PInNMEsH — Fast and exact 3D point location queries using a uniform grid

Salles V. G. Magalhﬁesa*b, Marcus V. A. Andrade®, W. Randolph Franklin®, Wenli LiP

“Dept. of Informatics, Federal University of Vicosa, Vicosa MG, 36570-000, Brazil
bYECSE Dept, Rensselaer Polytechnic Institure, Troy NY, 12180, USA

Abstract

This paper presents PINMESH, a very fast algorithm with implementation to preprocess a polyhedral mesh, also known as a multi-
material mesh, in order to perform 3D point location queries. PINMEsH combines several innovative components to efficiently handle
the largest available meshes. Because of a 2-level uniform grid, the expected preprocessing time is linear in the input size, and the
code parallelizes well on a shared memory machine. Querying time is almost independent of the dataset size. PINMEsH uses exact
arithmetic with rational numbers to prevent roundoff errors, and symbolic perturbation with Simulation of Simplicity (SoS) to handle
geometric degeneracies or special cases. PINMEsH is intended to be a subroutine in more complex algorithms. It can preprocess
a dataset and perform 1 million queries up to 27 times faster than RCT (Relative Closest Triangle), the current fastest algorithm.
Preprocessing a sample dataset with 50 million triangles took only 14 elapsed seconds on a 16-core Xeon processor. The mean query

time was 0.6 us.

Keywords: Point location queries, Exact Computation, Parallel algorithm, Big Data

1. Introduction

The 3D point location problem and its 2D analog have many
applications in Computer Graphics, Computer Aided Design, Ad-
ditive Manufacturing, Computer Games, and Geographic Infor-
mation Science [20, 23]. Point location is required for problems
such as computing the intersection of two meshes and detecting
collisions. Thus a correct and efficient algorithm is important.

Several existing solutions are presented in Ogayar et al. [20].
The most important are Jordan Curve and Feito-Torres. The al-
gorithm based on the Jordan Curve Theorem [19] is an extension
of PNPOLY, the well known ray casting 2D point-in-polygon
algorithm [10]. The idea is to cast a semi-infinite ray up from
the query point, and count the number of intersections between
this ray and the polygon’s edges. The point is considered to be
inside the polygon if and only if the number of intersections is
odd. Although this method is simple and efficient for performing
single queries, it is a challenge to efficiently implement it to
correctly handle all the singularities, which get much worse in
3D.

Feito-Torres [7] builds on the ease of determining whether a
point is in a tetrahedron by evaluating the sign of a determinant.
It partitions the polyhedron into tetrahedra, one between each
triangular polyhedron face and the coordinate origin, and then
counts how many of them contain the query point gq. ¢ is in the
polyhedron if and only if that is odd.

These methods work well for single queries against the poly-
hedra; without preprocessing, a query takes linear time in the
number of faces. However, in the usual cases of many queries on

Email addresses: salles@ufv.br (Salles V. G. Magalhies),
marcus@dpu.ufv.br (Marcus V. A. Andrade), mail@uwrfranklin.org (W.
Randolph Franklin), 1iw9@rpi . edu (Wenli Li)

Preprint submitted to Elsevier

the same dataset this is not optimal. Therefore, Ogayar et al. [20]
also extend these two algorithms with common pre-processing
techniques (such as the use of an octree to index the mesh) to
accelerate the multiple query case.

Recently, Liu et al. presented RCT (Relative Closest Trian-
gle) [16], an efficient method for locating points in 3D triangular
meshes. RCT can perform point location tests even in models
composed of multi-materials, where internal boundaries divide
the polyhedron into smaller polyhedra and the objective is to
determine in which smaller polyhedron the query point is.

For each query point g, RCT uses an octree to efficiently
locate a mesh triangle ¢ that is visible from g. ¢ is visible from g if
a line segment that does not cross the mesh can be traced between
g and t. Once a visible triangle ¢ is found, an orientation operation
that evaluates #’s normal is used to determine ¢’s position with
respect to the polyhedron. To the best of our knowledge, RCT is
the fastest algorithm available for performing multiple queries
in polyhedra. Indeed, according to the experiments in Liu et
al. [16], RCT was much faster than an efficient ray-crossing
algorithm based on Axis-Aligned Bounding Boxes, and also
than the CGAL [4] point location algorithm.

An important challenge in computational geometry, and in
particular, in point location algorithms, is avoiding incorrect
results caused by floating-point arithmetic’s roundoff errors.
Heuristic solutions include using a tolerance, or snap round-
ing. These work for awhile. However, as datasets become larger,
the chance of these heuristics failing increases. Any chance of a
failure prevents the algorithm from being used as a guaranteed
subroutine in a larger system.

This paper presents PINMEsH, a very fast algorithm to per-
form point location queries in 3D polyhedral meshes. The mesh
is quickly indexed using a 2-level uniform grid. Also, PINMEsH

May 10, 2016

uses exact arithmetic with rational numbers to prevent roundoff
errors and symbolic perturbation with Simulation of Simplic-
ity (SoS) to handle geometric degeneracies or special cases. It
can preprocess a dataset and perform 1 million queries up to
27 times faster than RCT. Preprocessing a sample dataset with
50 million triangles took only 14 elapsed seconds on a 16-core
Xeon processor. The mean query time was 0.6 us.

2. The Algorithm

2.1. Mesh representation

Our 3D universe is partitioned into polyhedra bounded by
triangular faces, ¢. Each ¢ is defined by a list of pointers to its 3
vertices, defined by their Cartesian coordinates. The order of its
vertices in the list gives ¢ a well-defined positive and negative
side. ¢ also stores the labels of the adjacent polyhedron on its
positive, and on its negative side. Two triangles can intersect
only on shared vertices or edges.

We save space by not explicitly storing the polyhedra, since
that information is unnecessary to PINMEesH. Thus, the global
topology is represented only implicitly. However we do require
that the polyhedra be watertight. Not having to worry about
global topological properties like face shells and nesting makes
many things easier.

Figure 1 shows an example of a mesh containing 11 triangles
and 2 polyhedra (polyhedron 1 in red, polyhedron 2 in blue).
Triangle ABC bounds polyhedron 1 (on the negative side) and 2
(on the positive side) while the other triangles bound the outside
of the mesh and either polyhedron 1 or 2. The query point g is
in polyhedron 2.

Figure 1: Example of an input mesh and a query point.

2.2. Performing queries

Given a mesh M and a set of query points Q, the objective is
to determine which polyhedron contains each point g € Q.

We determine g’s location by casting a vertical ray / from
q going in the positive z direction (the particular orientation is
not important). We then determine the first mesh triangle ¢ that
intersects /, measured along [/ from ¢. Then, ignoring special
cases, ¢ is in one of ¢’s two adjacent polyhedra. Which one is
determined by which side of ¢ that ¢ is on. Special cases (e.g.,
when [is parallel to ¢) will be discussed later.

Polygon 1

Polygon 2
(@)

Polygon 1 Polygon 1

B, B B

n n
—
A e
. .

Polygon 2 Polygon 2 q

(b) (©

Figure 2: The messy special case of vertical edges in 2D point location.

Figure 2 presents an example of the 2D version of the point
containment problem (the 3D version is equivalent) that illus-
trates the challenge of determining the position of a query point
g basing on the orientation of a vertical edge (vertical triangle
in 3D): in Figure 2 (a) the edge AB is the first edge crossed
by the ray traced from ¢, and, since the sign of the dot product
between (0, —1) and rn is negative, this means that g is on the
polygon that is on the negative side of AB. If the normal was
parallel to the x-axis (Figures 2 (b) and (c)), on the other hand,
the first point hit by the ray would be on a vertex of AB, and thus
the process of determining in what polygon g is would need to
treat an ambiguity: even though the segment AB is the same on
Figure 2 (b) and (c) and q is on the same polygon in these two
figures, in (b) g is on the polygon on the negative side of AB
while in (c) it is on the positive side.

PINMEsH needs three basic operations in order to determine
in what polyhedron a query point g is:

e isOnProj(t,q) : given a triangle ¢ and a query point g, returns
true if and only if the projection of g onto the plane passing
through 7 is on the interior of ¢.

e isAbove(t, q) : given a query point g and a triangle ¢ such that
isOnProj(t, q) is true, returns true if and only if the projection
of ¢ onto ¢ is above g, i.e., the triangle is above the point.

o isBelow(t,t, q) : given two triangles ¢ and ¢ directly above a
query point g, returns true if and only if the z component of
the projection of g onto ¢ is smaller than the z component of
the projection of g onto #'.

Thus, to locate g, we first construct a subset 7" of the trian-
gles in the mesh M that are directly above ¢, thatis, T = {t €
M | isOnProj(q,t) and isAbove(q, t)}. Then the lowest triangle
u in T is selected using isBelow(g, t,t") to compare pairs of tri-
angles. Finally, the location of g is determined by verifying the
sign of the dot product between the vector (0,0,—1) and u’s
normal. The operation isOnPro j(t,q) was implemented using
the barycentric coordinates of the projection of ¢ onto the plane
z = 0. Similarly, isBelow(t, ', g) was implemented by comput-
ing the plane equations for the triangles ¢ and ¢, and then, using

these equations to project g onto the triangles and compute the
z-coordinates of the two projections; see Section 3.4.

2.3. Using a 2-level uniform grid to accelerate the computation

The uniform grid is useful in computational geometry to
efficiently cull a combinatorial set of pairs or triples of objects,
to find a much smaller subset whose members are likely to
coincide. For data that is uniformly independently and identically
distributed, or even that satisfies a Lipschitz condition so that
the maximum local density is bounded, the expected number of
pairs or triples of objects processed is linear in the size of the
input plus the output [2, 8, 12]. The basic idea is to superimpose
a grid over the data, with the grid cell size set so that the expected
number of edges per cell remains constant as the total number
of edges grows. Then, insert into each cell ¢ the elements (e.g.:
edges in 2D polygonal maps or triangles in 3D triangulations)
of the dataset intersecting c.

To handle very uneven data, 2-level grids have been used
successfully in applications like ray-tracing [13], exact parallel
2D polygonal map intersection [17], etc. Although 3-level grids
and general trees seem to be attractive extensions, Magalhaes
et. al. [17] found them to be much slower. They are less paral-
lelizable, slower to traverse and to construct. In more detail, the
“teapot in a stadium” problem, where there is a small object in a
large universe, is cited as a bad case for a uniform grid. However
it is not as bad as it would seem because empty uniform grid
cells are almost free, and an alternative to try to mitigate this
problem could be to set the grid resolution for the densest region,
i.e., at the teapot. Also, an adversary can use a few teapots in the
stadium to force an octree to refine itself in many places, and
each octree cell is more expensive than a uniform grid cell. For
the data that we’ve tried, the sweet point is a 2-level grid.

Therefore this paper uses a 2-level 3D uniform grid, quickly
created in parallel, to accelerate the point queries. We performed
tests with several datasets with different sizes from 3 distinct
sources and in all experiments the uniform grid presented a good
performance. Thus, we believe that, except for very pathological
datasets, the uniform grid is a good design choice.

Given the input mesh M, a 3D regular g; X g; X g grid G
overlapping M is created. g;, the number of grid cells in each
dimension, is called its resolution or size. Then a pointer to each
triangle is inserted into each grid cell that it intersects. Here we
perform a time-space tradeoff, by inserting the triangle # into all
the cells overlapping its bounding box, instead of into only the
cells that overlap it. Because of this strategy, the ragged array
may have a few more elements than necessary making the query
a little slower and the optimum grid resolution a little coarser.
In future we may change this decision since, while this strat-
egy simplifies the pre-processing step, in some specific datasets
(for example, meshes containing some long triangles whose
bounding-boxes intersect a significant percentage of the grid
cells) this approximation could degrade PINMEsH’s performance.

If the grid is sized such that the expected number of triangles
per cell is a constant (i.e., if the grid resolution is chosen as a
function of the number of triangles in the input mesh such that
the average number of triangles per cell is a constant), then the
expected query time to locate a point ¢ will be constant, for

the following reasons. Determining what grid cell ¢ contains g
takes constant time. Testing the ray / against one triangle takes
constant time, and so testing against all the triangles in c takes
constant expected time. If / hits at least one triangle, the query
result is found in constant time. However, there is a probability
p that [intersects no triangle in ¢, and so we must test / against
the triangles in the next higher cell, and so on up the column
of cells until we find a cell with a triangle that intersects /, or
reach the each of the grid. Under the assumption that the data is
distributed randomly independently of the cells, the probability
of [not hitting any triangle in any particular cell that it is tested
against is always p. Therefore the expected number of cells
processed until the first cell with a triangle that [hits follows an
exponential probability distribution with mean 1/(1 — p), i.e.,
constant. Therefore the expected time to locate g is constant.

The grid cells’ contents (the pointers to the triangles) are
stored in a ragged array. This is more compact than an array of
linked lists, and stores each cell’s contents contiguously, which
might play better with the computer’s cache. This common tech-
nique is also used in parallel bucket sorting.

Let the total number of grid cells be n = g;>. The grid cells
are numbered from O to n — 1. The total number of triangle
pointers in all the cells, equivalently the number of (cell,triangle)
incidences, is m. The ragged array data structure contains two
arrays: A with m elements containing the pointers to the trian-
gles and B a dope vector with n + 1 elements. The number of
triangle pointers in the i-th cell is B;;; — B;. The j-th pointer
contained in the i-th cell is Ap ;. Assuming there are fewer
than 232 (cell,triangle) incidences, 4 bytes suffice for one pointer.
Therefore the total amount of space required for the ragged array
is 4n + 4m + 4 bytes.

In contrast, using a linked list for each cell might require
4n+8m bytes depending on implementation details. STL vectors
might require 4n +4m + 24 p bytes, where p < n is the number of
non-empty cells, i.e., cells with vectors, and assuming that each
vector has a 24 byte overhead. This ignores the unused empty
space allocated when a vector is resized. The ragged array is
much more compact.

While the creation of the ragged array requires two scans
through the data, it replaces the allocation of many small memory
blocks with one big allocation of the array A. This strategy has
two advantages.

First, by avoiding the use of dynamic data structures such as
lists and dynamic arrays, the ragged array reduces the memory
overhead: since the uniform grid is 3D, the number of cells
grows cubicly with g, and so the total memory requirement of
the grid would be big if each cell stored a dynamic array (with a
header and, because of its allocation strategy, usually more slots
than the number of elements stored), or a linked list (with its
pointers). By using a ragged array, on the other hand, we have
exactly one slot for each triangle stored and each grid cell needs
to store only one pointer.

Also, performing one big allocation instead of g;> smaller
allocations does not fragment the memory, has more data locality,
and is faster.

The uniform grid works well even for uneven data for var-
ious reasons [2, 5, 9, 8]. First, the total time is the sum of one

component (inserting the triangles) that runs more slowly for
larger g, plus another component (performing the queries) that
runs more quickly. The sum varies only slowly with changing g;.
Second, with the ragged array, an empty grid cell is very inexpen-
sive, so that sizing the grid for the dense part of the data works.
Nevertheless, to deal with very uneven data, we incorporated a
second level grid into those few cells that contain more triangles
than some given threshold. For each cell in the first level grid we
store a pointer to a second level uniform grid. Figure 3 shows a
2D example, where cells with more than 2 edges were refined.

1\ ' H ;

Figure 3: Example of a 2D uniform grid, where the first level has 4 x 7 cells
and the second level has 32 cells. Cells with over 2 edges were refined. Adapted
from [17]

This nesting process could be recursively repeated in or-
der to ensure that all grid cells contain fewer triangles than the
threshold, creating a structure similar to an octree, but with more
branching at each level. Our solution could be considered a
special case of that. However, as mentioned earlier, the general
solution uses more space for pointers (or, for compact repre-
sentations, is expensive to modify) and is irregular enough that
parallelization is difficult. Our tests found the best performance
with just one or two levels. This can be explained because the
first level grid, in general, has many cells with more elements
than the threshold justifying the second level refinement. But,
past the second level, only a few number of cells exceed the
threshold and the overhead (processing time and memory use)
to refine those cells is never recaptured.

If g; is high, there will be many empty cells. Each empty cell
c is completely inside one polyhedron, and we label it with that
polyhedron’s id. Now, a query against an empty cell will be very
fast and constant time. A cell label is determined computing the
containing polyhedron with the usual semi-infinite ray, and then
using a scan-line flood fill algorithm to propagate that label to
adjacent empty cells. We repeat this so long as one empty cell
has not yet been labeled.

3. Implementation details

PiNMEsH contains a preprocessing and a querying step. Algo-
rithm 1 presents the preprocessing pseudo-code. That creates the
first level uniform grid, refines some of its cells to create second
level grids inside them, inserts the triangles into the ragged array,
and labels each empty grid cell with the polyhedron containing
1t.

Algorithm 2 presents the high level pseudo-code for the
querying, or point location function. For simplicity, we assume
the grid has only one level (the algorithm for a grid with two
levels is similar).

Algorithm 1 PINMEsH’s preprocessing step.
1: M: mesh represented as a set of triangles
: g1: resolution of the first level of the uniform grid
: g»: resolution of the second level of the uniform grid
: maxTrianglePerCell: threshold for refining a cell
: //Create and refine the uniform grid G
: G « g;° 3D uniform grid
: for each triangle t in M do
Insert ¢ into the G’s cells intersecting its bounding-rbox
: end for
: for each grid cell c in G do
if |triangles(c)| > maxTrianglePerCell then
Create a g3 uniform grid in ¢
for each triangle ¢ in triangles(c) do
Insert 7 into the ¢’s cells intersecting its b.box
end for
end if
: end for
: //Label G’s cells
: Initialize G’s cells labels with @
: for each empty grid cell c in G do
if c.label = © then
g < point in the center of ¢
label « locatePointInMesh(q,M,G)
//Use a scanline algorithm to label ¢’s connected
//component of empty cells
scanlineFloodFill(c,label)
end if
: end for

© ® N U R WD

DO N N NN = — = om o s e e e e
e A A T AN A > ol

Since the objective is to find the lowest intersection point
m between a triangle (the lowest triangle) and a vertical ray
[starting at ¢, the algorithm iterates up through the grid cells
intersecting /. The loop stops if a labeled cell is hit. Otherwise,
each triangle 7 in c is tested against / and the # with the lowest
intersection is returned. If none of the 7 in ¢ intersect /, then we
move up to the next higher c.

For performance, every time a lower triangle is found the
highest cell that needs to be processed is updated with the cell
¢ containing the projection of g on lowestTri (line 15) since no
cell above ¢ can have a lower triangle. This strategy reduces the
number of grid cells that need to be processed.

Figure 4 illustrates this process in 2D. The algorithm starts
the search on ¢ (g’s cell), and among the 4 edges in ¢y, only edge
xy intersects the ray / (on point m;,). Notice that, even though xy
is in ¢g, my is not in ¢ since xy intersects several grid cells. In
the next iteration, cell ¢, is processed and the edge uv containing
the intersection point m; (that is lower than m,) is found. Since
the lowest intersection seen so far (mm;) is on an edge in ¢, no
grid cell above ¢ needs to be processed.

After the loop on line 7 ends, the algorithm tests if the pointer
to the lowest triangle was initialized. If it was not, this means
that all cells above ¢, (the cell containing ¢g) were processed and
no triangle directly above g was found. Thus, g must be outside
the mesh. If the pointer to the lowest triangle was initialized,
we know that the face of this triangle is directly above g (and

the projection of g on this face represents the lowest point on
the mesh that is directly above g), and thus the signal of the dot
product between (0, 0, —1) and the normal of the lowest triangle
is used to determine in what polyhedron ¢ is.

Algorithm 2 Function locatePointInMesh(q,M,G)

1: g (argument): query point
: M (argument): mesh represented as a set of triangles
: G (argument): 3D uniform grid created on M
¢ (gexs Gey» gez) < coordinates of the grid cell g. containing g
: highestCzT oProcess «— G.gridResolution
lowestTri — @
: for ¢, in g,;...highestCzT oProcess do
¢ « grid cell of G in coordinate (¢cx, gey, ¢;)
if lowestTri = @ AND c.label # @ then

return c.label
end if
for each ¢ in triangles(c) do

if isOnProj(t,q) AND isAbove(t, q) then

if lowestTri=@ OR isBelow(t, lowestTri,q) then

15: lowestTri « ¢

L @Ry E Wy

— — = = =
R T

16: highestCzToProcess « getGridZ Pro jection(q, t)
17: end if

18: end if

19: end for

20: end for

21: if lowestTri # @ then
22: if lowestTri.normal, < 0 then

23: return lowestTri.positiveSide

24: else

25: return lowestTri.negativeSide

26: end if

27: else

28: return OUTSIDE //q is outside the mesh
29: end if

Figure 4: Computing point locations with a uniform grid.

3.1. Rational numbers

Besides the special cases (that will be treated later), PINMESH
could also fail because of floating point round-off errors. We
avoid that by using the C++ package GMPXX[11] to store and
process all coordinates using rational numbers.

Instead of representing each coordinate as a floating point
number, a pair of arrays of integers is used, one each for the
coordinate’s numerator and denominator. GM PXX implements
routines for the standard arithmetic operations. Their results
are exact, e.g., 1/3 + 3/7 = 16/21 exactly. That example also
illustrates that the result of combining two rationals often has as
many digits as the total number of digits in the inputs. This is
tolerable if the depth of the computation tree is small, which is
true for PINMEsH.

Since the size of a rational number is unpredictable and can
change, GMPXX allocates them on the heap. The problem is
that heap operations are superlinear in time; the more objects that
the heap contains, the more time that each object construction
or destruction takes. This gets even worse when several parallel
threads are attempting to modify the common heap, since the
modifications must be protected with semaphores and serialized.

Adapting parallel code to use rational numbers is not the
straightforward task that it would seem to be. Simply replacing
the floating-point variables with rational ones does not lead to
good performance, especially with large datasets. PINMEsH was
carefully engineered to be efficient. For example, we avoided
creating temporary rational numbers by using pre-allocated vari-
ables and carefully forming expressions. We also performed a
space-time tradeoff by storing values that would be needed later,
such as the grid cell containing a vertex v, rather than repeatedly
recomputing them.

Another advantage of using rationals is that the Simulation
of Simplicity [6] technique we use to treat the special cases
requires exact arithmetic.

Computing with rationals is much slower; while a floating
addition takes one cycle, a rational addition is a subroutine in-
volving three multiplications and an addition of vectors of in-
tegers followed by a greatest common divisor operation to cast
out common factors in the numerator and denominator. We feel
that the advantage of no more roundoff errors outweighs the
disadvantages.

3.2. Parallel implementation

PINMEsH was engineered to be efficient when parallelized.
Our current implementation uses OpenMP, which extends C++
with pragmas to compile for a multi-threaded shared-memory
model. For example, there is a pragma to say that the iterations
of the following for loop do not depend on each other and
can execute in parallel. During PINMEsH’s preprocessing, the
uniform grid, the axis-aligned bounding boxes of the triangles
and the location of the vertices in the grid cells are all computed
in parallel.

We allocate the uniform grid and insert the triangles into the
corresponding grid cells sequentially because it is such a small
fraction of the total algorithm time.

Once the first level of the grid is created, the next step is
to refine some grid cells. Since the separate cells being refined
do not affect each other and smaller (independent) ragged ar-
rays will be created in each of these refined cells, we do this in
parallel. Because in the creation of the nested uniform grids no
synchronization is performed and no memory is allocated for

the rational numbers (since the triangles are inserted based on
the pre-computed grid coordinates of their bounding boxes, no
operation with rational numbers is performed during this step),
the grid refinement step presents a good parallel scalability; see
Section 4.

Next we labeled the empty grid cells with the ids of their
containing polyhedra, using a scan-line flood-fill algorithm to
label the connected components of empty grid cells. To avoid the
implementation of a parallel scan-line algorithm (which would
require synchronizations), we divided the first level uniform
grid into cubic blocks (for example, a 647 grid could be divided
into 512 8 blocks) and used the flood-fill algorithm to label
the connected components in each block independently. Since
the blocks are processed independently, this processing was
performed in parallel.

Finally, since the queries are read-only, they can all be per-
formed in parallel.

3.3. Special cases

Special cases, also called geometric degeneracies, are a nasty
part of the life of a geometric algorithm designer. This section
presents our solutions to the special cases in point location.

The location of a query point g is computed with ray casting.
Some special cases happen when the ray intersects two or more
triangles at a same point m. L.e., there is a tie for the lowest
triangle, and m is on an edge or vertex. If the tied triangles have
different polyhedra below them, then which one is correct?

Assume ¢ is not on a triangle. If m is on a vertex or edge of
a triangle, we cannot arbitrarily choose one of the triangles to
determine in what polyhedron ¢ is since some of these triangles
may not even be on the surface of the polyhedron containing
q. For example, see Figure 5: we have two pyramids and the
ray casted from the query point g intersects the mesh firstly in
the edge AB. This edge is shared by 3 triangles: ABC, ABD and
ABE, and therefore the lowest point directly above ¢ (point m) is
shared by the three triangles. However, only the triangles ABD
and ABE bounds the outside of the mesh (where g is located).

Figure 5: The ray cast from the query point g intersects the mesh at the point m
in the edge AB and the ray from g, intersects the mesh at the point m on the
face ABD.

Another possibility is that g is on 7. We could handle this case
directly. However after Simulation of Simplicity’s perturbation,
g will no longer be on ¢, and so this case goes away. While a

point will never be considered to be on the mesh surface, if the
ability to report points on the surface is a desired feature it is
trivial to adapt PINMEsH (without changing its running time) to
perform this kind of computation.

To correctly handle these special cases, we used Simulation
of Simplicity (SoS) [6]. This is a general purpose symbolic
perturbation technique designed to treat special (degenerate)
cases, or geometric coincidences in the data. The inspiration
for SoS is that you might solve the problem of g being exactly
on ¢t by moving ¢, or by moving ¢’s vertices, slightly. However,
too big a perturbation may create new problems, while a too
small one may be ineffective because of the limited precision of
floating point numbers.

Figure 6 illustrates some special cases of the 2D version of
the problem and the effect caused by SoS, when each point g; is
slightly translated to g;..

G
Polygon 3
C
Polygon 2
A oo By

0“q3£ ..q4E

as (op

Polygon 1

Figure 6: Special cases in the 2D version of the point location problem removed
using SoS.

SoS is a brilliant solution that uses a symbolic perturbation
by a formal indeterminate infinitesimal value, €, or by €, for
some natural number i. The mathematical formalization of SoS
extends some exactly computable field, such as exact reals or
rationals, by adding orders of infinitesimals, €. Floating point
numbers with roundoff error cannot be the base. Indeed, floats
are not even a field because roundoff errors cause most of the
field axioms to be violated. E.g., because (1072° + 1) rounds to
1L,so(1072 + 1) =1 # 10720 + (1 - 1).

The infinitesimal € is an indeterminate. It has no meaning
apart from the rules for how it combines. E.g., if a is a positive
finite number, then two of those rules are that a + € is equivalent
to a and € < a. For a charming take on this, see [14].

All positive first-order infinitesimals are smaller than the
smallest positive number. All positive second-order infinitesi-
mals are smaller than the smallest positive first-order infinitesi-
mal, and so on. All this is logically consistent and satisfies the
axioms of an abstract algrebra field. It is attractive to think of €
as an actual very small finite number, perhaps 107! or 1071%,
Although it may be useful to develop in initial intuitive under-
standing, the use of a concrete value for the infinitesimals could
lead to wrong conclusions.

The result of SoS is that degeneracies are resolved in a way
that is globally consistent. If ¢ were previously on ¢, then after
SoS is applied, ¢ is no longer on ¢, but is either on its positive or
negative side. Which one it is is chosen to be globally consistent

even if there are many g and many ¢. Without a logical framework
such as SoS, this would be very difficult to do correctly.

To see how hard this would be, consider the problem of
intersecting two edges or line segments, e¢; and e;. The rele-
vant degeneracies occur when the end vertex of one lies on the
other, or when two vertices coincide. With SoS, the lines are
symbolically perturbed so that this doesn’t happen. Considering
the degeneracies explicitly is difficult because there are many
more cases to get correct. Consider the problem of intersecting
two polylines p; and p,. Without degeneracies, p; and p, cross
if and only if their constituent edges intersect an odd number
of times. With degeneracies, every incidence type of a vertex
or edge with another vertex or edge must be considered. SoS
simplifies the problem considerably.

For another example, consider the 2D point-in-polygon test
PNPOLY [10]. The simple case of the ray intersecting a vertex
is easy; the whole PNPOLY function has only 8 lines of exe-
cutable C code. But now consider running a vertical ray through
a triangulation as done by PINMEesH. There are some special
cases to consider: for example, as it was previously described
the ray may hit a triangle whose normal is parallel to the plane
z = 0 or it may hit a vertex or edge of a triangle that do not
even bound the polyhedron containing the point (as shown in
Figure 5). As it will be shown latter, with SoS these special cases
are automatically handled.

Implementing SoS and computing with orders of infinitesi-
mals would seem to be very slow. However, we’re using them
to determine signs of expressions. The only time that the in-
finitesimals change the result is when the exact computation
with rationals, would have caused a tie in a predicate, e.g., make
a determinant to be zero. Then, the infinitesimals break the tie.
The effect is to make the code harder to write and longer. How-
ever, unless a degeneracy occurs, the execution speed is the same.
When a degeneracy does occur, the code is slightly slower.

We implement SoS in PINMEsH by conceptually translating
the query point ¢ = (¢x, Gy, ¢z) 10 ge = (qx+€, @y +€%, g, +€). As
will be shown later, this specific choice of perturbation correctly
handles all these special cases.

The problem that this solves occurs when the sign of some
function f, often a determinant, is used to determine a control
path: for + go right, for — go left, but what about 0? When the
inputs to f are infinitesimals, then sgn(f) is never 0. However, we
do not actually compute with infinitesimals. Rather, we analyze
their effect, which is to change sgn(f) when it would have been
zero. So, the new code has extra clauses that execute only in that
case. Otherwise, the code is the same speed as before.

Edelsbrunner and Miicke [6], presented three requirements
to guide the choice of the polynomials used to represent the
perturbations in an algorithm using SoS:

1. The perturbed geometric objects must be simple (non-degen-
erate) if € > 0 is sufficiently small.

2. If an object is non-degenerate, then its perturbed version must
retain the properties of its original version.

3. The computational overhead of processing the perturbed ob-
jects should be negligible.

In [6] a perturbation scheme is presented to avoid degeneracies

in the point orientation problem in E?. In this problem, the

geometric objects are points and the scheme added a different
infinitesimal perturbation (more specifically, the j-th coordinate

of the i-th point is translated by €2’} to each coordinate of
each point. By doing that, all the perturbed points are in general
position (in 3D, this means that no set of 4 perturbed points
can be co-planar), and therefore, the input is non-degenerate. As
shown by the authors, this perturbation choice satisfies all the 3
conditions presented above.

We claim that the perturbation scheme used in our work
is suitable for point location, and also satisfies the conditions.
Condition 2 is automatically satisfied for a sufficiently small €,
that is, if the lowest mesh point above a query point g is on the
interior of a triangle, the lowest point on the mesh directly above
g will also be on the interior of the same triangle. Similarly,
if ¢ is not inside the mesh, g. will also not be in the mesh. As
will be shown later, the computational overhead of processing
qe instead of q is negligible, and thus condition 3 is also met.

To show that condition 1 is also satisfied we need to show
that g, will be a non-degenerate input, that is, g will never be
exactly below a vertex or edge of the triangles, and also g, will
never be on the mesh surface.

First, let’s show that g, will never be on the mesh surface. If
q is on a mesh triangle ¢, g. cannot be on the plane IT passing
through 7 for the following reason: suppose I1 has a plane equa-
tion: ax + by + cz + d = 0 and both ¢ and ¢, are on II. Since
q is on II, we have aq, + bq, + cq, + d = 0, and since g, is
also on IT we have a(g, + €) + b(g, + €) + c(q; + e)+d=0.
Thus, ae + be? + ce> = 0, and since € > 0, a + be + ce>2 = 0
= a = —be — ce*. Because a, b and ¢ cannot simultaneously
be 0, b and ¢ are not simultaneously 0, and thus a is infinitesi-
mal (which is impossible since, by definition, an infinitesimal is
smaller than any measurable value).

Also, g, cannot be on the surface of another triangle #’ not
intersecting g because a ball with infinitesimal radius centered
on ¢ cannot intersect .

Next, g. will never be exactly below a vertex or edge of the
triangles. Indeed, consider the projections ¢’ and ¢ of, respec-
tively, g and g, onto the plane z = 0. To show that g, will never
be directly below a vertex or edge we need to show that g, will
never be on the projection of any vertex or edge onto z = 0.

Lemma 3.1. If ¢’ is exactly on the projection v’ of a mesh vertex
v onto the plane z = 0, q. cannot be on the projection of any
vertex or edge.

Proof. Since V' is a point and ¢’ is translated by a positive dis-
tance, g, cannot be on v'. Also, ¢, cannot be on the projection u’
of any other vertex u onto z = 0 since, otherwise, the distance be-
tween V' and u’ would be proportional to Ve2 + €* = e V1 + €2,
which is infinitesimal.

Furthermore, if ¢’ is on v’ then ¢, cannot be on the projection
¢’ of an edge e onto z = O for two reasons. First, if v' does not
intersect ¢’, the shortest distance between ¢’ and v’ should be a
non-infinitesimal positive value, but the distance between ¢’ and
g. is infinitesimal. Second, if " intersects e’ and g is on ¢’, this
means that ¢’ and ¢ should be on the same edge ¢’. However, ¢’
and g/ could not be on the same edge because q. = (¢’ +¢€, q;+ez),
and thus the slope of this edge would be infinitesimal. O

It is also straightforward from this previous Lemma that if ¢’
is on the projection of an edge then g. will not on the projection
of a vertex.

It is worth mentioning that the property that ¢’ and ¢, could
not be simultaneously on the same segment would not be true
for any edge if g. was equal to (g, + €, g, + €, g, + €) since, in
this case, ¢’ and ¢, could be simultaneously on a segment with
slope 1. This shows that a careful choice of the infinitesimals is
an important task for correctly developing a SoS strategy.

Lemma 3.2. If ¢’ is on the projection e’ of a mesh edge e onto
the plane z = 0, q_ will not be on the projection of any edge.

Proof. As mentioned above, ¢’ and g.. cannot be simultaneously
on the same edge (see points g, and g, in Figure 6). Thus,
we only need to show that if ¢’ is on €', g, will not be on the
projection f” of another edge f onto z = 0.

If f’ does not intersect ¢’, the shortest distance between f”
and ¢’ should be a non-infinitesimal positive value, and thus g,
could not be on ¢’ (otherwise the shortest distance between e’
and f’ would be infinitesimal).

If f” intersects ¢’ on a vertex V', ¢’ could be either on v’ or
not. As mentioned in the previous lemma, if ¢’ is on ', then g
cannot be on an edge. If the smallest angle between ¢’ and f” is
not zero, it should be a positive non-infinitesimal and since the
distance between ¢’ and v’ is also a positive non-infinitesimal
value, then an infinitesimal disc centered on ¢’ could not intersect
the projection of any edge other than ¢’. Because the distance
between ¢’ and g is infinitesimal, it follows that g cannot be
on f’.

If the smallest angle between ¢’ and f is zero and the two
edges intersect, it is clear that if ¢’ is on €’, then ¢, could not be
on f” (otherwise the slope of these edges would be infinitesimal).

O

To conclude, all query points g will be translated to a position
g. that is not on the mesh and either below the interior of a
triangle or not below any triangle. Also, since a perturbed point
q. will never be directly below a vertex or edge, g. will also
never be directly below a vertical triangle (that is, a triangle
whose normal is parallel to the plane z = 0).

3.4. Implementing the symbolic perturbations

The only parts of PINMEsH that directly deal with the point co-
ordinates and need to be adapted to use SoS are the three main op-
erations described in Section 2.2: isOnProj(q,t), isAbove(q,t)
and isBelow(q, t,t"). This section will describe how they were
implemented and adapted for SoS.

Given a triangle ¢ and a point g, isOnProj(q,t) uses q’s
barycentric coordinates to determine whether or not the projec-
tion of g onto the plane passing through ¢ is on ¢. More specifi-
cally, we project both g and ¢ onto the plane z = 0, creating the
point ¢’ and the triangle ¢’, compute the barycentric coordinates
of ¢’ with respect to #’, and then use these coordinates to check
whether or not ¢’ is on the interior of 7.

Consider the three vertices 7, #; and #, of ¢ and the point ¢’.
The barycentric coordinates Ay,4,14; of ¢’ with respect to ¢’ can

be computed using the following equations:

(= 5,) X (¢, — 1) + (1, — 1) X (g}, = 15)

Ag = 1
0 Jot (D
(1, 1) X~ 1) + (1, ~ 1) % (d} ~ 1)
| = - 7 N)]
et
A=1-2-4 3

det = (11, = 15,) X (g, = 1p,) + (13, = 17,) X (15, = 13,) (4)

In order for ¢’ be in the interior of #', the following condition
must be met: 0 < 4; < 1, fori = 0, 1,2. The degenerate cases
for this test happens when der = 0 (this means the normal of the
original triangle 7 is parallel with respect to the plane z = 0, and
therefore ¢ is a vertical triangle), when one of the 4; is 1 (this
means ¢’ is on one of the vertices of #') or when one of the 4; is
0 and the others are not 1 (¢’ is on one of the edges of).

As mentioned in Section 3.3, a perturbed vertex will never be
exactly below a vertical triangle, and therefore, if det = 0, then
isOnProj(t, q) should return false. Therefore, the only special
cases that need to be considered are the ones that happen when
at least one of the A; is either O or 1.

If g is perturbed creating the new point g. = (g, + €, g, +
€%,q. + €), the projection ¢ of g. onto the plane z = 0 will be
equal to (¢ + €, gy + €%). Replacing ¢’ with ¢ in the equations
1,2 and 3 we have the following barycentric coordinates of the
perturbed points:

(t), —th)Xe+(th —1))x e
A =g+ ——= G 5
0 0 det)
(ty, — 1))X e+ (1), — 1))X €
Ay =4 + —= - 6
1 1 det ()
Ao =1-2, - A,)

As expected, because of SoS, A, will never be 0 or 1: A is
equal to Ay plus an expression containing an infinitesimal and
this expression can never be zero since, otherwise, we would
have tiv = t&v and t;X = t’lx (which would imply in det = 0). This
same observation is also valid for 4, and A,.

Therefore, if isOnProj(t, q) is implemented to it return true
ifand only if 0 < A, < 1, fori = 1,2, 3, no degeneracy will
happen. As it can be seen below, this implementation will be as
efficient as an implementation that does not consider the special
cases (and thus does not deal with the infinitesimals), satisfying
requirement 3 of SoS mentioned in section 3.3.

For example, consider the problem of verifying the following
predicate 0 < A, < 1:

o if 1y # 0 or 1 (which is expected to happen most of the time):
itisclearthat0 < 1q, <1 & 0< 4y < 1.

e if 4o = 0: A, < 1, and thus we only need to check if 0 < Aq,.
Considering that det > 0 (if det < 0 the value of this predicate
needs to be negated), 0 < 1, & (t’ly - téy) X e+(ty, —1,)X
€’ > 0, which happens if t;y > t&y or if (t]y = téy) and (t;, >

t1,) (since € << €).

(@) (b)
Figure 7: Some test datasets (rendered with MeshLab): (a) Armadillo, (b) Hand, (c) Rolling Stage, and (d) Neptune.

(c) ()

Table 1: Test dataset details.

Dataset Source Creator Vertices Triangles
Horse Georgia Tech - 48,485 96,966
Armadillo Stanford - 172,974 345,944
Hand Georgia Tech - 327,323 654,666
Pierrot AIM@SHAPE Frank_terHaar 443,805 887,606
Chinese dragon AIM@SHAPE Laurent_Saboret 655,980 1,311,956
Rolling stage =~ AIM@SHAPE INRIA 660,267 1,320,558
Buddha AIM@SHAPE VCG-ISTI 719,553 1,439,102
Ramesses AIM@SHAPE Marco_Attene 826,266 1,652,528
Elephant AIM@SHAPE ISTI 1,512,290 3,024,588
Neptune AIM@SHAPE Laurent_Saboret 2,003,932 4,007,872
6 Materials - - 6,378,288 12,756,604
12 Materials - - 12,756,576 25,513,208
24 Materials - - 25,513,152 51,026,416

o if g = 1: 4., > 0, and thus we only need to check if 4o, < 1.
Considering that det > 0 (again, if det < 0 the value of this
predicate needs to be negated), 1, <1 < (tiy - t’zy) X
e+ (8, — 1) X €> < 0, which happens if t’ly < téy or if
(1, = 1) and (t;, <1}).

This same strategy can be used to implement isAbove(t, q) and
isBelow(t,t', q). Besides the three functions mentioned in this
section, the only other step of PINMEsH that deals with the co-
ordinates of the query points is the operation of determining in
what uniform grid cell ¢ a query point g is. The only possibility
of degeneracy in this operation happens when ¢ is exactly on
the border of a cell. This case is treated by considering that the
point is in the cell with greatest index (e.g., a point on the border
between cell 8 and cell 9 is considered to be in cell 9), which is
consistent with the perturbation presented in this section (that
adds positive infinitesimals to all coordinates).

4. Experimental evaluation

We implemented PWMEsH in C++ using GMPXX [11] to
provide multiple precision rational numbers and OpenMP to
provide shared memory parallel programming constructors. Our
implementation was compiled using g++ 4.9.3 (with the -O3
optimization flag) and tested on a workstation with a dual 8-core
Xeon 3.1GHz E5-2687 hyperthreading processors, 128 GiB of
RAM and running the Linux Mint 17 operating system. Since

PINMEsH is parallel, unless otherwise noted it was configured to
use 16 threads.

PiNMEsH was compared with RCT, the sequential point loca-
tion algorithm proposed by Liu et al.[16]. Since RCT is based
on floating-point arithmetic, it does not always locate points
correctly. As far as we know, RCT is the most efficient available
point location algorithm, and is much faster than other algo-
rithms such as in CGAL and the AABB-tree-based algorithm
proposed by Baerentzen et al.[3]. RCT’s C++ source code was
kindly made available by the authors [16], and so we were able
to compile and run RCT using the same platform as PINMEsH.

‘We used 13 datasets, sized from one hundred thousand tri-
angles to fifty million triangles; see Table 1. Some were down-
loaded from the Stanford Scanning Repository [22], others from
Georgia Tech’s Large Geometric Model Archive [15], and others
from the AIM@SHAPE-VISIONAIR Shape Repository [1]. Ta-
ble 1 also includes the creator of each model downloaded from
the AIM@SHAPE-VISIONAIR Shape Repository. Figure 7 il-
lustrates some of these meshes.

The ten smallest meshes are single-material, containing only
one very large polyhedron. The three largest ones are multi-
material, containing many polyhedra. The 6 Materials dataset
was created by joining the six largest single-material meshes
used in the experiments. The datasets with 12 and 24 Materials,
on the other hand, were generated by joining, respectively, 2 and
4 copies of each object used in the 6 Materials dataset.

Figure 8: A messy degenerate special case, handled correctly only by PINMEsH.

The fact that we can process the largest datasets from three
different repositories lends confidence that pathologies that might
execute very slowly will rarely occur. Even though these exam-
ples exhibit quite a non-uniform distribution of triangles, so that
most of our cells are empty, PINMEsH is still very fast.

4.1. Correctness evaluation

PiINMEsH is simple enough that its correctness is more obvi-
ous than would be the case with a more complicated algorithm,
such as a topological sweep line. In addition, two strategies were
used to verify the correctness of our implementation.

1. Points randomly positioned in the bounding-box of the ob-
jects were queried using PINMEesH and RCT. Since it is im-
probable that point location queries with random points are
incorrectly computed (because of floating point errors or spe-
cial cases not treated), it is expected that the results obtained
by PINMEsH are equal to the ones obtained by RCT.
Experiments with query points positioned to represent special
cases were used to test if PINMEsH correctly located the points.
Our experiments evaluated millions of queries; PNMEsH cor-
rectly handled all of them. Since we are carefully treating all
the singularities using SoS and, because of the exact arithmetic,
PinMEsH does not have any roundoff error, we believe that it can
correctly handle any valid input.

We also generated a mesh with a messy special case to chal-
lenge PINMEsH; see Figure 8. It contains two upside-down pyra-
mids of height 10, representing two polyhedra: 1 on the bot-
tom and 2 on the top. The two pyramids intersect at the vertex
v = (0,0, 10). vis on 8 different triangles.

Consider a query point g at (0, 0,9), directly below v inside
polyhedron 1. The vertical ray used by PINMEsH will intersect
the mesh at v. Of those 8 triangles, the ray must choose one of
the 4 triangles bounding polyhedron 1. PINMEsH successfully
handled this special case. RCT, on the other hand, was not able to
correctly compute the polyhedron containing ¢ for the following
reason: in this mesh, RCT will try to find the closest triangle to
g. Since all the 8 triangles containing v are at the same distance
from ¢ (that is, they are the closest ones to ¢) and since RCT does
not perform any treatment to disambiguate this computation,
the first of these 8 triangles found by the algorithm is used to
compute g’s position. If the triangles bounding the polyhedron 2
are stored before the triangles bounding the polyhedron 1, RCT
will choose a triangle from polyhedron 2 to locate ¢, and thus
return an incorrect output.

2.

10

Table 2: Preprocessing and query times for PINMEsH and RCT on 13 test datasets.
N; is the number of triangles in each dataset. G is the resolution of the second
level uniform grid. 7', is the preprocessing time, in elapsed seconds, T is the
query time per point, in elapsed microseconds.

N; PiNMEsH RCT
Mesh x10> G, T,(5) Ty(us) T,(s) Ty(us)
Horse 97 93 0.30 0.45 042 0.84
Armadillo 346 143 0.86 0.35 1.88 1.07
Hand 655 173 0.78 0.47 3.64 1.78
Pierrot 888 193 2.83 0.27 5.24 2.07
R.Stage 1,312 223 3.73 0.30 827 2.05
C.Dragon 1,321 223 3.34 0.29 7.31 1.43
Buddha 1,439 223 2.89 0.28 820 1.37
Ramesses 1,653 233 1.84 0.30 10.72 1.04
Elephant 3,025 283 3.38 0.25 20.50 1.93
Neptune 4,008 31° 3.07 0.36 28.88 1.85
6 Mat. 12,757 463 5.86 0.39 91.34 1.76
12 Mat. 25,513 583 7.31 0.56 187.18 197
24 Mat. 51,026 733 14.00 0.59 388.38 2.55

4.2. Performance evaluation

For each test dataset, we created a set of query points con-
taining 500 thousand points randomly and uniformly distributed
inside the mesh and 500 thousand points randomly distributed
outside the mesh, but inside its bounding-box. These same points
were used to evaluate the performance of RCT and PNMEsH. Our
reported running times represent the average wall-clock (elapsed)
time of 10 runs.

The first level of PINMEsu’s uniform grid always had 643
cells. Each cell containing 1 or more triangles was refined. (1-
triangle cells were refined to increase the fraction of empty cells,
which are faster to process.) The resolution of the second level
grid was chosen such that the expected number of triangles per
cell is 0.0005, making the number of cells on each side of each
second level grid VJt/(643 x 0.0005), where 7 is the number of
triangles in the mesh.

Table 2 compares the times spent by PINMesH and RCT.
The total running-time (preprocessing plus time to perform one
million queries) of PINMEsH was up to 27 times faster than
RCT. The speedup of PINMEsH improves as the size of the mesh
increases, which indicates that it scales better than RCT.

PiwMEsH’s main advantage is in the preprocessing, which
is the bottleneck of both algorithms even for 1 million queries.
Because of a careful implementation of the uniform grid and of
the use of parallel programming (possible because our algorithm
is parallelizable), PINMEsH constructs the index up to 28 times
faster than RCT. The difference in the query times between RCT
and PINMEsH is smaller; PINMEsH is up to 8 times faster.

Figure 9 shows the processing time of PINMEsH and RCT, as
a function of the number of triangles in the mesh. The preprocess-
ing step of both algorithms scales linearly, but PINMEsH is much
faster than RCT. PINMEsH’s query time changes very slowly as
the number of triangles increases (being almost constant).

To stress-test the algorithms, the multi-material meshes were
generated to be very unevenly distributed in the different dimen-

400 T T T T
350
300
250
200

RCT -
PinMesh

Preprocessing time (seconds)

50

20 30 40
Millions of triangles in the mesh
(@)

10 60

Query time (microseconds)

RCT -
PinMesh

50

0 i
10

20 30 40
Millions of triangles in the mesh
(b)

60

Figure 9: Comparing (a) the preprocessing, and (b) the average query times of PINMesu and RCT.

Table 3: Times of the main steps of PINMEsH on the 24 Materials dataset using a varying number of threads. The query time is the average time per query (in us).

Preprocessing (s)

Queries (us)

Threads Locate Create 1% Refine Label empty Compute query Locate
grid cells level grid grid grid cells points’ grids points
1 31.92 4.04 15.08 12.57 1.30 5.31
2 16.43 4.34 8.52 8.44 0.74 2.85
4 8.84 4.41 4.85 5.88 0.39 1.54
8 4.60 4.13 2.86 5.54 0.21 0.80
16 2.49 4.04 2.00 5.46 0.13 0.46

sions. In the largest mesh, only 0.01% of the grid cells contain
triangles, 0.08% are empty and completely inside the mesh,
while the remaining 99.92% are empty and outside the mesh
(but inside its bounding-box). Even this dataset was efficiently
processed. This shows that sizing the grid so that most cells are
empty reduces the time. Also, since we can quickly process all
these datasets of varying characteristics, datasets that are bad
should be very unusual.

To evaluate PINMEsH’s parallel performance, we ran it with
varying numbers of threads. Table 3 shows the time spent by the
main steps of PINMEsH during the processing of the 24 Materials
dataset, the largest mesh used in the experiments.

Even when only 1 thread is used, PNMEsH was able to prepro-
cess the dataset faster than RCT. Indeed, while RCT sequentially
spent 388 seconds to preprocess the 24 Materials mesh and
2.55us to perform each query, PINMEsH processed it in 64 sec-
onds and spent 6.61us per query when only one thread was used.
Since the preprocessing time is usually much larger than the
query time, the total time spent by RCT is only smaller than the
total time spent by PINMEsH running with 1 thread when more
than 80 million points are queried in this mesh. When 4 or more
threads were used, PINMEsH was faster than RCT in both the
preprocessing and query steps.

The slowest preprocessing steps of PINMEesH with only one
thread are the initial computation of the grid cell containing each
vertex, which is slow because of the use of rationals, and the
refinement of the grid. Luckily, they parallelize quite well.

When PInMEsH runs with one thread, creating the first level

11

uniform grid, is the fastest step. This was not parallelized since
it consists basically in inserting the ids of the triangles into
the relevant positions of the ragged array. This is very memory
intensive, and would require synchronizations to run in parallel.
As stated in Section 3.2, preliminary experiments showed that the
overhead associated with these synchronizations is big compared
to the time spent inserting the ids into the array.

PINMEsH scales well as the number of threads increases from
1 to 8. For example, when the number of threads is increased
from 1 to 2, the total running time is reduced by 41%. This scal-
ability happens because the slowest steps are the ones that scale
better. Another consideration is that the Xeon processor used in
the tests has the Intel® Turbo Boost technology to increase the
CPU frequency from the 3.1GHz base up to 3.8GHz. However,
to keep from overheating the CPU, when more cores are active,
less Turbo Boosting is allowed. Therefore, one cannot expect
perfect scalability even in a completely parallelizable function.

When the number of threads increases from 8 to 16, on
the other hand, the total running time is reduced by 20%. This
smaller reduction happens mainly because of two reasons. First,
because of Amdahl’s law, the percentage of time spent perform-
ing operations that do not scale (such as memory allocations) and
running the steps that were not implemented in parallel increases
as the number of threads increase. Second, some of the steps
are very memory intensive, and we believe that they saturate the
processor’s memory bus when 16 threads are used.

PINMESH, in general, uses more memory than RCT. For exam-
ple, when the 24 Materials dataset was processed PINMEsH used

23GB of RAM while RCT used 14GB. This larger memory
footprint is mainly because PINMEsH stores all the coordinates
of the mesh and of the query points using arbitrary-precision
rationals. Indeed, in this dataset, PINMEesH uses 9.2GB to store
the coordinates. Furthermore, as mentioned in this paper, we
perform several space-time tradeoffs.

5. Conclusion and future work

This paper presented PINMEsH, an exact and efficient algo-
rithm for quickly and correctly locating points in 3D meshes.
PinMEesH was carefully engineered to always handle point lo-
cation queries correctly, even with inputs having many special
cases. PINMEsH’s correctness results from a combination of four
techniques: a 2-level uniform grid, rational number coordinates,
Simulation of Simplicity, and parallelization. PINMEsH was tested
on large datasets from three different geometry repositories.

Although PINMEsH is currently the fastest 3D point location
algorithm (according to our experiments), it is possible that
other exact arithmetic techniques might make PINMEsH even
faster, such as Adaptive Precision Floating-Point Arithmetic [21]
and interval arithmetic [18]. One research topic would be to
determine what is the necessary precision as the dataset size
grows, and whether it is even possible to preprocess the dataset
with a fixed precision, and be able to correctly handle a query
point arbitrarily close to a dataset element. However, this might
speed up determining which cell contains each vertex. Also,
interval arithmetic could be used to identify the majority of
vertices that are far enough from any cell boundary that roundoff
error is not a problem there.

The efficient support to rational coordinates by PINMEsH is
also important in some applications where the data can only be
represented using rationals. For example, vertices resulting from
the intersection of faces or edges may not be exactly represented
using floating-point numbers.

The next task, now underway, is extending these techniques
to compute the intersection of two very large 3D big meshes,
such as occur in Computational Fluid Dynamics.

PinMEsH’s C++ source code is freely available under GNU
General Public License (GPL) for other researchers to use and
extend at http:wrfranklin.org/Main/Software.

Acknowledgments

This research was partially supported by FAPEMIG, CAPES
(Ciencia sem Fronteiras - grant 9085/13-0), CNPq, and NSF
under grant IIS-1117277.

References

[1] AIM@SHAPE-VISIONAIR Shape Repository. AIM@SHAPE-

VISIONAIR Shape Repository. http://visionair.ge.imati.cnr.

it// (accessed on Feb-2016); 2016.

[2] Akman V, Franklin WR, Kankanhalli M, Narayanaswami C. Geometric
computing and the uniform grid data technique. Comput Aided Design
1989;21(7):410-20.

12

[3

=

[4

flnar

[5

—_

[6

=

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13

=

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

Baerentzen JA, Aanaes H. Signed distance computation using the an-
gle weighted pseudonormal. IEEE Transactions on Visualization and
Computer Graphics 2005;11(3):243-53. URL: http://dx.doi.org/
10.1109/TVCG.2005.49. doi:10.1109/TVCG. 2005.49.

The CGAL Project . CGAL User and Reference Manual. 4.8 ed.; CGAL
Editorial Board; 2016.

Cucu L, Dragan M, Negru V, Mangu D. Three dimensional Delaunay
triangulation using an uniform grid. In: 11th European Workshop Comput.
Geom. Universitit Linz; 1995, p. 21-3.

Edelsbrunner H, Miicke EP. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on
Graphics (TOG) 1990;9(1):66-104.

Feito FR, Torres JC. Inclusion test for general polyhedra. Computers
& Graphics 1997;21(1):23-30. URL: http://www.sciencedirect.
com/science/article/pii/S0097849396000672. doichttp://dx.
doi.org/10.1016/50097-8493(96)00067-2.

Franklin WR, Chandrasekhar N, Kankanhalli M, Seshan M, Akman V.
Efficiency of uniform grids for intersection detection on serial and parallel
machines. In: Magnenat-Thalmann N, Thalmann D, editors. New Trends in
Computer Graphics (Proc. Computer Graphics International’88). Springer-
Verlag; 1988, p. 288-97.

Franklin WR, Sivaswami V, Sun D, Kankanhalli M, Narayanaswami C.
Calculating the area of overlaid polygons without constructing the overlay.
Cartography and Geographic Information Systems 1994;21(2):81-9.
Franklin WR. Pnpoly-point inclusion in polygon test. http:
//www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/
pnpoly.html (accessed on Feb-2016); 2006.

Granlund T, the GMP development team . GNU MP: The GNU Multiple
Precision Arithmetic Library; 6.0.0 ed.; 2014. Http://gmplib.org/ (accessed
on Jun-2015).

Hopkins S, Healey RG. A parallel implementation of Franklin’s uniform
grid technique for line intersection detection on a large transputer array. In:
Brassel K, Kishimoto H, editors. 4th International Symposium on Spatial
Data Handling. Ziirich; 1990, p. 95-104.

Kalojanov J, Billeter M, Slusallek P. Two-Level Grids for Ray Tracing
on GPUs. Computer Graphics Forum 2011;doi:10.1111/j.1467-8659.
2011.01862.x.

Knuth DE. Surreal Numbers: How Two Ex-students Turned on to Pure
Mathematics and Found Total Happiness: A Mathematical Novelette.
Addison-Wesley; 1974.

Large Geometric Model Archive. GIT Large Geometric Model Archive.
http://www.cc.gatech.edu/projects/large_models/ (accessed
on Feb-2016); 2016.

Liu J, Chen YQ, Maisog JM, Luta G. A new point containment test algo-
rithm based on preprocessing and determining triangles. Comput Aided
Des 2010;42(12):1143-50. URL: http://dx.doi.org/10.1016/j.
cad.2010.08.002. doi:10.1016/j.cad.2010.08.002.

Magalhaes SVG, Andrade MVAA, Franklin WR, Li W. Fast exact par-
allel map overlay using a two-level uniform grid. In: Proceedings of
the 4th ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data. BigSpatial *15; New York, NY, USA: ACM; 2015,.
Moore RE. Interval arithmetic and automatic error analysis in digital
computing. Tech. Rep.; DTIC Document; 1962.

O’Rourke J. Computational Geometry in C. 2nd ed.; New York, NY, USA:
Cambridge University Press; 1998. ISBN 0521640105.

Ogayar CJ, Segura RJ, Feito FR. Point in solid strategies. Computers
& Graphics 2005;29(4):616 —24. doi:http://dx.doi.org/10.1016/j.
cag.2005.05.012.

Shewchuk JR. Adaptive precision floatingpoint arithmetic and fast
robust geometric predicates. Discrete & Computational Geometry
1997;18(3):305-363.

Stanford Scanning Repository. The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/ (accessed on
Feb-2016); 2016.

Wang W, Li J, Sun H, Wu E. Layer-based representation of polyhedrons
for point containment tests. Visualization and Computer Graphics, IEEE
Transactions on 2008;14(1):73-83. doi:10.1109/TVCG.2007.70407.

