7502,353,1305.8,3848
● -73.9913,40.7501,354,1303.8,3842

22An efficient map-reduce algorithm for spatio-temporal analysis using Spark

● Spark Map-Reduce:
● Simple to implement
● Can achieve good performance

● Best optimizations:
● Compact coordinates
● Cube partitioning

Up to 52x faster than simplest algorithm

G
IS

CU
P

- A
CM

 S
IG

SP
AT

IA
L

20
16

Conclusions

23An efficient map-reduce algorithm for spatio-temporal analysis using Spark

Thank you!

Salles Viana Gomes de Magalhães, vianas2@rpi.edu
W Randolph Franklin, mail@wrfranklin.org

Wenli Li, liw9@rpi.edu
Marcus V. A. Andrade, marcus@ufv.br

Acknowledgement:

Contact:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

