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ABSTRACT

We propose a segmented ODETLAP compression algorithm
to increase speed, and show that it is usually better in the
maximum absolute error than JP3D for 3D datasets. Overde-
termined Laplacian partial differential equations (ODET-

LAP) is a spatial approximation and data compression method.

We use the CUSP library to accelerate ODETLAP approxi-
mation and the speedup is about 7 times on a GPU over a
CPU core. Segmented ODETLAP compression is faster and
uses less memory than unsegmented ODETLAP compres-
sion. We use the algorithm to compress several atmospheric
datasets and an MRI dataset. For evaluation, we also com-
press the datasets using JPEG 2000 Part 10 JP3D. The
results show that the compressed size of the algorithm is
about 60% that of JP3D for the same maximum absolute
error.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation— Least squares
approximation
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1. INTRODUCTION

Overdetermined Laplacian partial differential equations (ODET-

LAP) is a spatial approximation and data compression method
invented by Franklin [1, 2, 3]. ODETLAP has two compo-
nents: approximation and lossy compression.

ODETLAP approximation computes a value for each point
of a regular grid from a set of known points and their values
by solving an overdetermined system of linear equations. The
system includes an averaging equation for each grid point
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and a known-value equation for each known point. The
basic form of the averaging equation is the finite-difference
approximation of the Laplace’s equation, which states that
the approximate value of a grid point is equal to the average
approximate value of adjacent grid points.

u(x—l,y,z)+u(ﬂc+1,y,z)—|—u(x,y—1,z)+u(x,y+1,z)+
U(JJ, Y,z — 1) + U(I,y, z+ 1) - 6U($,y, Z) = O,

where u is the unknown approximation and each u(zx,y, z) is
an unknown variable (in 3D). Multiplying both sides of the
equation with a positive parameter R gives

Ru(z—1,y, z)+Ru(z+1,y, z)+ Ru(x,y—1, z)+ Ru(z,y+1, )+
Ru(z,y,2 — 1) + Ru(z,y,2 + 1) — 6Ru(z,y,2) = 0. (1)

R is called the smoothing factor of ODETLAP approximation.
It does not change the equation but changes the weight of
the equation in an overdetermined system. The known-value
equation of a known point states that its approximate value
is equal to its value.

u(z,y, 2) = v(z,y,2), (2)

where v is a value function, for example, a dataset. The sys-
tem of Equations 1 and 2 has more equations than unknown
variables, whose least-squares solution consists of the approx-
imate value of each grid point. As a result, the approximate
value of each, especially unknown, point is almost the average
approximate value of adjacent points, and the approximate
value of each known point is almost its value. R balances
a trade-off between the smoothness of the approximation
and its accuracy at known points by specifying the weight
of averaging equations relative to known-value equations.

More formally, given a regular grid Gpnxnxn, a set of known
points (x;, i, 2zi) € G, i = 1,..., k, and their values v(x;, ys, 2;),
i=1,...,k, ODETLAP approximation computes an approx-
imate value u(z,y, z) for each point (x,y, 2) € G by solving
an overdetermined system of Equations 1 and 2. For Equa-
tion 1, a boundary point has less than 6 adjacent points
within G: a face point has 5 adjacent points in G; an edge
point has 4 adjacent points in G; and a corner point has
3 adjacent points in G. In this paper, we use a Neumann
boundary condition of 0, which specifies that a boundary
point has the same approximate value as adjacent points on



the outside of G. As a result, the Equation 1 of a boundary
point has fewer terms. For example, the Equation 1 of a
corner point could be

Ru(z—1,y, z)+Ru(z,y—1, z)+Ru(z,y, z—1)—3Ru(z,y, z) = 0.

The system has n® + k equations and n® unknown variables:

e (8)e-(0)

The Equation 1 coefficient matrix A; is n>xn® with at most 7
nonzero elements on each row, and the Equation 2 coefficient
matrix A, is k X n® with 1 nonzero element on each row.
z=(u(1,1,1),...,u(n,1,1),u(1,2,1),...,u(n,n,n)7 is the
vector of unknown variables, and v = (v(x1,y1,21),. - -,
U(mk7yk7zk))T is the vector of known values. The direct
method to solve Az = b is to compute z = (ATA)~'ATb. A
and AT A are sparse but (AT A)™! is dense and would take
too much memory. Therefore, we solve AT Az = ATb using
an iterative solver, where AT A is a sparse n® x n® matrix.

ODETLAP compression selects a set of known points and val-
ues K from a regular point dataset as lossy compression, and
decompresses the dataset as an ODETLAP approximation
from K [4, 5, 6]. The objective is to minimize the maximum
absolute error of the approximation. K is compressed using
other data compression methods to reduce the compressed
size of the dataset.

Algorithm 1 shows the original algorithm of ODETLAP
compression. Given a point dataset, it first selects an initial
set of known points, for example, random data points, and
computes an approximation from the known points. While
the approximation is not accurate enough, it adds a number
of (unknown) data points with large errors to the set of
known points, and computes a new approximation from the
known points. It imposes a minimum distance between data
points added in the same iteration to prevent known points
from clustering.

Algorithm 1: Original ODETLAP compression

Input: A point dataset

Output: A set of known points

select an initial set of known points;

compute an ODETLAP approximation from the known

points;

while the approximation is not accurate enough do
add a number of data points with large errors to the set
of known points;
compute an ODETLAP approximation from the known
points;

end

The set of known points and their values are compressed
separately. The known points are represented as a binary
image the size of the dataset, with 1 denoting known and
0 denoting unknown. The binary image is encoded in run-
length encoding (RLE) and each run length [ < 65536 is
stored in this format: if I < 254, a byte for [; if 254 <1 < 510,
a marker byte OxFE and a byte for [ — 254; if 510 <[ < 766,
a marker byte 0xFF and a byte for [ — 510; and if [ > 766,
two marker bytes 0xFFFF and two bytes for [. The values

are encoded in delta encoding and compressed by the bzip2
program.

The maximum absolute error is important in some appli-
cations. For example, a large error in the elevation data
indicates a potential hazard for a flying aircraft, a ship, or
a submarine, while the average error is irrelevant. There is
a similar concern with any collision detection problem, e.g.,
in robotics and mechanical assembly. ODETLAP approxi-
mation is reasonably fast, especially with GPU acceleration.
However, ODETLAP compression is slow because it may
involve hundreds of thousands of ODETLAP approximations,
depending on the size of the dataset. We can either reduce
the number of approximations or reduce the size of each
approximation to increase the speed.

As the inspiration of this work, MitdSova and Mitas [7, §]
developed a segmentation procedure for the interpolation of
large datasets using completely regularized splines. The idea
is based on the local behavior of the interpolation function.
The procedure divides a regular grid into square segments
such that the number of data points in the 3 x 3 neighborhood
of each segment is less than a threshold. Interpolated values
in each segment are computed from data points in its 3 x 3,
5 x 5, or larger neighborhood such that the number of data
points is larger than a second threshold. It improves the
smoothness of the interpolation across segment boundaries.
Segmentation reduces both computation time and memory
requirement. JPEG [9] and JPEG 2000 [10] split an image
into blocks or tiles and transform and encode each block
separately. Tiling reduces memory requirement but may
produce a blocking artifact.

Tiling was also used to reduce the complexity of ODETLAP
approximation, and overlapping tiles were used to enhance
smoothness. Stookey et al. [11, 12] proposed a parallel
ODETLAP approximation algorithm for terrain approxima-
tion on an IBM Blue Gene/L. The algorithm divides a grid
into overlapping patches and computes an ODETLAP ap-
proximation for each patch, then merges the results using
bilinear interpolation. For example, it divides the grid into
patches of w X w points, whose lower left corners are at
(tw/2,jw/2), 4,5 =0,1,..., so that each point is in at most
four patches. The patches are grouped into blocks, and the
blocks are approximated and interpolated in parallel. The
algorithm can be used in ODETLAP compression.

Li et al. [13, 14, 15] proposed an ODETLAP compression
algorithm for 3D and 4D oceanographic data compression
and had better results than the 3D set partitioning in hi-
erarchical trees (3D SPIHT) of Said, Kim, and Pearlman
[16, 17]. The algorithm uses an ODETLAP approximation
algorithm that divides a grid into two interleaved meshes of
boxes, computes an ODETLAP approximation for each box,
and merges the results by weighted average. For example,
it divides the grid into a mesh of boxes whose vertices are
at (iw, jw, kw), 1,5,k =0,1,..., and another mesh of boxes
whose vertices are at (iw+w/2, jw+w/2, kw+w/2), i,j,k =
0,1,..., so that each point is in at most two boxes. The
approximation is accelerated on the GPU using an iterative
solver from the CUSP library, while the rest of the algorithm
is implemented in MATLAB. Benedetti et al. [18, 19] accel-
erated ODETLAP approximation and compression in C++



on the GPU using the CUSP and Thrust libraries.

In this paper, we propose a segmented ODETLAP compres-
sion algorithm to increase the speed by reducing the size
of each approximation. The algorithm is fundamentally dif-
ferent from the patched algorithm of Stookey et al. and
the boxed algorithm of Li et al. because it does not ap-
proximate the entire dataset each time and does not have a
separate merging step. We use the algorithm to compress
3D datasets and evaluate its relative performance to JP3D.
Results show that the algorithm is usually better in the max-
imum absolute error. First, we renew the implementation of
GPU-accelerated ODELTAP approximation in Section 2.

2. GPU-ACCELERATED ODETLAP APPR-
OXIMATION

GPUs are massively parallel devices containing thousands of
processing units. They were designed for computer graphics
applications but are fully programmable and optimized for
SIMD vector operations. Using GPUs for scientific comput-
ing is called general-purpose computing on graphics process-
ing units (GPGPU) [20]. Although a CPU core is much more
powerful than a GPU core, a GPU has many more cores
than a CPU. Latest GPUs have up to a few hundred GB/s
of memory bandwidth and a few TFLOPS of single-precision
processing power, but theoretical peak performance is very
hard to achieve.

Compute unified device architecture (CUDA) [21] is a paral-
lel computing platform and programming model for NVIDIA
GPUs. While CUDA C/C++ or CUDA Fortran is the
standard API for CUDA-enabled GPUs, a GPU-accelerated
library [22] is often a better option. For example, Thrust [23]
is a C++ template library that provides a high-level inter-
face for CUDA programming. Thrust provides two generic
containers, one in host (CPU) memory and one in device
(GPU) memory, and multiple algorithms for transformations,
reductions, prefix-sums, reordering and sorting. Built on
Thrust, CUSP [24] is a C++ template library for sparse lin-
ear algebra. CUSP provides multiple sparse matrix formats,
iterative solvers and preconditioners.

Solving large overdetermined systems is time-consuming and
benefits from GPU acceleration. GPU-accelerated ODET-
LAP approximation evolves as hardware and software tech-
nologies develop. Our implementation of GPU-accelerated
ODETLAP approximation using the CUSP library has three
parts:

1. build the coefficient matrix A and right-hand side b of

the overdetermined system on the CPU;
2. compute AT, ATA, and ATb on the GPU;
3. solve AT Az = A"b on the GPU.

The workstation used in this paper has two Intel Xeon E5-
2687W CPUs and one NVIDIA Tesla K20Xm GPU accelera-
tor, running Ubuntu 16.04 LTS. The value type of the data
structures is the single precision float type and the relative
tolerance of the iterative solver is 1 x 107¢. The GPU has
much higher single precision processing power than double
precision processing power. The dataset is a 360 x 180 x 24
atmospheric dataset ‘CH4__VMR’, described in Section 4,
with 1% random nonempty data points selected as known

Table 1: The running time and speedup of GPU-accelerated
ODETLAP approximation. CPU time: the running time on
a CPU core in seconds. GPU time: the running time on the
GPU in seconds. Speedup: CPU time over GPU time.

CPU time GPU time Speedup
Part 1 0.15 - -
Part 2 1.75 0.62 2.84
Part 3 42.52 5.65 7.53

points. The running time of ODETLAP approximation is
measured as the average time of 20 runs with the smoothing
factor R = 1.

CUSP has five sparse matrix formats: coordinate (COO),
compressed sparse row (CSR), diagonal (DIA), ELLPACK/-
ITPACK (ELL), and hybrid ELL/COO (HYB). We use the
COO format for host A, device A, and device AT, because it
is fast for basic operations. The format of device AT A affects
the performance of the iterative solver, whose main operation
is sparse-matrix-vector multiplication. We tried each format
for device AT A using the conjugate gradient method and
found that the ELL or HYB format is the fastest.

CUSP has numerous iterative solvers. Relaxation methods
include Gauss-Seidel, Jacobi, and successive over-relaxation
(SOR). Krylov subspace methods include biconjugate gra-
dient (BiCG), biconjugate gradient stabilized (BiCGstab),
conjugate gradient (CG), conjugate residual (CR), and gen-
eralized minimum residual (GMRES). We tried each method
using the ELL format for device AT A and found that the
Jacobi, BiCGstab, and CR methods do not converge; the
Gauss-Seidel and SOR methods are very slow and the GM-
RES method is slow; and the CG method is faster than
the BiCG method. CUSP has smoothed aggregation-based
algebraic multigrid (AMG), approximate inverse (AINV),
and diagonal preconditioners. Using the CG method, the
AINV and diagonal preconditioners do not reduce the run-
ning time. The AMG preconditioner significantly reduces
the running time but uses more memory. In summary, we
use the ELL format for device AT A, the CG method, and
the AMG preconditioner.

Using the CUSP library, host data structures are computed
on the CPU and device data structures are computed on
the GPU. Storing all data structures in host memory puts
all computation on the CPU, so that we can run the same
program on a CPU core. Table 1 shows the running time of
each part of the program on a CPU core and on the GPU,
and the GPU/CPU speedup. Part 1 is only run on the CPU.
Part 1 and part 2 use little time compared to part 3. The
overall speedup of the program is about 7 times.

3. SEGMENTED ODETLAP COMPRESSION

ODETLAP compression can be accelerated by dividing a
dataset into segments and compressing each segment sep-
arately, like JPEG and JPEG 2000, because the running
time of ODETLAP approximation grows fast as the size of
the grid increases. In addition, segmentation reduces the
memory requirement of ODETLAP approximation. How-
ever, compressing segments separately produces blocking arti-



facts across segment boundaries in the decompressed dataset,
which consists of an ODETLAP approximation in each seg-
ment, computed from the known points in the segment. To
improve smoothness and reduce artifacts, the approximation
in each segment can be computed as the center of a larger
approximation in a neighborhood of the segment, using the
known points in the neighborhood (including the segment),
like Mitasova and Mités [7, 8]. The idea is based on the local
behavior of ODETLAP approximation: the approximate
value of a grid point is mostly determined by the values of
the nearest known points. If there are sufficient known points
in the neighborhood and outside of the segment, the value of
a point in the segment approximation is close to its value in
an ODETLAP approximation of the dataset from the known
points in all segments.

The main idea of the segmented ODETLAP compression
algorithm is to divide a dataset into segments and compress
each segment in association with adjacent segments. The al-
gorithm selects a set of known points in each segment so that
the maximum absolute error (MAXE) of the segment approx-
imation is not larger than a target threshold. The segment
approximation is computed as the center of an ODETLAP
approximation in its neighborhood. The algorithm adds
known points in the segments in a round-robin fashion so as
to compress them in synchrony. As Algorithm 2 shows, given
a segmented point dataset, the algorithm first selects an
initial set of known points and marks all segments as needing
processing, which means the MAXE of the segment approx-
imation may be larger than the target. While there are
segments that need processing, and for each such segment in
random order, the algorithm computes an approximation in
the segment, and if the MAXE of the approximation is larger
than the target, it adds a known point in the segment, oth-
erwise it marks the segment as not needing processing. The
approximation in a segment changes and thus the segment
needs processing if a known point is added in its neighbor-
hood. Therefore, if the algorithm adds a known point in a
segment, it marks all other segments whose neighborhood
contains the point as needing processing. The algorithm ter-
minates after the MAXE of each segment approximation is
not larger than the target, so that the MAXE of the dataset
approximation is not larger than the target. As datasets
have different ranges, we will specify error metrics and the
target relative to the data range.

The parameters of the algorithm are:

e R: the smoothing factor of ODETLAP approximation,
which is 0.01 in the rest of the paper;

e segment width (SW): the width of a segment; each
segment is SWXxSWxSW (in 3D);

e outer width (OW): the width between a segment bound-
ary and its neighborhood boundary; the neighborhood
is (SW+20W)x (SW+20W) x (SW+20W);

e target: the target MAXE of each segment approxima-
tion.

Let n be the size of the grid (dataset). The time complex-
ity of the conjugate gradient method is O(n4/3) for three-
dimensional elliptic problems [25]. With segmentation, the
size of the grid (neighborhood) is (SW+20W)?, and the time
complexity of the method is O((SW 4 20W)*). However,
as the neighborhood size decreases, the speedup of GPU-

Algorithm 2: Segmented ODETLAP compression

Input: A segmented point dataset

Output: A set of known points and values

select an initial set of known points;

mark all segments as needing processing;

while there are segments that need processing do

foreach segment s that needs processing do

compute an approximation in s as the center of an
ODETLAP approximation from the known points in
its neighborhood,;

if the MAXE of the approximation is larger than a

target then
add the data point p € s with the largest error to

the set of known points;
foreach segment t, t # s, intersecting the
neighborhood of s do
if p is in the neighborhood of t then
‘ mark ¢ as needing processing;
end

end

else
\ mark s as not needing processing;
end

end
end

accelerated ODETLAP approximation may also decrease,
because the GPU needs a high occupancy to be efficient.

A dataset may have empty data points that do not have
a value, which is often indicated by a special value not in
the data range. A dataset may also have many data points
that have the same value. In the first case, the values of
empty data points can be interpolated for ODETLAP com-
pression, but it is impossible to distinguish between empty
and nonempty points in the decompressed dataset. In the
second case, it is less efficient to select many known points
of the same value. The solution is to include a nonempty
mask of the dataset in its compression. The nonempty mask
is a binary image the size of the dataset, with 1 denoting
nonempty and 0 denoting empty. An empty value is also in-
cluded in the compression, which is either the special value of
empty points or a common value in the dataset. The empty
value is assigned to the empty points in the dataset approxi-
mation. With the nonempty mask, the algorithm does not
select empty points as known points, and the decompressed
dataset is accurate at the empty points.

Using a lower precision or fewer bits for known point values
can effectively reduce the size of their compression without
significantly increasing the error of the decompressed dataset
(if the precision is not too low). Regardless of whether the
values are integer or floating point, they can be quantized on
a small range of integers and encoded in a few bits. We can
quantize the values of known points either before they are
selected or after they are selected. Quantizing the values after
the known points are selected makes it harder to control the
error of the dataset approximation. Therefore, we quantize
the dataset before selecting the known points. In this paper,
we quantize the dataset on integers 0-255 or the range of 8
bits. To quantize a dataset on 0-255, we find the maximum



and minimum values vmax and vmin of the dataset, and
calculate scale = 255/(vmazr — vmin). Then we convert
each value v to round((v — vmin) - scale). Now, the dataset
approximation has a different range from the dataset. To
decompress the dataset, we clamp the dataset approximation
between 0 and 255, and convert each approximate value v
to v/scale + vmin. Let the target MAXE be a percent of
the data range. Quantizing the dataset on 0-255 changes
its range to 255 and induces an absolute error of at most
0.5/255 = 0.196% at each point. The algorithm guarantees
the target MAXE of the dataset approximation from the
quantized dataset. The quantized and inverse-quantized
dataset has an absolute error of at most 0.196% from the
dataset. Therefore, the decompressed dataset has a MAXE
of at most 0.196% more than the target.

The algorithm to decompress a dataset from a nonempty
mask and a set of known points and values is:

1. compute an approximation of the quantized dataset by
computing an approximation for each segment;

2. clamp the dataset approximation between 0 and 255
and inverse-quantize it;

3. assign the empty value to the empty points.

The ODETLAP compression of a dataset consists of a header,
a nonempty mask, a known point mask, and the known point
values. The nonempty mask is compressed by a pipeline of
run-length encoding (RLE), variable-length quantity (VLQ)
and the ZPAQ v1.10 archiver. The RLE of the nonempty
mask is the alternating run lengths of Os and 1s, starting
with a run length of 0s. VLQ is a binary format that uses
one byte for an integer in 0-127, two bytes for an integer
in 128-(128% — 1), and so on. ZPAQ is an open source file
archiver. The known point mask is also compressed by a
pipeline of RLE, VLQ, and ZPAQ. However, the RLE of
the known point mask is the run lengths of Os between 1s,
which is not in a strict sense an RLE but is more efficient if
the ratio of 1s is not too large. The known point values are
compressed by a pipeline of offset delta encoding, VL.Q, and
ZPAQ. The delta encoding of the values contains negative
deltas, which can not be stored in VLQ. Offsetting the deltas
makes them nonnegative: find the minimum delta dmin;
subtract dmin from each delta; and prepend -dmin to the
deltas. The header has 18 bytes:

e the numbers of slices, rows, and columns of the dataset:
2 bytes each;

e SW and OW: 1 byte each;

e ymin and scale for inverse-quantization: 4 bytes each;

e the empty value: 2 bytes.

We use regularly spaced data points as the initial known
points of the algorithm, because they are evenly distributed
across the dataset, and they help reduce the compressed size
of the known point mask. For a given target, if the mask
size is larger than the values size, using more regular initial
known points often reduces the sum of the two sizes, and if
the values size is larger than the mask size, quantizing the
dataset on a smaller range often reduces the sum of the two
sizes. If the target is large, the algorithm should use less
regular initial known points, and if the target is small, the
algorithm should use more regular initial known points. The
optimal initial set of known points depends on the dataset
and the target. In this paper, we use a fixed initial set of

Table 2: Statistics of the datasets. Empty: the percentage
of empty data points for the atmospheric datasets or the
percentage of zero data points for the MRI dataset.

Dataset Minimum  Maximum Median  Empty
CH4 VMR 1.55-1077 2.02-107% 1.62-107% 2.02%
CO_VMR 1.52-107% 3.03-1077 4.07-107%  2.00%
GPHeight 1 50017 18204  1.99%
03 VMR 1.23-107% 1.41-107° 1.08-107%  1.99%
Temperature 188.0 311.9 235.5  1.99%
MRI 0 3866 0 60.59%

known points at (4i + 2,45 + 2,4k + 2), 4,5,k = 0,1,...,
except empty data points. The interval between them is 4 in
each dimension so that they are at most 1/64 of the dataset.

4. RESULTS

The datasets tested are five 360 x 180 x 24 atmospheric
datasets and one 256 x 256 x 160 MRI dataset.

The atmospheric datasets are the January 2015 AIRX3STM
[26] grid fields that have an extra dimension of 24 stan-
dard pressure levels. The basenames of the grid fields
are CH4 VMR (CH4 volume mixing ratio), CO_VMR
(CO volume mixing ratio), GPHeight (geopotential height),
03_VMR (O3 volume mixing ratio), and Temperature (at-
mospheric temperature). Each field appears in four grids,
tagged _ A, D, TqJ A, and _TqJ_D. The grids are
360 x 180 with 1 x 1 (°)? cells. For example, CH4_VMR,_ A
and CH4_VMR_D are the same field in two grids. We only
use the fields in the grid tagged _ A, meaning ascending orbit
and individual quality control. We use each grid field as
a regular point dataset and call them by their basenames:
CH4__ VMR, CO_VMR, GPHeight, O3_ VMR, and Tem-
perature. Table 2 shows some statistics of the atmospheric
datasets. GPHeight is integer and the other four are floating
point. They all have about 2% empty data points, indicated
by the special value -9999. Figure 1 shows slices 0, 8, and 16
of each of the atmospheric datasets. Empty data points are
shown in white, which appear to be landmasses.

The MRI dataset is the co-registered, averaged image from
four individual scan images of MR session OAS1_0001_ MRI1,
OASIS cross-sectional MRI data [27]. The individual scan
images are 256 x 256 x 128 with 1 x 1 x 1.25 mm?® voxels.
The averaged image is 256 x 256 x 160 with 1 x 1 x 1 mm?
voxels. Table 2 shows that the MRI dataset has about 60%
zero data points. Figure 2 shows slices 0, 40, 80, and 120 of
the MRI dataset. Nonzero data points are in center.

We compress the datasets using the segmented ODETLAP
compression algorithm. The value type of data structures is
the single precision float type and the relative tolerance of
the iterative solver is 1 x 1075, The smoothing factor R of
ODETLAP approximation is 0.01. The atmospheric datasets
are compressed with SW = 12 and OW = 6, so that a segment
is 12x 12 x 12 and the neighborhood is 24 x 24 x 24. The MRI
dataset is compressed with SW = 16 and OW = 8. In general,
as SW and OW increase, the running time of the algorithm
increases, but the number of known points selected for a given
target MAXE decreases. The algorithm selects an initial set
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Figure 1: Slices 0, 8, and 16 of the 360 x 180 x 24 atmospheric datasets.

of known points at (4i + 2,45 + 2,4k + 2), 4,5,k =0,1,...,
except empty or zero data points. For the atmospheric
datasets, the initial known points are about 24000 data
points. For the MRI dataset, the initial known points are
64613 data points. Using more initial known points decreases
the running time but increases the number of known points
selected, which may or may not increase the size of the
compression. Error metrics and the target are specified as
percentages of the data range. We compress the atmospheric
datasets with targets 3%, 2.5%, 2%, 1.5%, 1%, and 0.5%,
and compress the MRI dataset with targets 6%, 5%, 4%, 3%,
2%, and 1%. In addition, we compress the datasets with
the target 0%, by selecting all nonempty or nonzero data
points as known points. Selecting all nonempty data points
does not require the algorithm, and the compression does
not have a known point mask.

Table 3 shows the results of the algorithm for each dataset
and target. The results are: the number of known points
selected, where all n/e means all nonempty or nonzero data
points; the average absolute error (AVGE) of the decom-
pressed dataset; the root-mean-square error (RMSE) of the
decompressed dataset; the maximum absolute error (MAXE)
of the decompressed dataset; the size of the compressed

known point mask; the size of the compressed known point
values; the total size of the compressed dataset; and the com-
pression ratio. The compressed dataset includes the header
and the compressed nonempty mask, known point mask,
and known point values. The size of the nonempty mask is
2433, 2375, 2357, 2356, 2358, and 17206 bytes, respectively,
for datasets CH4_ VMR, CO__ VMR, GPHeight, O3_ VMR,
Temperature, and MRI. The original size of each atmospheric
dataset is 6220800 bytes (5.9 MB) and the original size of the
MRI dataset is 20971520 bytes (20 MB). The results show
that MAXE is at most 0.20% larger than the target. AVGE
and RMSE are usually much smaller than MAXE. The num-
ber of known points and the compressed sizes increase fast as
the target decreases. The size of the known point mask is 0
when all nonempty data points are selected. The results for
dataset GPHeight show an anomaly: the compression ratio
for 0% target is larger than the compression ratio for 0.5%
target. The reason is that the size of known point values is
much smaller than the size of the known point mask for the
dataset. Although the size of known point values increases
a lot from 0.5% to 0% target, the size of the known point
mask decreases even more (to 0). Therefore, it is important
to balance the two sizes.
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Figure 2: Slices 0, 40, 80, and 120 of the 256 x 256 x 160 MRI dataset.

Table 3: Results of segmented ODETLAP compression. Target: the target MAXE for the quantized dataset. Points: the
number of known points selected; all n/e means all nonempty or nonzero data points. Mask: the size of the compressed known
point mask in bytes. Values: the size of the compressed known point values in bytes. Total: the total size of the header,
nonempty mask, known point mask, and known point values in bytes. Ratio: the compression ratio.

Dataset Target Points AVGE RMSE MAXE Mask Values Total Ratio
CH4_ VMR 3.0% 26711 0.53% 0.74%  3.17% 2516 5829 10794 576.3
CH4_ VMR 2.5% 28494  0.48%  0.65% 2.68% 3785 6478 12712 489.4
CH4_ VMR 2.0% 31557  0.43% 0.57% @ 2.18% 5792 7470 15711 396.0

CH4 VMR 1.5% 39691 0.40% 0.51%  1.66% 10890 9359 22698 274.1
CH4 VMR 1.0% 69667 0.30% 0.38%  1.19% 27592 16022 46063 135.0
CH4_VMR 0.5% 202848 0.16% 0.20%  0.69% 80552 40360 123361 50.4

CH4_ VMR 0.0% Alln/e 0.10% 0.11%  0.20% 0 210841 213290 29.2
CO_VMR 3.0% 26868 0.67% 0.90%  3.16% 2922 8038 13351 465.9
CO_VMR 2.5% 29199 0.62% 0.83%  2.69% 4834 9253 16478  377.5
CO_VMR 2.0% 34681 0.55% 0.68%  2.17% 8688 11144 22223  279.9
CO_VMR 1.5% 43567 0.46%  0.55%  1.68% 14291 14770 31452 197.8
CO_VMR 1.0% 67289 0.31% 0.37%  1.18% 27635 23477 53503 116.3
CO_VMR 0.5% 153145 0.16% 0.19%  0.69% 64784 49068 116243 53.5
CO_VMR 0.0% Alln/e 0.10% 0.11%  0.20% 0 213858 216249 28.8
GPHeight 3.0% 28813  0.59% 0.79%  3.17% 3149 1994 7516  827.7
GPHeight 2.5% 30734  0.56% 0.74%  2.66% 3726 2149 8248  754.2
GPHeight 2.0% 33642  0.50% 0.65%  2.18% 5118 2419 9910 627.7
GPHeight 1.5% 39659 0.46% 0.58%  1.68% 8134 2992 13499 460.8
GPHeight 1.0% 67466 0.39% 0.46%  1.18% 21090 5186 28649 217.1
GPHeight 0.5% 208150 0.22% 0.26%  0.69% 72046 12130 86549 71.9
GPHeight 0.0% Alln/e 0.10% 0.11%  0.20% 0 41872 44245 140.6
03_VMR 3.0% 42321  0.69% 0.96%  3.17% 11425 11382 25179 2471
03_VMR 2.5% 48743  0.60% 0.82%  2.68% 14834 13753 30959  200.9
03_VMR 2.0% 59703  0.50% 0.68%  2.19% 20161 17585 40118 155.1
03_VMR 1.5% 81677 0.40% 0.53%  1.69% 29728 24583 56683  109.7
03_VMR 1.0% 131809 0.28% 0.36%  1.19% 48028 38395 88795 70.1
03_VMR 0.5% 262396 0.15% 0.19%  0.69% 80220 68702 151294 41.1
03_VMR 0.0% Alln/e 0.10% 0.12%  0.20% 0 186058 188430 33.0

Temperature 3.0% 41074  0.95% 1.18%  3.16% 11713 12517 26604 233.8
Temperature 2.5% 50313 0.83% 1.02%  2.68% 17080 15669 35123 177.1
Temperature 2.0% 65957 0.70% 0.84%  2.18% 25683 20695 48752 127.6
Temperature 1.5% 96786 0.53% 0.64%  1.70% 40782 29797 72953 85.3
Temperature 1.0% 163326 0.36% 0.43% 1.19% 66899 45963 115236 54.0
Temperature 0.5% 347499 0.18% 0.22%  0.69% 117735 80366 200475 31.0

Temperature 0.0% Alln/e 0.10% 0.11%  0.20% 0 209563 211937 29.4
MRI 6% 292724 0.60% 1.27%  6.19% 154989 258259 = 430472 48.7
MRI 5% 362331 0.52% 1.09%  5.19% 186616 319131 522971 40.1
MRI 4% 471515  0.43% 0.90%  4.19% 229597 412245 659066 31.8
MRI 3% 652309 0.33% 0.69%  3.19% 288544 563325 869093 24.1
MRI 2% 982647 0.22% 0.47%  2.19% 372541 825539 1215304 17.3
MRI 1% 1755817  0.11% 0.23%  1.19% 501646 1370377 1889247 11.1

MRI 0% Alln/e 0.04% 0.07%  0.20% 0 2532834 2550058 8.2




Table 4: Smoothness measures of the datasets normalized
on [0, 1], and the compression ratio for 2% target. RMSL:
root-mean-square Laplacian. RMSB: root-mean-square bi-
harmonic.

Dataset RMSL RMSB Ratio - 2%
CH4_ VMR 0.017 0.051 396.0
CO_VMR 0.015 0.054 279.9
GPHeight 0.018 0.044 627.7
03_ VMR 0.034 0.071 155.1
Temperature 0.032 0.077 127.6
MRI 0.089 0.400 17.3

Some datasets compress better than others. For example, the
compression ratio is 396.0 for dataset CH4__ VMR and 127.6
for dataset Temperature when the target is 2%. We found
that smoother datasets compress better. The smoothness of
a dataset can be characterized by its Laplacian. Because the
datasets have different ranges, we normalize them on [0, 1],
and compute the root-mean-square of the Laplacian of the
normalized datasets. As shown in Table 4, the value is loosely
related to the compression ratios when the target is 2%,
but it indicates that datasets CH4__ VMR, CO__ VMR, and
GPHeight compress better. A better smoothness measure
is the Laplacian of the Laplacian, or the biharmonic. We
compute the root-mean-square of the biharmonic of the
normalized datasets. As shown in Table 4, the value is closely
related to the compression ratios when the target is 2%. This
analysis does not take quantization into consideration.

5. EVALUATION

To evaluate the results of the algorithm, we also compress
the datasets using JPEG 2000 Part 10 JP3D [28]. JP3D
extends JPEG 2000 Part 1 for 3D volumetric compression.
It uses a 3D version of the embedded block coding by opti-
mized truncation (EBCOT) algorithm of JPEG 2000 Part 1.
The algorithm divides a volumetric dataset into cuboid tiles
and uses discrete wavelet transform (DWT) to decompose
each tile into subbands. The subbands are partitioned into
dyadic-sized code blocks and each code block is encoded
independently. We use OpenJPEG v2.1.0, an open-source
JPEG 2000 codec.

JP3D also needs a nonempty mask for datasets with empty
data points, because there is no way to distinguish between
empty and nonempty points in the decompression. To com-
press the atmospheric datasets, we first quantize them on
integers 0-255, because JP3D compresses integers while the
datasets are floating point. Quantizing the datasets on 0—
255 produces very small errors, as shown in Table 3 for 0%
target. Then we interpolate the values of empty points us-
ing nearest-neighbor interpolation, because JP3D requires
a value at every point. Then we manually find the best
possible compression parameters for the datasets. The size
of code block is 64 x 32 x 8, which has to do with the shape
of the datasets. The number of resolutions in x, y, and z
axis is 8, 8, and 1 (resolutions in x and y axes have to be the
same), which also has to do with the shape of the datasets.
The coding algorithm is 3D-EBCOT. We compress the quan-
tized datasets with the target PSNR 40, 40.5, 41, ..., until
lossless compression is achieved. The JP3D compression of

Table 5: Interpolated compressed sizes in KB of segmented
ODETLAP compression and JP3D when MAXE is 2% and
1%.

ODETLAP JP3D
Dataset 2% 1% 2% 1%
CH4_ VMR 17.7 73.3 71.8  192.6
CO_VMR 24.9 74.9 90.9  180.0
GPHeight 10.9 48.9 18.0 48.2
03_VMR 45.3  110.2 71.6 1524
Temperature 56.3 144.4 111.2 207.5
MRI 1313.8 1970.3 1556.1 1984.8

an atmospheric dataset consists of a 10-byte header (vmin
and scale for inverse-quantization, and the empty value), a
nonempty mask, and a JP3D file. To decompress the dataset,
we decompress and inverse-quantize the JP3D file, and assign
the empty value to the empty points.

The process of compressing the MRI dataset is simpler be-
cause it is integer and does not have empty data points. We
manually find the best possible compression parameters for
the dataset. The size of code block is 64 x 64 x 32, related
to the shape of the dataset. The number of resolutions in x,
y, and z axis is 10, 10, and 3. We compress the dataset with
the target PSNR 40, 40.5, 41, ..., 99.5. The compressed
dataset is a JP3D file.

Figure 3 shows the compressed size and approximation error
plots of JP3D and the algorithm for each dataset and error
metric. The horizontal axis is the compressed size in KB and
the verical axis is an approximation error in percentage. In
each plot, the blue circles are the JP3D results (some may
be outside the plot). The green circles are the ODETLAP
results. And the red circle is the result of compressing all
nonempty or nonzero data points. The plots show that
JP3D is usually better in AVGE and RMSE but ODETLAP
is usually better in MAXE. The relative performance of
ODETLAP to JP3D, however, is different from dataset to
dataset. ODETLAP is much better in MAXE and/or closer
in AVGE and RMSE for datasets CH4_ VMR, CO_ VMR,
and MRI. It performs less favorably for datasets GPHeight,
03_ VMR, and Temperature.

Table 5 shows the compressed sizes of the algorithm and
JP3D when MAXE is 2% and 1% for each dataset. The sizes
are linearly interpolated from the two results closest to each
MAXE. The ODETLAP size is smaller than the JP3D size
in most cases. It is about 60% the JP3D size in average.

6. CONCLUSIONS

We use segmentation to increase the speed of ODETLAP
compression by reducing the size of each approximation in
iterative selection. The algorithm can be further accelerated
by reducing the number of approximations. For example, it
can add multiple known points in each iteration, and use
sub-segmentation to spread out the points. If the target
MAXE is small, using more regular initial known points not
only reduces the time but also improves the performance.
Segmentation is good for capturing local trends but bad for
capturing global trends, by limiting the influence of known



Percentage error

CH4_VMR - AVGE

—e— JP3D
—e— ODETLAP|
e Alln/e

0.8

0.6

CH4_VMR - RMSE

—e—

—e— JP3D
ODETLAP
e Alln/e

T

CH4_VMR - MAXE

]

—e— JP3D i
—e— ODETLAP [
All nfe iy

0.3 | |
1.5+ s
0.2 T ) 1.0} .
0.1 - 1 : 0.5 1
O‘O L L L L L 0.0 L L L L L 0'0 L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Compressed size (KB) Compressed size (KB) Compressed size (KB)
CO_VMR - AVGE CO_VMR - RMSE 0 CO_VMR - MAXE
T T T T T T T T 4.0F e =T T
5 07 == |] 10 : —— JP3D || 3sloA —— P30 |
E 0.6 —e— ODETLAP || 0.8 —e— ODETLAP || 3.0 —e— ODETLAP [
805 e Alne - e« Alln/e 2.5F e Alne [
204 —| 06 2.01
g 0.3 1 o4 | 1sp 1
@ 0.2 , 1.0t |
* 01 ‘ ‘ ‘ : | 02 ‘ ‘ . . 1 osf ‘ ‘ ‘ ‘ ]
O‘O 1 1 1 1 0.0 1 1 1 1 0.0 1 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Compressed size (KB) Compressed size (KB) Compressed size (KB)
GPHeight - AVGE GPHeight - RMSE GPHeight - MAXE
T T T T T T 1.0 T T T T T T T 3 4.0 T T T T T T =
X ce T jp3D i i |—e—JP3D 35 bt f—e— JP3D 1
£ —o— ODETLAP|| ¥ —— ODETLAP|| 3.0 —— ODETLAP |
g e Alln/e e Alne |{ 25 e Alne [
k] 2.0
] 1 1 15 .
o
] 1 | 10 .
% o. ; . 0.5 i e
0'0 1 1 1 1 1 1 1 1 0'0 1 1 1 1 1 1 1 1 0‘0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Compressed size (KB) Compressed size (KB) Compressed size (KB)
O3_VMR - AVGE O3_VMR - RMSE 03_VMR - MAXE
T T T 1.2 — = T T ] 4.0F @Y7 . T —T —
0.8 —— JP3D 1 1o —e— JP3D | 35 —— JP3D ]
06 —e— ODETLAP| | 0'8 —e— ODETLAP 3.0 —o— ODETLAP |
e Alln/e i e Alln/e 2.5 e Aln/e [
T 0.6 . 2.0 : |

0.4

Percentage error

0.2

Percentage error
o
[=)]

0.7

Percentage error

0.1
0.0

15
1.0
0.5

0.0

i
50

i
100

i
150

i
100

i
50

i
150

i i
50 100

i
150

0.4k
0.3}

0.6

0 200 0 200 0 200
Compressed size (KB) Compressed size (KB) Compressed size (KB)
Temperature - AVGE Temperature - RMSE Temperature - MAXE

T T T T T 4.0
—— JP3D | 1‘2‘ ol —e—)p3D 35 —— JP3D ]
—e— ODETLAP | 1'0 —e— ODETLAP 3.0 —e— ODETLAP [
e Alin/e o8 e Aln/e 25 e Aln/e ]
- - : - - 2.0 - -
| 0.6 . 1.5 ]
0.4 s 1.0 1
1 0.2 1 0.5 1
i i i i ‘ 0.0 i i i i . 0.0 i i i i i
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Compressed size (KB) Compressed size (KB) Compressed size (KB)
MRI - AVGE MRI - RMSE 8 MRI - MAXE
T T T T 1.6F P SRS P P P S T T T T
........................... JP3D 1al! B JP3D 71 . JP3D
05 | —— ODETLAP] 1.2} |—e— ODETLAP (4 6 ‘| —— ODETLAP [
PR | o Alln/e 1.0f- e Alln/e S e Alln/e
‘ ‘ ‘ 0.8} ‘ ‘ ‘ P/ S N R ‘ ‘ ‘
i N 0.6} 3+
0.2 ey 0.4]- 2}
...................... 0.2b 1
1 1 1 1 0 O 1 1 1 1 0 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

Compressed size (KB)

Compressed size (KB)

Compressed size (KB)

Figure 3: Compressed sizes in KB and approximation errors in percentage of JP3D and segmented ODETLAP compression.
AVGE: average absolute error. RMSE: root-mean-square error. MAXE: maximum absolute error. All n/e means all nonempty

data points.



points. The objective of the algorithm is to minimize the
maximum absolute error. Results for 3D atmospheric and
MRI datasets show that it is usually better in MAXE than
JP3D. For the same MAXE, the compressed size of the
algorithm is about 60% that of JP3D. In the future, we
may use multi-core CPUs to accelerate both ODETLAP
approximation and compression. We would like to find better
ways to explore the regularity of known points. And we will
use the algorithm to compress 4D datasets.
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