Local topology and parallel overlaying large planar graphs

W. Randolph Franklin and Salles V. G. de Magalhães, RPI

2016-02

Goal of this talk

- minimal geometry representations for polygons etc.
- applied to overlaying two plane graphs (GIS maps), combining
- minimal reps, for simplicity,
- uniform grid, for fast intersection detection,
- rational numbers, to prevent roundoff errors,
- Simulation of Simplicity, for degeneracies,
- OpenMP, for parallel speedup.
- big example: overlay two maps (US Water Bodies, US Block Boundaries)
- 54,000,000 vertices, 737,000 faces
- 149 elapsed seconds (plus 116 s for I/O).
- next step: overlay 3D meshes.

My background

- Philosophically a Computer Scientist.
- PhD officially in Applied Math.
- Working in Electrical, Computer, and Systems Engineering Dept.
- Students in Computer Science
- Teaching Engineering Parallel Computing.
- Collaborating with Geographers for a long time.
- Enjoy applying computer science \& engineering to geometry \& GIS.
- new ways to look at relations between objects in space
- to facilitate spatial operations
- area
- overlay
- what is minimal explicit type of info need?
- fewer special cases
- less code
- less debugging
- goal: to do something
- better,
- faster,
- in parallel,
- on bigger datasets
- All this is intended to be used.

to.pol.o.gy

tpälj/
noun

1. ...
2. the way in which constituent parts are interrelated or arranged. "the topology of a computer network"
3. I'll include local geometry

- location
- directions

4. Contrast to more global topology

- complete edges, faces (however, will use these sometimes)
- edge loops, face shells
- hierarchies of inclusions

Prior art

- 9 relations in topology
- Morse complexes
- hydrography hierarchy
- winged edges, half edges
- manifold objects
- regularized set ops

Within(a,b)

Touches(a,b)

Crosses(a,b)

Touches(a, b)

Overlaps(a,b)

Hydrologic Units -
Watershed Boundary Dataset

More prior art

Winged edge

Fig. 4. A subdivision of the extended plane (solid lines) and a strict dual (dashed lines).

Figure 4 in Guibas and Stolfi.
Primitives for the manipulation of general subdivisions and the computation of Voronoi Diagrams

How little info does a polygon need?

- Set of vertices is ambiguous.
- Set of edges is good.
- point in polygon
- area, center of gravity
- The computation is a map-reduce.

Point Inclusion Testing on a Set of Edges

- "Jordan curve" method
- Extend a semi-infinite ray.
- Count intersections.
- Odd \equiv inside.
- Obvious but bad alternative: sum subtended angles. Implementing w/o arctan, and handling special cases wrapping around 2π is tricky and reduces to Jordan curve.

Area Computation on a Set of Edges

- Each edge, with the origin, defines a triangle.
- Sum.
- Extends to any mass property, including (using a characteristic function) point inclusion.

Advantages of Set of Edges Data Structure

- Simple enough to debug.
- "SW can be simple enough that there are obviously no errors, or complex enough that there are no obvious errors."
- Less space to store.
- Easy parallelization.
- Partition edges among processors.
- Each processor sums areas independently, to produce one subtotal.
- Total the subtotals.

Augmented vertices: another minimal polygon representation

- Augmented vertices: add a little to each vertex.
- My examples will use rectilinear polygons, but all this works on general polygons
- 8 types of vertices.
- Assign a sign, $s= \pm 1$ to each type.
- Now, each vertex defined as

$$
v_{i}=\left(x_{i}, y_{i}, s_{i}\right)
$$

What augmented vertices can do

- Area: $A=\sum x_{i} y_{i} s_{i}$

Vertex incidences: YAMPR

- Another minimal data structure.
- like half edges.
- Only data type is incidence of an edge and a vertex, and its neighborhood. For each such:
- $\mathrm{V}=$ coord of vertex
- $\mathrm{T}=$ unit tan vector along edge
- $\mathrm{N}=$ unit vector normal to T pointing into the polygon.
- Polygon: $\{(\mathrm{V}, \mathrm{T}, \mathrm{N})\}$ (2 tuples per vertex)

- Perimeter $=-\sum(V \cdot T)$.
- Area $=1 / 2 \sum(V \cdot T)(V \cdot N)$
- Multiple nested components ok.

But... don't we always know the edges?

(so what's the point of this?)

- Not always.
- Compute the area of the intersection of two polygons.
- Application: how much do they interfere?
- We know the input polygons' edges.
- However finding the output polygon's edges is harder than merely finding the augmented vertices.
- Two types of output vertices:
- Some input vertices,
- Some intersections of input edges.
- All output vertices must be inside an input polygon.
- Find candidate output vertices by intersecting pairs of input edges.
- Filter.
- Apply area equation to surviving vertices.

Map overlay

- Input: two maps containing sets of polygons (aka faces).
- Output: all the nonempty intersections of one polygon from each map.
- Example: Census tracts with watershed polygons, to estimate population in each watershed.
- Salles Viana Gomes de Magalháes presented this at BIGSPATIAL in Nov.
- However, first some foundations:

Parallel and memory notes

Massive shared memory

- is an underappreciated resource.
- External memory algorithms are not needed for many problems.
- Virtual memory is obsolete.
- \$40K buys a workstation with 80 cores and 1TB of memory.
parallel computing
- Almost all processors, even my smart phone, are parallel.
- Algorithms that don't parallelize are obsolete.
- One Xeon core is $20 x$ more powerful than one CUDA core.
- Nvidia GPUs are almost ubiquitous.

Why parallel HW?

- More processing \rightarrow faster clock speed.
- Faster \rightarrow more electrical power. Each bit flip (dis)charges a capacitor through a resistance.
- Faster \rightarrow requires smaller features on chip

- Smaller \rightarrow greater electrical resistance!
- \Longrightarrow.
- Serial processors have hit a wall.

Parallel HW features

- IBM Blue Gene / Intel / NVidia GPU / other
- Most laptops have NVidia GPUs.
- Thousands of cores / CPUs / GPUs
- Lower clock speed 750 MHz vs 3.4 GHz
- Hierarchy of memory: small/fast \rightarrow big/slow
- Communication cost \gg computation cost
- Efficient for blocks of threads to execute SIMD.
- OS, per 6/2013 http://top500.org :
runs on 187th fastest machine
\& variants run on 1st through 186th.

Massive Shared Memory

- Massive shared memory is an underappreciated resource.
- External memory algorithms are not needed for most problems.
- Virtual memory is obsolete.
- \$40K buys a workstation with 80 cores and 1 TB of memory.

```
const long long int n(5'000'000'000);
static long long int a[n];
int main() {
double s(0);
for (auto &e in a) e = i;
for (auto e in a) s += e;
std::cout << "n=" << n << ", s="
<< s << std::endl; }
```

Runtime: 60 secs w/o opt to loop and r/w 40GB. (6 nsec / iteration)

Parallel computing

- We use OpenMP (w. shared memory) and CUDA/Thrust (w. Nvidia GPU).
- Our machine:
- dual 8-core Intel Xeon: 32 hyperthreads.
- 128GB main memory.
- Peak Linpack speed: 358Gflops.
- (Compare: Apple 6s iPhone: 1Gflops.)
- Nvidia K20Xm compute processor: 2496 CUDA cores @ 706 MHz , 6GB memory.
- cost in 2012 < \$15K.

OpenMP

- Shared memory, multiple CPU core model.
- Good for moderate, not massive, parallelism.
- Easy to get started.
- Options for protecting parallel writes:
- Sum reduction: no overhead.
- Atomic add and capture: small overhead.
- Critical block: perhaps 100 K instruction overhead.
- Only valid cost metric is real time used.
- Programs with 2 threads can execute more slowly than with one.

OpenMP Example

const int $\mathrm{n}(500000000)$;
int $\mathrm{a}[\mathrm{n}], \mathrm{b}[\mathrm{n}]$;
int k(0) ;
int main () \{
\#pragma omp parallel for
for(int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) a[i]=i;
\#pragma omp parallel for
for (int i = 0; i < n; i++) \{
\#pragma omp atomic capture (or critical)
j $=k++$;
b[j] = j; \}
double s(0.);
\#pragma omp parallel for reduction(+:s)
for (int i=0;i<n;i++) s+=a[i];
cout << "sum: " << s << endl; \}

CUDA

- NVIDIA's parallel computing platform and programming model.
- C++ small language extensions and functions
- CUDA compiler nvcc picks this apart.
- Direct access to complicated GPU architecture.
- Nontrivial learning curve: Efficient programming is an art.
- Assists like Unified Virtual Addressing trade execution vs programming speed.
- My advice: don't over optimize; next generation will be different.

GPU Architecture

Thrust

- C++ template library for CUDA based on STL.
- Functional paradigm: can make algorithms easier to express.
- Hides many CUDA details: good and bad.
- Powerful operators all parallelize: scatter/gather, reduction, reduction by key, permutation, transform iterator, zip iterator, sort, prefix sum.
- Surprisingly efficient algorithms like bucket sort.
- Possible back ends: CUDA, OpenMP, sequential on host.

Thrust Example

struct dofor \{
__device__ void operator()(int \&i) \{ i $*=2 ;\}$ \}; int main(void) \{
thrust::device_vector<int> X(10);
thrust::sequence(X.begin(), X.end()); // init to 0,1 thrust::fill(Z.begin(), Z.end(), 2); // fill with
// compute $Y=X \bmod 2$
thrust::transform(X.begin(), X.end(), Z.begin(),
Y.begin(), thrust::modulus<int>());
thrust::for_each(X.begin(), X.end(), dofor());
thrust::copy(Y.begin(), Y.end(), // print Y std::ostream_iterator<int>(std::cout, "\n")); \}

Other techniques used in big example

- rational numbers
- simulation of simplicity
- uniform grid

Multiprecision big rationals

- Solves problem of roundoff error when intersecting lines.
- Slivers no longer matter.
- Code runs slower, but ok.
- Efficiency concerns:
- Number size depends on computation tree depth. Ok.
- Millions of heap allocations are inefficient, esp. in parallel. Not ok.
- Not mentioned in documention; must infer from experiments.
- Use Google's allocator.
- Refactor code to minimize allocations.

Simulation of simplicity

- Solves problem of geometric degeneracies.
- E.g., vertex of one map coinciding with vertex of the other map.
- Pretends to add a different order of infinitesimal to each coordinate in one map.
- $\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(x_{i}+\epsilon^{3 i}, y_{i}+\epsilon^{3 i+1}, z_{i}+\epsilon^{3 i+2}\right)$
- Now, coincidences cannot happen, even in intersections.
- Implementation: analyze what effect these infinitesimals would have on every predicate in the program, and
- Recode all the predicates.
- if $\left(a_{1} \leq b \& b \leq a_{2}\right)$ becomes if $\left(a_{1} \leq b \& b<a_{2}\right)$

Uniform grid

Summary

- Overlay a uniform 3D grid on the universe.
- For each input primitive - face, edge, vertex - find overlapping cells.
- In each cell, store set of overlapping primitives.

Properties

- Simple, sparse, uses little memory if well programmed.
- Parallelizable.
- Robust against moderate data nonuniformities.
- Bad worst-case performance on extremely nonuniform data.
- As do octree and all hierarchical methods.

How it works

- Intersecting primitives must occupy the same cell.
- The grid filters the set of possible intersections.

Uniform Grid Qualities

- Major disadvantage: It's so simple that it apparently cannot work, especially for nonuniform data.
- Major advantage: For the operations I want to do (intersection, containment, etc), it works very well for any real data l've ever tried.
- Outside validation: used in our 2nd place finish in November's ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh

Uniform Grid Time Analysis

For i.i.d. edges (line segments), show that time to find edge-edge intersections in E^{2} is linear in size(input+output) regardless of varying number of edges per cell.

- N edges, length $1 / L, G \times G$ grid.
- Expected \# intersections $=\Theta\left(N^{2} L^{-2}\right)$.
- Each edge overlaps $\leq 2(G / L+1)$ cells.
- $\eta \triangleq \#$ edges per cell, is Poisson; $\bar{\eta}=\Theta\left(N / G^{2}(G / L+1)\right)$.
- Expected total \# xsect tests: $G^{2} \overline{\eta^{2}}=N^{2} / G^{2}(G / L+1)^{2}$.
- Total time: insert edges into cells + test for intersections. $T=\Theta\left(N(G / L+1)+N^{2} / G^{2}(G / L+1)^{2}\right)$.
- Minimized when $G=\Theta(L)$, giving $T=\Theta\left(N+N^{2} L^{-2}\right)$.
- $=\Theta$ (size of input + size of output).

Five components of big example

- simple flat topologically local data structures
- parallelizable
- uniform grid
- simulation of simplicity
- rational numbers

Next: Salles's ACM BIGSPATIAL talk

Future Modeling of Valid Terrain

My big long-term unsolved problem is to devise a mathematics of terrain.
Goals: Math that

- allows the representation of only legal terrain ($=$ height of land above geoid),
- minimizes what needs to be stated explicitly, and
- enforces global consistencies.

Why? To put compression and other ops on a logical foundation.

Terrain properties

- Messy, not theoretically nice.
- Often discontinuous (C^{-1}).
- Many sharp local maxima.
- But very few local minima.
- Lateral symmetry breaking - major river systems.
- Different formation processes in different regions.
- Features do not superimpose linearly; two canyons cannot cross and add their elevations.
- C^{∞} linear systems, e.g,. Fourier series, are wrong.
- Multiple related layers (elevation, slope, hydrology).

Current representations

- Array of elevation posts.
- Triangular splines, linear or higher.
- Fourier series.
- Wavelets

Theory vs practice:

- Slope is derivative of elevation, but
- that amplifies errors, and
- lossy compression has errors, so
- maybe we want to store it explicitly.

Also, shoreline is a level set, but see next slide.

Inconsistencies between layers

Elevation contours crossing shoreline

Math should match physics

- Fourier series appropriate for small vibrations, not terrain.
- Truncating a series produces really bad terrain.
- Anything, like Morse complexes, assuming continuity is irrelevant.
- Fractal terrain is not terrain.
- Wavelets: how to enforce long-range consistency?
- Topology, by itself, is too weak.
- Terrain is not linear, not a sum of multiples of basis function.

Terrain formation by scooping

- Problem: Determine the appropriate operators, somewhere inside the range from conceptually shallow (ignoring all the geology) to deep (simulating every molecule).
- One solution: Scooping. Carve terrain from a block using a scoop that starts at some point, and following some trajectory, digs ever deeper until falling off the edge of the earth.
- Properties: Creates natural river systems w cliffs w/o local minima.
- Every sequence of scoops forms a legal terrain.
- Progressive transmission is easy.
(Chris Stuetzle, Representation and generation of terrain using mathematical modeling, PhD, 2012.)

Terrain formation by features

- Represent terrain as a sequence of features - hills, rivers, etc ..
- plus a combining rule.
- This matches how people describe terrain.
- Progressive transmission.
- The intelligence is in the combining rule.

How compact is this rep? How to evaluate it?

Implications of a better rep

- Put earlier empirical work on a proper foundation.
- Formal analysis and design of compression.
- Maximum likelihood interpolation, w/o artifacts.
- Treat more sophisticated metrics, like suitability for operations like path planning, or recognizability.
- Close the loop to pre-computer descriptive geometry.

PhD research: An efficient algorithm for computing the exact overlay of triangulations

Salles Viana Gomes de Magalhães, PhD. Student

Prof. Dr. W Randolph Franklin, RPI/Supervisor
Prof. Dr. Marcus V. A. Andrade, UFV Wenli Li, PhD. Student

Myself

- Universidade Federal de Vicosa, Brazil - 2005-2010.
- GIS since 2007
- Areas: HPC, GIS, algorithms ...
- Dr. Andrade

- 2014: Rensselaer Polytechnic Institute.
- Dr. Franklin
- Dr. Andrade
- Wenli Li

An efficient algorithm for computing the exact overlay of triangulations

Map overlay

- Two vectorial maps are superimposed.
- The intersection between polygons from the two maps is computed.
- Several applications. Ex: counties and watersheds.

- This problem extends to 3D objects (triangulations).
- Example: layers of soil x polyhedron representing excavation section.

Challenge

- Finite precision of floating point \rightarrow roundoff errors.
- Common techniques: no guarantee.
- Big amount of data \& 3D \rightarrow increase problem.
- Proposed solution: EPUG-OVERLAY and 3D-EPUGOVERLAY

EPUG-OVERLAY and 3D-EPUG-OVERLAY

- EPUG-OVERLAY
- Exact: uses rational numbers.
- Parallel.
- Uniform Grid for indexing.

- Next steps: 3D-EPUG-OVERLAY
- Will use the same techniques, but for 3D triangulations

EPUG-OVERLAY

- Simple map representation.
- No explicit global topology \rightarrow easy to maintain and avoid topological errors.
- Easy to process in parallel.
- Simple data structures.
- Easy to parallelize
- Efficient

Map representation

- Topological representation.
- Each region has one id.
- Edges represent boundaries.

Overlay algorithm

- Find all intersections.
- Locate vertices in the other map.
- Compute output polygons.

Computing intersections

- "Brute force": $\mathrm{O}(|\mathrm{A}| \mathrm{x}|\mathrm{B}|)$
- Other possible technique:
- Chazelle-Edelsbrunner O(n log n + k)
- Complicate and doesn't parallelize
- In this work: uniform grid
- Tests: very efficient

Computing intersections

In this work: uniform grid.

- Insert edges in grid cells (edge may be in several cells).
- For each grid cell c, compute intersections in c.

4x7 uniform grid. Blue map: 8 edges Black map: 16 edges

Computing intersections

- Uniform Grids work well for uneven data.
- For very uneven data: 2-level uniform grid.

Locating vertices in other map

- Also implemented using a uniform grid.
- Given p, find the lowest edge above p.

Locating vertices in other map

- Also implemented using a uniform grid.
- Given p, find the lowest edge above p.

Locating vertices in other map

- Also implemented using a uniform grid.
- Given p, find the lowest edge above p.

Locating vertices in other map

- Also implemented using a uniform grid.
- Given p, find the lowest edge above p.

Locating vertices in other map

- Also implemented using a uniform grid.
- Given p, find the lowest edge above p.

Computing output polygons

- Edges of the output polygons \rightarrow computed based on input edges.
- For each input edge \rightarrow three scenarios.

Computing output polygons

No intersection.
1 - edge completely inside a polygon (ex: e).

- Create output edge.

2 - edge completely outside a polygon (ex: f).

- No output.

Computing output polygons

3 - edge $e=(u, w)$ with intersections.

- e is divided into segments.
- Segments classification \rightarrow similar to the cases 1 and 2 .

- (u,w) divided into 7 segments.
- 5 will be in output.

Computing output polygons

3 - edge $e=(u, w)$ with intersections.

- e is divided into segments.
- Segments classification \rightarrow similar to the cases 1 and 2 .

Case 1: inside polygon 5

$-i_{5} \bullet \frac{0 \cap 5}{6 \cap 5} i_{6}$

- (u,w) divided into 7 segments.
- 5 will be in output.

Computing output polygons

3 - edge $e=(u, w)$ with intersections.

- e is divided into segments.
- Segments classification \rightarrow similar to the cases 1 and 2 .

Parallel implementation

- This algorithm \rightarrow few data dependency \rightarrow very parallelizable.
- Uniform grid creation: edges in parallel.
- Locate vertices in polygons.
- Compute intersections: cells in parallel.
- Compute output edges: process input edges in parallel.
- Most of computers: multicore \rightarrow OpenMP.

Implementation details

- Computation is performed using rational numbers \rightarrow no roundoff errors.
- EPUG-OVERLAY implemented using GMPXX.
- Special cases: simulation of simplicity.

Experimental results

- EPUG-OVERLAY implemented in C++ .
- Tests:
- Xeon E5-2687 $\rightarrow 16$ cores / 32 threads.
- 128 GiB of RAM.
- Linux Mint 17

Experimental results

- 2 Brazilian and 4 North American datasets.
- Shapefiles converted to our format.
- BrCounty: 342,738 vertices, 2,959 faces
- BrSoil: 258,961 vertices, 5,567 faces.

Experimental results

- 2 Brazilian and 2 North American datasets.
- Shapefiles converted to our format.
- UsAquifers:
- UsCounty:
- UsWaterBodies:

358,551 vertices, 3,235 faces.
3,648,726 vertices, 3,552 faces. 21,652,410 vertices, 219,831 faces.

- UsBlockBoundaries: 32,762,740 vertices, 518,837 faces.

Experimental results

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell $=50$.
- Second level grid: 40×40 cells, refined when \#tests > 50

New results!

Maps: Grid size:	BrSoil \times BrCounty 200×200			$\begin{gathered} \text { UsAq. } \times \text { UsCounty } \\ 400 \times 400 \end{gathered}$			UsWBodies \times UsBBound.2000×2000		
	Time	(sec.)	Parallel	Time	(sec.)	Parallel	Time	(sec.)	Parallel
Threads:	1	32	speedup	1	32	speedup	1	32	speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6

Experimental results

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell $=$ F
- Seconc ~200-300 thousand ze Up to ~ 3 million its $\sim 20-30$ million
- Goods edges/vertices edges/vertices edges/vertices

Maps: Grid size: Threads:	$\begin{gathered} \text { BrSoil } \times \text { BrCounty } \\ 200 \times 200 \end{gathered}$			$\begin{gathered} \text { UsAq. } \times \text { UsCounty } \\ 400 \times 400 \end{gathered}$			UsWBodies \times UsBBound.2000×2000		
	Time	(sec.)	Parallel	Time	(sec.)	Parallel	Time	(sec.)	Parallel
	1	32	speedup	1	32	speedup	1	32	speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6

Experimental results

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell $=$ 5
- Seconc ~200-300 thousand ze Up to ~ 3 million its $\sim 20-30$ million
- Goods edges/vertices edges/vertices edges/vertices

Maps: Grid size: Threads:	$\begin{gathered} \text { BrSoil } \times \text { BrCounty } \\ 200 \times 200 \end{gathered}$			$\begin{gathered} \text { UsAq. } \times \text { UsCounty } \\ 400 \times 400 \end{gathered}$			UsWBodies \times UsBBound.2000×2000			
	Time (sec.)		Parallel speedup	$\underset{1}{\text { Time }}$	$\begin{gathered} \text { (sec.) } \\ 32 \end{gathered}$	Parallel speedup	$\begin{gathered} \text { Time } \\ 1 \end{gathered}$	(sec.)	Parallel speedup	
	1	32						32		
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	응	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	$\frac{7}{7}$	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	(1)	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	$\stackrel{0}{0}$	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	\cdots	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	O	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	O	1
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2		6

Experimental results

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5^{-}
- Seconc ~200-300 thousand ze Up to -3 million its $\sim 20-30$ million
- Goods edges/vertices edges/vertices edges/vertices

Maps: Grid size: Threads:	$\begin{gathered} \text { BrSoil } \times \text { BrCounty } \\ 200 \times 200 \end{gathered}$			$\begin{gathered} \text { UsAq. } \times \text { UsCoun }{ }^{\prime} \\ 400 \times 400 \end{gathered}$			WBodies \times UsBBound.2000×2000		
	Time (sec.)		Parallel speedup	$\underset{1}{\text { Time }}$	(sec.)	Par speedup ('sec.)		Parallel
	1	32			32		1		
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	7.1		219.	r0.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	1/O	455.9	265.2	6

Experimental results

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5^{-}
- Seconc ~200-300 thousand ze Up to ~ 3 million its $\sim 20-30$ million
- Goods edges/vertices edges/vertices edges/vertices

Maps: Grid size: Threads:	$\begin{gathered} \text { BrSoil } \times \text { BrCounty } \\ 200 \times 200 \end{gathered}$			UsAq. \times UsC C WBodies \times UsBBound.400×40 Mem. alloc. 2000×2000					
	Time (sec.)		Parallel speedup	Time (sec.)		Mem. alloc.		sec.)	Parallel
	1	32		1	32	speedup	1		speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6

Experimental results

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5^{-}
- Seconc ~200-300 thousand de Up to ~ 3 million its $\sim 20-30$ million
- Goods edges/vertices edges/vertices edges/vertices

Maps: Grid size: Threads:	$\begin{gathered} \text { BrSoil } \times \text { BrCounty } \\ 200 \times 200 \end{gathered}$			$\begin{gathered} \text { UsAq. } \times \text { UsCounty } \\ 400 \times 400 \end{gathered}$			UsWBodies \times UsBBound.2000×2000		
	Time	(sec.)	Parallel	Time	(sec.)	Parallel	Time	(sec.)	Parallel
	1	32	speedup	1	32	speedup	1	32	speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	Grass (serial/not exact): 5321s				1 s 5	110.4	11.8	9
Write output	1.0					1 1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4		6	1342.4	149.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6

Experimental results

- Why not have 3, 4, 5 levels, ... , quadtree?
- Uniform grid: simple and easily parallelizable.
- More levels: +memory and +time to create.

Maps overlaid	3-level grid				Quadtree	
	$1^{\text {st }}$	$2^{\text {nd }} \& 3^{\text {rd }}$	Time (sec.)	Size (GB)	Time (sec.)	Size (GB)
BrSoil \times BrCounty	200^{2}	40^{2}	54	1.1	70	1.7
UsAquifers \times UsCounty	400^{2}	40^{2}	472	1.5	440	2.5
UsWBodies \times UsBBound.	2000^{2}	40^{2}	290	43.7	8312	15.5

An efficient algorithm for computing the exact overlay of triangulations

Experimental results

- Why not have 3, 4, 5 levels, ... , quadtree?
- Uniform grid: simple and easily parallelizable.
- More levels: +memory and +time to create.

More time than our entire algorithm!

Maps overlaid	3-level grid				Quadtree	
	$1^{\text {st }}$	$2^{\text {nd }} \& 3^{\text {rd }}$	Time (sec.)	Size (GB)	Time (sec.)	Size (GB)
BrSoil \times BrCounty	200^{2}	40^{2}	54	1.1	70	1.7
UsAquifers \times UsCounty	400^{2}	40^{2}	472	1.5	440	2.5
UsWBodies \times UsBBound.	2000^{2}	40^{2}	290	43.7	8312	15.5

Next steps: 3D-EPUG-OVERLAY

- Work in progress.
- Will use similar techniques:
- Rational numbers
- "3D maps" represented by a set of triangles
- Triangles: left/right objects

- 3D uniform grid for intersection and point in polygon
- Simulation of simplicity
- Algorithm designed to be parallel
- EPUG-OVERLAY is efficient \rightarrow 3D-EPUG0-OVERLAY will be.

Conclusions

- EPUG-OVERLAY is an efficient method.
- Use precise arithmetic, but the performance is comparable with GRASS.
- Parallelizable algorithm \rightarrow use computing power of modern computers.
- Work in progress: 3D-EPUG-OVERLAY.
- Future work:
-Compare the quality of the output.
-Perform more theoretical analysis.

Thank you!

$-\mathrm{i}_{56 \cap 5}^{0 \cap 5} \mathrm{i}_{6}$

Acknowledgement:

Contact:

Salles V. G. de Magalhaes: vianas2@rpi.edu W. Randolph Franklin: mail@wrfranklin.org

Experimental results

- The importance of the two-level uniform grid.
- UsWBodies x UsBBound.
- 1 level: 20,000 cells w/ 10,000+ pairs of edges
- 2 levels: 100 cells w/10,000+ pairs of edges!

