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My background

I Philosophically a Computer Scientist.
I PhD officially in Applied Math.
I Working in Electrical, Computer, and

Systems Engineering Dept.
I Students in Computer Science
I Teaching Engineering Parallel Computing.
I Collaborating with Geographers for 45 years.
I Working for Peucker and Douglas, implemented the first

Triangulated Irregular Network (TIN) in geography in
1973.

I Enjoy applying computer science and engineering to GIS.



Aim
I new ways to look at relations between objects in space
I to facilitate spatial operations

I area
I overlay

I what is minimal explicit type of info need?
I fewer special cases
I less code
I less debugging

I to do something
I better,
I faster,
I in parallel,
I on bigger datasets

I All this is intended to be used.
I Big example: overlay two maps, total 54M vertices, 700K

faces in 265 real seconds on workstation



to·pol·o·gy

tpälj/
noun
1. . . .
2. the way in which constituent parts are interrelated or

arranged. "the topology of a computer network"
3. I’ll include local geometry

I location
I directions

4. Contrast to more global topology
I complete edges, faces (however, will use these

sometimes)
I edge loops, face shells
I hierarchies of inclusions



Prior art

I 9 relations in topology
I Morse complexes
I hydrography hierarchy



How little info does a polygon need?

I Set of vertices is ambiguous.
I Set of edges is good.

I point in polygon
I area, center of gravity

I The computation is a
map-reduce.



Point Inclusion Testing on a Set of Edges

I ”Jordan curve” method
I Extend a semi-infinite ray.
I Count intersections.
I Odd ≡ inside.
I Obvious but bad alternative:

sum subtended angles.
Implementing w/o arctan, and
handling special cases wrapping
around 2π is tricky and reduces
to Jordan curve.



Area Computation on a Set of Edges

I Each edge, with the origin,
defines a triangle.



Advantages of Set of Edges Data Structure

I Simple enough to debug.
I SW can be simple enough that there are obviously no

errors, or complex enough that there are no obvious
errors.

I Less space to store.
I Easy parallelization.

I Partition edges among processors.
I Each processor sums areas independently, to produce one

subtotal.
I Total the subtotals.



Augmented vertices: another minimal polygon
representation

I Augmented vertices: add a little
to each vertex.

I My examples will use rectilinear
polygons, but all this works on
general polygons

I 8 types of vertices.
I Assign a sign, s = ±1 to each

type.
I Now, each vertex defined as

vi = (xi , yi , si)



What augmented vertices can do

I Area: A =
∑

xiyisi



Vertex incidences: YAMPR
I Another minimal data structure.
I Only data type is incidence of an

edge and a vertex, and its
neighborhood. For each such:

I V = coord of vertex
I T = unit tangent vector along

the edge
I N = unit vector normal to T

pointing into the polygon.
I Polygon: {(V, T, N)} (2 tuples

per vertex)
I Perimeter = −

∑
(V · T ).

I Area = 1/2
∑

(V · T )(V · N)

I Multiple nested components ok.
I Parallelizable.



But. . . don’t we always know the edges??
(so what’s the point of this?)
I Not always!
I Compute the area of the intersection of two polygons.
I Application: how much do they interfere?
I We know the input polygons’ edges.
I However finding the output polygon’s edges is harder

than merely finding the augmented vertices.
I Two types of output vertices:

I Some input vertices,
I Some intersections of input edges.

I All output vertices must be inside an input polygon.
I Find candidate output vertices by intersecting pairs of

input edges.
I Filter.
I Apply area equation to surviving vertices.



Map overlay

I Input: two maps containing sets of polygons (aka faces).
I Output: all the nonempty intersections of one polygon

from each map.
I Example: Census tracts with watershed polygons, to

estimate population in each watershed.
I Salles Viana Gomes de Magalháes presented this at

BIGSPATIAL last week.
I However, first let’s lay some foundations.



Why parallel HW?

I More processing → faster clock
speed.

I Faster → more electrical power.
Each bit flip (dis)charges a
capacitor through a resistance.

I Faster → requires smaller
features on chip

I Smaller → greater electrical
resistance !

I =⇒⇐=.
I Serial processors have hit a wall.



Parallel HW features

I IBM Blue Gene / Intel / NVidia GPU / other
I Most laptops have NVidia GPUs.
I Thousands of cores / CPUs / GPUs
I Lower clock speed 750MHz vs 3.4GHz
I Hierarchy of memory: small/fast → big/slow
I Communication cost � computation cost
I Efficient for blocks of threads to execute SIMD.
I OS, per 6/2013 http://top500.org :

runs on 187th fastest machine

& variants run on 1st through 186th.

http://top500.org


Massive Shared Memory
I Massive shared memory is an underappreciated resource.
I External memory algorithms are not needed for most

problems.
I Virtual memory is obsolete.
I $40K buys a workstation with 80 cores and 1TB of

memory.

const long long int n(5’000’000’000);
static long long int a[n];
int main() {
double s(0);
for (auto &e in a) e = i;
for (auto e in a) s += e;
std::cout << "n=" << n << ", s="

<< s << std::endl; }

Runtime: 60 secs w/o opt to loop and r/w 40GB. (6 nsec /
iteration)



Parallel computing

I We use OpenMP (w. shared memory) and CUDA/Thrust
(w. Nvidia GPU).

I Our machine:
I dual 8-core Intel Xeon: 32 hyperthreads.
I 128GB main memory.
I Peak Linpack speed: 358Gflops.
I (Compare: Apple 6s iPhone: 1Gflops.)
I Nvidia K20Xm compute processor: 2496 CUDA cores @

706MHz, 6GB memory.
I cost in 2012 < $15K.

I However one Xeon core is 20x more powerful than one
CUDA core.



OpenMP

I Shared memory, multiple CPU core model.
I Good for moderate, not massive, parallelism.
I Easy to get started.
I Options for protecting parallel writes:

I Sum reduction: no overhead.
I Atomic add and capture: small overhead.
I Critical block: perhaps 100K instruction overhead.

I Only valid cost metric is real time used.
I Programs with 2 threads can execute more slowly than

with one.



OpenMP Example

const int n(500000000);
int a[n], b[n];
int k(0);
int main () {

#pragma omp parallel for
for(int i = 0; i < n; i++) a[i]=i;
#pragma omp parallel for
for(int i = 0; i < n; i++) {

#pragma omp atomic capture (or critical)
j = k++;
b[j] = j; }

double s(0.);
#pragma omp parallel for reduction(+:s)
for (int i=0;i<n;i++) s+=a[i];
cout << "sum: " << s << endl; }



CUDA

I NVIDIA’s parallel computing platform and programming
model.

I C++ small language extensions and functions
I CUDA compiler @nvcc@ picks this apart.
I Direct access to complicated GPU architecture.
I Nontrivial learning curve: Efficient programming is an art.
I Assists like Unified Virtual Addressing trade execution vs

programming speed.
I My advice: don’t over optimize; next generation will be

different.



GPU Architecture



Thrust

I C++ template library for CUDA based on STL.
I Functional paradigm: can make algorithms easier to

express.
I Hides many CUDA details: good and bad.
I Powerful operators all parallelize: scatter/gather,

reduction, reduction by key, permutation, transform
iterator, zip iterator, sort, prefix sum.

I Surprisingly efficient algorithms like bucket sort.



Thrust Example

struct dofor {
__device__ void operator()(int &i) { i *=2; } };

int main(void) {
thrust::device_vector<int> X(10);
thrust::sequence(X.begin(), X.end()); // init to 0,1,2, ....
thrust::fill(Z.begin(), Z.end(), 2); // fill with 2s
// compute Y = X mod 2
thrust::transform(X.begin(), X.end(), Z.begin(),

Y.begin(), thrust::modulus<int>());
thrust::for_each(X.begin(), X.end(), dofor());
thrust::copy(Y.begin(), Y.end(), // print Y
std::ostream_iterator<int>(std::cout, "\n")); }



Other techniques used in big example

I rational numbers
I simulation of simplicity
I uniform grid



Multiprecision big rationals

I Solves problem of roundoff error when intersecting lines.
I Slivers no longer matter.
I Code runs slower, but ok.
I Implementing this is not quite as easy as it sounds. . .

int main() {
mpq_rational v;
for(mpq_rational i = 1;

i <= 8; ++i) {
v += (2*i)/(2*i+1);
std::cout << i << ": "
<< v << std::endl;

}}

1: 2/3
2: 22/15
3: 244/105
4: 1012/315
5: 14282/3465
6: 227246/45045
7: 269288/45045
8: 5298616/765765



Simulation of simplicity

I Solves problem of geometric degeneracies.
I E.g., vertex of one map coincides with vertex of the other

map.
I Simplified description:
I Pretends to add an infinitesimal amount to all coordinates

in one map.
I Now, coincidences cannot happen.
I Implementation: analyze what effect these infinitesimals

would have on every predicate in the program, and
I Recode all the predicates.
I if (a1 ≤ b&b ≤ a2) becomes if (a1 ≤ b&b < a2)



Uniform grid
Summary
I Overlay a uniform 3D grid on the universe.
I For each input primitive — face, edge, vertex — find

overlapping cells.
I In each cell, store set of overlapping primitives.

Properties
I Simple, sparse, uses little memory if well programmed.
I Parallelizable.
I Robust against moderate data nonuniformities.
I Bad worst-case performance on extremely nonuniform

data.
I As does octree and all hierarchical methods.

How it works
I Intersecting primitives must occupy the same cell.
I The grid filters the set of possible intersections.



Uniform Grid Qualities

I Major disadvantage: It’s so simple that it apparently
cannot work, especially for nonuniform data.

I Major advantage: For the operations I want to do
(intersection, containment, etc), it works very well for any
real data I’ve ever tried.

I Outside validation: used in our 2nd place finish in last
week’s ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh



Uniform Grid Time Analysis

For i.i.d. edges (line segments), show that time to find
edge–edge intersections in E 2 is linear in size(input+output)
regardless of varying number of edges per cell.
I N edges, length 1/L, G × G grid.
I Expected # intersections = Θ (N2L−2).
I Each edge overlaps ≤ 2(G/L + 1) cells.

I η
∆
= # edges per cell, is Poisson distributed.

η = Θ(N/G 2(G/L + 1)).
I Expected total # intersection tests: N2/G 2(G/L + 1)2.
I Total time: insert edges into cells + test for intersections.

T = Θ (N(G/L + 1) + N2/G 2(G/L + 1)2).
I Minimized when G = Θ(L), giving T = Θ (N + N2L−2).
�



An efficient algorithm for computing the exact overlay of triangulations

Rensselaer Polytechnic Institute
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PhD research: An efficient algorithm for 
computing the exact overlay of triangulations

Salles Viana Gomes de Magalhães, PhD. Student
Prof. Dr. W Randolph Franklin, RPI/Supervisor

Prof. Dr. Marcus V. A. Andrade, UFV
Wenli Li, PhD. Student
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Myself
● Universidade Federal de Vicosa, Brazil – 2005-2010.

● GIS since 2007
● Areas: HPC, GIS, algorithms ...
● Dr. Andrade

● 2014: Rensselaer Polytechnic Institute.
● Dr. Franklin
● Dr. Andrade
● Wenli Li
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Map overlay
● Two vectorial maps are superimposed.
● The intersection between polygons from the two 

maps is computed.
● Several applications. Ex: counties and watersheds.

● This problem extends to 3D objects 
(triangulations).

● Example: layers of soil x polyhedron representing 
excavation section.
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Challenge
● Finite precision of floating point →roundoff errors.

● Common techniques: no guarantee.

● Big amount of data & 3D→ increase problem.

● Proposed solution: EPUG-OVERLAY and 3D-EPUG-
OVERLAY
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EPUG-OVERLAY and 3D-EPUG-OVERLAY
● EPUG-OVERLAY

● Exact: uses rational numbers.
● Parallel.
● Uniform Grid for indexing.

● Next steps: 3D-EPUG-OVERLAY
● Will use the same techniques, but for 3D triangulations

source: wikipedia
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EPUG-OVERLAY
● Simple map representation.

● No explicit global topology → easy to maintain and avoid 
topological errors.

● Easy to process in parallel.

● Simple data structures.
● Easy to parallelize
● Efficient 
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Map representation
● Topological representation.
● Each region has one id.
● Edges represent boundaries.

“outside”(node 1, node 2)
Left: 1, Right: 2



8An efficient algorithm for computing the exact overlay of triangulations

R
P

I 
- 

R
e
n

s
s
e
la

e
r 

P
o
ly

te
c
h

n
ic

 I
n

s
ti

tu
te

Overlay algorithm
● Find all intersections.
● Locate vertices in the other map.
● Compute output polygons.
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Computing intersections
● “Brute force”: O(|A| x |B|)
● Other possible technique: 

● Chazelle-Edelsbrunner O(n log n + k)
● Complicate and doesn't parallelize

● In this work: uniform grid
● Tests: very efficient



10An efficient algorithm for computing the exact overlay of triangulations

R
P

I 
- 

R
e
n

s
s
e
la

e
r 

P
o
ly

te
c
h

n
ic

 I
n

s
ti

tu
te

Computing intersections
In this work: uniform grid.
● Insert edges in grid cells (edge may be in several cells).
● For each grid cell c, compute intersections in c.

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges
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Computing intersections

● Uniform Grids work well for uneven data.
● For very uneven data: 2-level uniform grid.
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Locating vertices in other map
● Also implemented using a uniform grid.
● Given p, find the lowest edge above p.
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Locating vertices in other map
● Also implemented using a uniform grid.
● Given p, find the lowest edge above p.
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Locating vertices in other map
● Also implemented using a uniform grid.
● Given p, find the lowest edge above p.
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Locating vertices in other map
● Also implemented using a uniform grid.
● Given p, find the lowest edge above p.
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Locating vertices in other map
● Also implemented using a uniform grid.
● Given p, find the lowest edge above p.
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Computing output polygons
● Edges of the output polygons → computed based on input 

edges.
● For each input edge → three scenarios.
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Computing output polygons
No intersection.

1 - edge completely inside a polygon (ex: e).
● Create output edge.

2 - edge completely outside a polygon (ex: f).
● No output.

u vvv vu

0 ∩ 1
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Computing output polygons
3 – edge e=(u,w) with intersections.

● e is divided into segments.
● Segments classification → similar to the cases 1 and 2.

● (u,w) divided into 7 segments.
● 5 will be in output.
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Computing output polygons
3 – edge e=(u,w) with intersections.

● e is divided into segments.
● Segments classification → similar to the cases 1 and 2.

● (u,w) divided into 7 segments.
● 5 will be in output.

i5 i6
0 ∩ 5

6 ∩ 5

Case 1: inside polygon 5
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Computing output polygons
3 – edge e=(u,w) with intersections.

● e is divided into segments.
● Segments classification → similar to the cases 1 and 2.

● (u,w) divided into 7 segments.
● 5 will be in output.

Case 2

(i
6
,w) → outside other map
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Parallel implementation
● This algorithm →few data dependency →very parallelizable.

● Uniform grid creation: edges in parallel.
● Locate vertices in polygons.
● Compute intersections: cells in parallel.
● Compute output edges: process input edges in parallel.

● Most of computers: multicore → OpenMP.

source: wikipedia
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Implementation details
● Computation is performed using rational numbers → no roundoff 

errors.

● EPUG-OVERLAY implemented using GMPXX.

● Special cases: simulation of simplicity.
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Experimental results
● EPUG-OVERLAY implemented in C++ .
● Tests:

● Xeon E5-2687  → 16 cores / 32 threads.
● 128 GiB of RAM.
● Linux Mint 17
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Experimental results
● 2 Brazilian and 4 North American datasets.
● Shapefiles converted to our format.

● BrCounty: 342,738 vertices, 2,959 faces
● BrSoil: 258,961 vertices, 5,567 faces.
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Experimental results
● 2 Brazilian and 2 North American datasets.
● Shapefiles converted to our format.

● UsAquifers:                    358,551 vertices,    3,235 faces.
● UsCounty:                   3,648,726 vertices,     3,552 faces.
● UsWaterBodies:        21,652,410 vertices, 219,831 faces.
● UsBlockBoundaries: 32,762,740 vertices, 518,837 faces.
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Experimental results
● Processing time.
● First level grid: created s.t. the expected number of edges-edges tests per 

cell = 50.
● Second level grid: 40 x 40 cells, refined when #tests > 50

New results!
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Experimental results
● Processing time.
● First level grid: created s.t. the expected number of edges-edges tests per 

cell = 50.
● Second level grid: 40 x 40 cells, refined when #tests > 50
● Good speedup

~ 200-300 thousand 
edges/vertices

Up to ~3 million
edges/vertices

~ 20-30 million
edges/vertices
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Experimental results
● Processing time.
● First level grid: created s.t. the expected number of edges-edges tests per 

cell = 50.
● Second level grid: 40 x 40 cells, refined when #tests > 50
● Good speedup

~ 200-300 thousand 
edges/vertices

Up to ~3 million
edges/vertices

~ 20-30 million
edges/vertices

G
oo

d 
sp

e e
du

p
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Experimental results
● Processing time.
● First level grid: created s.t. the expected number of edges-edges tests per 

cell = 50.
● Second level grid: 40 x 40 cells, refined when #tests > 50
● Good speedup

~ 200-300 thousand 
edges/vertices

Up to ~3 million
edges/vertices

~ 20-30 million
edges/vertices

I/O

I/O
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Experimental results
● Processing time.
● First level grid: created s.t. the expected number of edges-edges tests per 

cell = 50.
● Second level grid: 40 x 40 cells, refined when #tests > 50
● Good speedup

~ 200-300 thousand 
edges/vertices

Up to ~3 million
edges/vertices

~ 20-30 million
edges/vertices

Mem. alloc.
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Experimental results
● Processing time.
● First level grid: created s.t. the expected number of edges-edges tests per 

cell = 50.
● Second level grid: 40 x 40 cells, refined when #tests > 50
● Good speedup

~ 200-300 thousand 
edges/vertices

Up to ~3 million
edges/vertices

~ 20-30 million
edges/vertices

Grass (serial/not exact): 5321s



33An efficient algorithm for computing the exact overlay of triangulations

R
P

I 
- 

R
e
n

s
s
e
la

e
r 

P
o
ly

te
c
h

n
ic

 I
n

s
ti

tu
te

Experimental results
● Why not have 3, 4, 5 levels, … , quadtree?
● Uniform grid: simple and easily parallelizable.
● More levels: +memory and +time to create.
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Experimental results
● Why not have 3, 4, 5 levels, … , quadtree?
● Uniform grid: simple and easily parallelizable.
● More levels: +memory and +time to create.

More time than our entire algorithm!
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Next steps: 3D-EPUG-OVERLAY 
● Work in progress.

● Will use similar techniques:
● Rational numbers
● “3D maps” represented by a set of triangles
● Triangles: left/right objects
● 3D uniform grid for intersection and point in polygon
● Simulation of simplicity
● Algorithm designed to be parallel

● EPUG-OVERLAY is efficient → 3D-EPUG0-OVERLAY will be.

source: wikipedia
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Conclusions
● EPUG-OVERLAY is an efficient method. 
● Use precise arithmetic, but the performance is comparable with GRASS.
● Parallelizable algorithm → use computing power of modern computers.

● Work in progress: 3D-EPUG-OVERLAY.

● Future work:
•Compare the quality of the output.
•Perform more theoretical analysis.
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Thank you!

Salles V. G. de Magalhaes: vianas2@rpi.edu
W. Randolph Franklin: mail@wrfranklin.org
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Experimental results
● The importance of the two-level uniform grid.
● UsWBodies x UsBBound.
● 1 level: 20,000 cells w/ 10,000+ pairs of edges
● 2 levels: 100 cells w/10,000+ pairs of edges!


