

An efficient map-reduce algorithm for spatio-temporal analysis using Spark (GIS Cup)

Prof. Dr. W Randolph Franklin, RPI Salles Viana Gomes de Magalhães, PhD. Student Wenli Li, PhD. Student Prof. Dr. Marcus V. A. Andrade, UFV

NYC taxi trip dataset

- NYC Taxi and Limousine Commission (TLC)
- > 1 billion records
- Since 2009
- Several CSV files containing:
 - Drop-off lat/long/time
 - Pick-up lat/long/time
 - Number of passengers
 - Trip distance
 - Fare
 - Payment type
 - Tolls
 - Etc.

Source: http://www.nyc.gov

NYC taxi trip dataset

- Big amount of information → many possibilities of analysis
- Example:
 - What is the average price of trips from JFK to LGA?
 - Is the most used type of payment different for different neighborhoods/days/hours?
 - What is the most frequent destination from Penn Station?
 - Hotspots for full taxis?
- Some interesting observations (2015 dataset).
 - Most frequent fare: \$7.80 (3,804,101
 - 195 trips cost more than \$1,000 (noise?)
 - # trips costing (0,\$1]: 35,893
 - Average # of passengers per trip: 1.6

Source: http://www.nyc.gov

NYC taxi trip dataset

• Has some errors.

Pickup	Drop-off	Dist.	Pickup	Pickup	Fare	Tip
time	time	(miles)	long.	lat.	(USD)	(USD)
03/29/2015 00: 14:32	03/29/2015 00: 28:41	1030	0.0000	0.0000	4800.21	0
09/20/2015 21:50:26	09/20/2015 21:52:57	1.2	0.0000	0.0000	8004.5	1200.8
11/25/2015 08:24:50	11/25/2015 08:51:53	7.5	-73.8705	40.7736	93977.3	0
12/27/2015 03:45:54	12/27/2015 03:45:54	0	-73.9289	40.7061	825998.61	0
01/18/2015 19:24:15	01/18/2015 19:51:55	5.3	-74.0021	40.7395	22	3950588.8

GISCUP 2016

- Given the 2015 dataset → what are the top 50 spatio-temporal hotspots?
- Consider the number of passengers being dropped-off.
- Clip the dataset to eliminate noise; consider only the 5 boroughs remove dropoffs in the Atlantic Ocean.
- Filter drop-offs that happened in 2015. (e.g. remove New Years'

Eve)

Source: GISCUP 2016

Hot-spot analysis

- Filtering bounding-box (5 boroughs, only 2015) → spatio-temporal cube.
- Aggregation: cell $i \rightarrow compute c_i$ (# passengers dropped-off)
- We can optionally always assume that $c_i = 1$.
- Compute the Getis-Ord G_i* statistic.
- It's a z-score measure of statistical significance.

$$G_i^* = \frac{\sum_{j=1}^n w_{i,j} c_j - \bar{c} \sum_{j=1}^n w_{i,j}}{S\sqrt{\frac{n \sum_{j=1}^n w_{i,j}^2 - (\sum_{j=1}^n w_{i,j})^2}{n-1}}}$$

$$\bar{c} = \frac{\sum_{i=1}^{n} c_i}{n}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} c_i^2}{n} - \bar{c}^2}$$

Map-reduce history

- Map-reduce: Functional Programming (FP) concept.
- FP applies nested functions to sets of data...
- **Reduction:** component of high level languages at least since the APL language, proposed in 1957, operated on vectors and arrays.
- Implemented by IBM in 1965, widely used for some years.
- Thinking Machines CM-2 (Connection Machine 2) implemented hardware reduction in 1990.
- Google adopted map-reduce in 2004.
- Map-reduce is implemented well in parallel libraries like OpenMP and CUDA/Thrust.

Parallelism

- Serial processors have scarcely gotten faster in 5 years.
- It's a physics problem; must go parallel.
- Or use more efficient algorithms, or make a fundamental discovery.
- Communication dominates computation: keep the data close.
- 1st choice: large amounts of memory (2TB workstations exist).
- Plus multicore Intel Xeon CPUs. (I have a dual 14-core machine).
- 2nd choice: Nvidia GPUs
 - 1000s of slow CUDA cores. (20 CUDA cores = 1 Xeon core)...
 - Very complicated programming.
- 3rd choice: more distributed systems.

Hot-spot analysis

- w_i: 1 for neighbor cells, 0 for other pairs
- Interior cells: 26+1 neighbors; border cells: 8, 12, or 18.
- Let v_i be the number of neighbors of i.
- We can optionally always use $v_i = 27$.
- Let the sum of neighbors be

$$\sigma_i = \sum_{j=1}^n w_{i,j} c_j$$

- Computing that is by far the hardest step.
- Then

$$G_i^* = \frac{\sigma_i - \bar{c}\nu_i}{S\sqrt{\frac{n\nu_i - \nu_i^2}{n-1}}}$$

- Simple map-reduce algorithm
 - First step:
 - 1.Read files from HDFS and create a pair RDD: ((t,x,y),drop_off)
 - 2.Reduce by key
 - 3.Now: $\{((t,x,y),c)\}$
 - 4. Compute statistics
 - Second step (sum of neighbors):
 - 1.Each cell ((t,x,y), c) $\rightarrow \{((t+d_t,x+d_x,y+d_y),c),d_t,d_x,d_y=-1..1\}$
 - 2.Reduce by key
 - 3.Now: $\{((t,x,y),\sigma)\}$
 - Third step:
 - 1.Compute G_i* using σ/statistics
 - 2.Get top cells
 - Implemented in Java+Spark

"cell" coordinates

Optimizing the coordinate representation

Optimization:

- Java Tuple3<Integer,Integer,Integer> (generic class) internally uses three pointers to reference the integers.
- Big overhead for a class that simply stores three integers.
- Customized classes avoid pointers.
- Therefore we create a custom class with 3 integers

Optimizing the coordinate representation

Optimization:

- Represent "small coordinate tuple" as a single integer.
 - $(t,x,y) \rightarrow t x (1+MAX_y) x (1+MAX_x) + y x (1+MAX_x) + x$
 - Easily handles 2G cells (4G would be possible).
 - Note that ARCGIS space-time cubes have same limitation.
 - Saves memory and I/O.
 - Faster comparison/hashing.
 - We also implement the general and slow data structure in case the user wants over 2G cells.

- Reading and parsing is the slowest step.
 - Use a custom parser (up to 2x speedup)
 - Recommendation: store the data in binary, not CSV.
- Spark configuration:
 - Kryo serializer
 - Convert between internal Java object and byte stream for file.
 - Many systems use it.
 - It trades security for speed, but that's ok here.
 - Hash shuffler
 - To get the data from the mapper to the reducer.
 - Various shufflers are available.

- Most important optimization:
 - create an RDD with 27 times # of cells
 - Each cell $((t,x,y), c) \rightarrow \{((t+d_t,x+d_x,y+d_y), c), d_t,d_x,d_y=-1..1\}$
 - Before: element type stored in the RDD is a cell
 - Now: each element is a partition of the space-time cube.

2	7	8	1	7
1	3	9	9	3
5	4	1	1	0
3	8		2	1
2	4	2	7	7
4	2	1	9	4
	1 5 3 2	 3 4 8 4 	1 3 9 5 4 1 3 8 7 2 4 2	1 3 9 9 5 4 1 1 3 8 7 2 2 4 2 7

• From:

$$(0,0),2;(1,0),4;(2,0),2;(3,0),1;(4,0),9;(5,0),4;(1,0),1;...$$

• To:

- Improved solution:
 - More locality:
 - Sum of neighbors: for loop to add elements
 - Cells in boundary: special case (separate list and aggregate)
 - Fewer (but larger) elements:
 - Less overhead (implicit coordinates)

3	2	7	8	1	7
2		3	9	9	3
4	5	4	1	1	0
9	3	8	7		1
1	2	4	2	7	7
2	4	2	1	9	4

 $(0,0),2;(1,0),4;(2,0),2;(3,0),1;(4,0),9;(5,0),4;(1,0),1; \dots$

Failed idea: sample the data

Before settling on the previous algorithm, we tested several other ideas, but they were bad.

Failed idea: sample the data.

- Sampling large datasets is a common operation in statistics.
- Relative error falls with sqrt(sample size).
- So: Compute the hot spots for only some of the data.
- However: the list of hot spots changes.
- Fail.

Failed idea: allocate complete array of counts

- Failed idea: Instead of storing ((t,x,y), count) tuples, allocate a complete array to store the counts.
- However most of the array would be 0.
- This would take more space (= more time).

Failed idea: count neighbors for only hot cells

- Perhaps a cell with high G_i* will itself have many events.
- That is, regions of many events are several cells wide.
- So, count number of events for all cells.
- Pick the top 1000 cells.
- Count neighbors and compute G_i^* for only them.
- However, this doesn't always work.
- Some cells are like a donut hole.
- Plot: 2015 top 50, res: 0.001°, 1 day.

Experiments

- Amazon EC2
- 25x (1+24) m2.2xlarge
 - 4 CPUs
 - 34.2 GB of RAM
 - 850 GB rotational hard drive
- 2015 dataset (stored in HDFS)
- Algorithms/improvements:
 - Simple algorithm
 - K: Kryo serializer
 - H: Hash shuffler
 - C: Compressed coordinates
 - CP: Cube partitioning

Experiments

Spat.	Time	Algorithm										
size	size	Simple	K+H	К+Н+С	K+H+CP							
0.01	30	18	20	19	21							
0.01	7	18	20	19	19							
0.01	1	26	20	20	19							
0.001	30	20	20	19	25							
0.001	7	27	23	22	22							
0.001	1	37	27	24	24							
0.0003	30	39	27	22	28							
0.0003	7	65	42	25	25							
0.0003	1	114	70	51	33							
0.0001	30	84	61	30	25							
0.0001	7	321	212	49	27							
0.0001	1	675	455	-	33							
0.00005	30	229	147	45	28							
0.00005	7	1102	712	-	31							
0.00005	1	1921	1318	-	37							

Experiments

- $0.0001^{\circ} \rightarrow \sim 8 \text{m x } 11 \text{m}$
 - 0.0001°, 1 day \rightarrow Bounding-box with: 4000 x 5500 x 365 8G cells!
 - ~146 million trips in 2015
 - ~144 million filtered events (bounding-box)
 - \rightarrow 0.02 trips per cell, 0.03 drop-offs/cell
 - Hotspots:
 - long, lat, days from 1/1/2015, z-score, sum_neighbors
 - -73.9913,40.7501,352,1427.6,4207
 - -73.9913,40.7501,353,1413.1,4164
 - -73.9912,40.7502,114,1324.5,3903
 - -74.0001,40.7585,11,1323.1,3899
 - -73.9913,40.7501,114,1314.3,3873
 - -74.0000,40.7586,11,1311.9,3866
 - -73.9913,40.7502,352,1307.2,3852
 - -73.9912,40.7502,93,1306.8,3851
 - -73.9912,40.7502,353,1305.8,3848
 - -73.9913,40.7501,354,1303.8,3842

Conclusions

- Spark Map-Reduce:
 - Simple to implement
 - Can achieve good performance

- Best optimizations:
 - Compact coordinates
 - Cube partitioning

Up to 52x faster than simplest algorithm

Thank you!

$$G_i^* = \frac{\sigma_i - \bar{c}\nu_i}{S\sqrt{\frac{n\nu_i - \nu_i^2}{n-1}}}$$

3	2	7	8	1	7
2	1	3	9	9	3
4	5	4	1	1	0
9	3	8	7	2	1
1	2	4	2	7	7
2	4	2	1	9	4

Spat.	Time	Algorithm										
size	size	Simple	K+H	K+H+C	K+H+CP							
0.01	30	18	20	19	21							
0.01	7	18	20	19	19							
0.01	1	26	20	20	19							
0.001	30	20	20	19	25							
0.001	7	27	23	22	22							
0.001	1	37	27	24	24							
0.0003	30	39	27	22	28							
0.0003	7	65	42	25	25							
0.0003	1	114	70	51	33							
0.0001	30	84	61	30	25							
0.0001	7	321	212	49	27							
0.0001	1	675	455	-	33							
0.00005	30	229	147	45	28							
0.00005	7	1102	712	-	31							
0.00005	1	1921	1318	-	37							

$$(0,0),2;(1,0),4;(2,0),2;(3,0),1;(4,0),9;(5,0),4;(1,0),1; \dots$$

Acknowledgement:

	9	3	8		7	2	1		3	2	7		8	1	7
(0,0),	1	2	4	;(1,0),	2	7	7	;(0,1),	2	1	3	;(1,1),	9	9	3
	2	4	2		1	9	4		4	5	4		1	1	0

Contact:

Salles Viana Gomes de Magalhães, vianas2@rpi.edu
W Randolph Franklin, mail@wrfranklin.org
Wenli Li, liw9@rpi.edu
Marcus V A Andredo marcus@ufv.br

Marcus V. A. Andrade, marcus@ufv.br