Global properties from local topology

W. Randolph Franklin

2015-11-10 Tue

My background

- Philosophically a Computer Scientist.
- PhD officially in Applied Math.
- Working in Electrical, Computer, and Systems Engineering Dept.
- Students in Computer Science
- Teaching Engineering Parallel Computing.
- ► Collaborating with Geographers for 45 years.
- Working for Peucker and Douglas, implemented the first Triangulated Irregular Network (TIN) in geography in 1973.
- ▶ Enjoy applying computer science and engineering to GIS.

Aim

- new ways to look at relations between objects in space
- to facilitate spatial operations
 - area
 - overlay
- what is minimal explicit type of info need?
 - fewer special cases
 - less code
 - less debugging
- to do something
 - better,
 - faster,
 - ▶ in parallel,
 - on bigger datasets
- All this is intended to be used.
- Big example: overlay two maps, total 54M vertices, 700K faces in 265 real seconds on workstation

to-pol-o-gy

```
tpälj/
noun
```

- 1. . . .
- 2. the way in which constituent parts are interrelated or arranged. "the topology of a computer network"
- 3. I'll include local geometry
 - location
 - directions
- 4. Contrast to more global topology
 - complete edges, faces (however, will use these sometimes)
 - edge loops, face shells
 - hierarchies of inclusions

Prior art

- ▶ 9 relations in topology
- Morse complexes
- hydrography hierarchy

How little info does a polygon need?

- Set of vertices is ambiguous.
- Set of edges is good.
 - point in polygon
 - area, center of gravity
- The computation is a map-reduce.

Point Inclusion Testing on a Set of Edges

- "Jordan curve" method
- Extend a semi-infinite ray.
- Count intersections.
- $ightharpoonup Odd \equiv inside.$
- Obvious but bad alternative: sum subtended angles. Implementing w/o arctan, and handling special cases wrapping around 2π is tricky and reduces to Jordan curve.

Area Computation on a Set of Edges

► Each edge, with the origin, defines a triangle.

Advantages of Set of Edges Data Structure

- Simple enough to debug.
- ➤ SW can be simple enough that there are obviously no errors, or complex enough that there are no obvious errors.
- Less space to store.
- Easy parallelization.
 - Partition edges among processors.
 - Each processor sums areas independently, to produce one subtotal.
 - ▶ Total the subtotals.

Augmented vertices: another minimal polygon representation

- Augmented vertices: add a little to each vertex.
- My examples will use rectilinear polygons, but all this works on general polygons
- 8 types of vertices.
- Assign a sign, $s=\pm 1$ to each type.
- Now, each vertex defined as $v_i = (x_i, y_i, s_i)$

What augmented vertices can do

• Area:
$$A = \sum x_i y_i s_i$$

Vertex incidences: YAMPR

- Another minimal data structure.
- Only data type is incidence of an edge and a vertex, and its neighborhood. For each such:
 - V = coord of vertex
 - T = unit tangent vector along the edge
 - N = unit vector normal to T pointing into the polygon.
- Polygon: {(V, T, N)} (2 tuples per vertex)
- ▶ Perimeter = $-\sum (V \cdot T)$.
- Area = $1/2 \sum (V \cdot T)(V \cdot N)$
- ▶ Multiple nested components ok.
- Parallelizable.

But... don't we always know the edges??

(so what's the point of this?)

- ► Not always!
- Compute the area of the intersection of two polygons.
- Application: how much do they interfere?
- We know the input polygons' edges.
- ► However finding the output polygon's edges is harder than merely finding the augmented vertices.
- Two types of output vertices:
 - Some input vertices,
 - Some intersections of input edges.
- All output vertices must be inside an input polygon.
- Find candidate output vertices by intersecting pairs of input edges.
- Filter.
- Apply area equation to surviving vertices.

Map overlay

- Input: two maps containing sets of polygons (aka faces).
- Output: all the nonempty intersections of one polygon from each map.
- Example: Census tracts with watershed polygons, to estimate population in each watershed.
- Salles Viana Gomes de Magalháes presented this at BIGSPATIAL last week.
- ▶ However, first let's lay some foundations.

Why parallel HW?

- ▶ More processing → faster clock speed.
- ► Faster → more electrical power. Each bit flip (dis)charges a capacitor through a resistance.
- ► Faster → requires smaller features on chip
- Smaller → greater electrical resistance!
- **▶** ⇒ ← .
- Serial processors have hit a wall.

Parallel HW features

- ▶ IBM Blue Gene / Intel / NVidia GPU / other
- Most laptops have NVidia GPUs.
- Thousands of cores / CPUs / GPUs
- Lower clock speed 750MHz vs 3.4GHz
- ▶ Hierarchy of memory: $small/fast \rightarrow big/slow$
- ▶ Communication cost ≫ computation cost
- Efficient for blocks of threads to execute SIMD.
- ► OS, per 6/2013 http://top500.org:

& variants run on 1st through 186th.

Massive Shared Memory

- ► Massive shared memory is an underappreciated resource.
- External memory algorithms are not needed for most problems.
- Virtual memory is obsolete.
- \$40K buys a workstation with 80 cores and 1TB of memory.

Runtime: 60 secs w/o opt to loop and r/w 40GB. (6 nsec / iteration)

Parallel computing

- We use OpenMP (w. shared memory) and CUDA/Thrust (w. Nvidia GPU).
- Our machine:
 - dual 8-core Intel Xeon: 32 hyperthreads.
 - 128GB main memory.
 - Peak Linpack speed: 358Gflops.
 - (Compare: Apple 6s iPhone: 1Gflops.)
 - Nvidia K20Xm compute processor: 2496 CUDA cores @ 706MHz, 6GB memory.
 - ► cost in 2012 < \$15K.
- However one Xeon core is 20x more powerful than one CUDA core.

OpenMP

- Shared memory, multiple CPU core model.
- Good for moderate, not massive, parallelism.
- Easy to get started.
- Options for protecting parallel writes:
 - Sum reduction: no overhead.
 - Atomic add and capture: small overhead.
 - Critical block: perhaps 100K instruction overhead.
- Only valid cost metric is real time used.
- ▶ Programs with 2 threads can execute more slowly than with one.

OpenMP Example

```
const int n(500000000);
int a[n], b[n];
int k(0);
int main () {
 #pragma omp parallel for
 for(int i = 0; i < n; i++) a[i]=i;
 #pragma omp parallel for
 for(int i = 0; i < n; i++) {
    #pragma omp atomic capture (or critical)
   j = k++;
    b[j] = j; }
 double s(0.);
  #pragma omp parallel for reduction(+:s)
  for (int i=0; i< n; i++) s+=a[i];
  cout << "sum: " << s << endl; }</pre>
```

CUDA

- NVIDIA's parallel computing platform and programming model.
- ► C++ small language extensions and functions
- CUDA compiler @nvcc@ picks this apart.
- Direct access to complicated GPU architecture.
- ▶ Nontrivial learning curve: Efficient programming is an art.
- Assists like Unified Virtual Addressing trade execution vs programming speed.
- My advice: don't over optimize; next generation will be different.

GPU Architecture

Thrust

- ▶ C++ template library for CUDA based on STL.
- Functional paradigm: can make algorithms easier to express.
- ► Hides many CUDA details: good and bad.
- ► Powerful operators all parallelize: scatter/gather, reduction, reduction by key, permutation, transform iterator, zip iterator, sort, prefix sum.
- Surprisingly efficient algorithms like bucket sort.

Thrust Example

```
struct dofor {
  __device__ void operator()(int &i) { i *=2; } };
int main(void) {
 thrust::device_vector<int> X(10);
 thrust::sequence(X.begin(), X.end()); // init to 0,1
 thrust::fill(Z.begin(), Z.end(), 2); // fill with 2
  // compute Y = X mod 2
 thrust::transform(X.begin(), X.end(), Z.begin(),
      Y.begin(), thrust::modulus<int>());
 thrust::for_each(X.begin(), X.end(), dofor());
 thrust::copy(Y.begin(), Y.end(), // print Y
  std::ostream_iterator<int>(std::cout, "\n")); }
```

Other techniques used in big example

- rational numbers
- simulation of simplicity
- uniform grid

Multiprecision big rationals

- Solves problem of roundoff error when intersecting lines.
- Slivers no longer matter.
- Code runs slower, but ok.
- Implementing this is not quite as easy as it sounds...

```
int main() {
                                    2/3
 mpq_rational v;
                                 2: 22/15
 for(mpq_rational i = 1;
                                 3: 244/105
      i <= 8; ++i) {
                                 4: 1012/315
   v += (2*i)/(2*i+1);
                                 5: 14282/3465
    std::cout << i << ":
                                 6: 227246/45045
    << v << std::endl;
                                 7: 269288/45045
}}
                                     5298616/765765
                                 8:
```

Simulation of simplicity

- Solves problem of geometric degeneracies.
- E.g., vertex of one map coincides with vertex of the other map.
- Simplified description:
- Pretends to add an infinitesimal amount to all coordinates in one map.
- Now, coincidences cannot happen.
- ► Implementation: analyze what effect these infinitesimals would have on every predicate in the program, and
- Recode all the predicates.
- $if(a_1 \le b \& b \le a_2)$ becomes $if(a_1 \le b \& b < a_2)$

Uniform grid

Summary

- Overlay a uniform 3D grid on the universe.
- ► For each input primitive face, edge, vertex find overlapping cells.
- ▶ In each cell, store set of overlapping primitives.

Properties

- ▶ Simple, sparse, uses little memory if well programmed.
- Parallelizable.
- Robust against moderate data nonuniformities.
- ▶ Bad worst-case performance on extremely nonuniform data.
- As does octree and all hierarchical methods.

How it works

- Intersecting primitives must occupy the same cell.
- ► The grid filters the set of possible intersections.

Uniform Grid Qualities

- ► Major disadvantage: It's so simple that it apparently cannot work, especially for nonuniform data.
- Major advantage: For the operations I want to do (intersection, containment, etc), it works very well for any real data I've ever tried.
- Outside validation: used in our 2nd place finish in last week's ACM SIGSPATIAL GIS Cup award.

USGS Digital Line Graph; VLSI Design; Mesh

Uniform Grid Time Analysis

For i.i.d. edges (line segments), show that time to find edge-edge intersections in E^2 is linear in size(input+output) regardless of varying number of edges per cell.

- ▶ N edges, length 1/L, $G \times G$ grid.
- ▶ Expected # intersections = $\Theta(N^2L^{-2})$.
- ▶ Each edge overlaps $\leq 2(G/L + 1)$ cells.
- ▶ $\eta \triangleq \#$ edges per cell, is Poisson distributed. $\overline{\eta} = \Theta(N/G^2(G/L+1)).$
- ▶ Expected total # intersection tests: $N^2/G^2(G/L+1)^2$.
- ► Total time: insert edges into cells + test for intersections. $T = \Theta(N(G/L + 1) + N^2/G^2(G/L + 1)^2)$.
- ▶ Minimized when $G = \Theta(L)$, giving $T = \Theta(N + N^2L^{-2})$.

Rensselaer Polytechnic Institute Universidade Federal de Viçosa

PhD research: An efficient algorithm for computing the exact overlay of triangulations

Salles Viana Gomes de Magalhães, PhD. Student Prof. Dr. W Randolph Franklin, RPI/Supervisor Prof. Dr. Marcus V. A. Andrade, UFV Wenli Li, PhD. Student

Myself

- Universidade Federal de Vicosa, Brazil 2005-2010.
 - GIS since 2007
 - Areas: HPC, GIS, algorithms ...
 - Dr. Andrade

- 2014: Rensselaer Polytechnic Institute.
 - Dr. Franklin
 - Dr. Andrade
 - Wenli Li

Map overlay

- Two vectorial maps are superimposed.
- The intersection between polygons from the two maps is computed.
- Several applications. Ex: counties and watersheds.

- This problem extends to 3D objects (triangulations).
- Example: layers of soil *x* polyhedron representing excavation section.

Challenge

- Finite precision of floating point → roundoff errors.
 - Common techniques: no guarantee.

• Big amount of data & 3D → increase problem.

 Proposed solution: EPUG-OVERLAY and 3D-EPUG-OVERLAY

EPUG-OVERLAY and 3D-EPUG-OVERLAY

- EPUG-OVERLAY
 - Exact: uses rational numbers.
 - Parallel.
 - Uniform Grid for indexing.

- Next steps: 3D-EPUG-OVERLAY
 - Will use the same techniques, but for 3D triangulations

source: wikipedia

EPUG-OVERLAY

- Simple map representation.
 - No <u>explicit</u> global topology → easy to maintain and avoid topological errors.
 - Easy to process in parallel.

- Simple data structures.
 - Easy to parallelize
 - Efficient

Map representation

- Topological representation.
- Each region has one id.
- Edges represent boundaries.

Overlay algorithm

- Find all intersections.
- Locate vertices in the other map.
- Compute output polygons.

Computing intersections

- "Brute force": $O(|A| \times |B|)$
- Other possible technique:
 - Chazelle-Edelsbrunner O(n log n + k)
 - Complicate and doesn't parallelize
- In this work: uniform grid
 - Tests: very efficient

Computing intersections

In this work: uniform grid.

- Insert edges in grid cells (edge may be in several cells).
- For each grid cell *c*, compute intersections in *c*.

4x7 uniform grid.

Blue map: 8 edges

Black map: 16 edges

Computing intersections

- Uniform Grids work well for uneven data.
- For very uneven data: 2-level uniform grid.

- Also implemented using a uniform grid.
- Given *p*, find the lowest edge above *p*.

- Also implemented using a uniform grid.
- Given *p*, find the lowest edge above *p*.

- Also implemented using a uniform grid.
- Given *p*, find the lowest edge above *p*.

- Also implemented using a uniform grid.
- Given *p*, find the lowest edge above *p*.

- Also implemented using a uniform grid.
- Given *p*, find the lowest edge above *p*.

- Edges of the output polygons → computed based on input edges.
- For each input edge → three scenarios.

No intersection.

- 1 edge completely inside a polygon (ex: *e*).
 - Create output edge.
- 2 edge completely outside a polygon (ex: *f*).

- 3 edge e = (u, w) with intersections.
 - *e* is divided into segments.
 - Segments classification \rightarrow similar to the cases 1 and 2.

- (u,w) divided into 7 segments.
- 5 will be in output.

- 3 edge e = (u, w) with intersections.
 - *e* is divided into segments.
 - Segments classification \rightarrow similar to the cases 1 and 2.

- 3 edge e = (u, w) with intersections.
 - *e* is divided into segments.
 - Segments classification \rightarrow similar to the cases 1 and 2.

Parallel implementation

- This algorithm \rightarrow few data dependency \rightarrow very parallelizable.
 - Uniform grid creation: edges in parallel.
 - Locate vertices in polygons.
 - Compute intersections: cells in parallel.
 - Compute output edges: process input edges in parallel.
- Most of computers: multicore → OpenMP.

Implementation details

- Computation is performed using rational numbers → no roundoff errors.
- EPUG-OVERLAY implemented using GMPXX.
- Special cases: simulation of simplicity.

- EPUG-OVERLAY implemented in C++ .
- Tests:
 - Xeon E5-2687 \rightarrow 16 cores / 32 threads.
 - 128 GiB of RAM.
 - Linux Mint 17

- 2 Brazilian and 4 North American datasets.
- Shapefiles converted to our format.
- BrCounty: 342,738 vertices, 2,959 faces
- BrSoil: 258,961 vertices, 5,567 faces.

- 2 Brazilian and 2 North American datasets.
- Shapefiles converted to our format.
- UsAquifers: 358,551 vertices, 3,235 faces.
- UsCounty: 3,648,726 vertices, 3,552 faces.
- UsWaterBodies: 21,652,410 vertices, 219,831 faces.
- UsBlockBoundaries: 32,762,740 vertices, 518,837 faces.

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 50.
- Second level grid: 40×40 cells, refined when #tests > 50

New results!

Maps:	BrS	$BrSoil \times BrCounty$			$UsAq. \times UsCounty$			$UsWBodies \times UsBBound.$		
Grid size:		200×2	200		400×4	.00		2000×2	000	
	Time	(sec.)	Parallel	Time	(sec.)	Parallel	Time	(sec.)	Parallel	
Threads:	1	32	speedup	1	32	$\mathbf{speedup}$	1	32	speedup	
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1	
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3	
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16	
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16	
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10	
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9	
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1	
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	9	
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6	

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5
- Second ~ 200-300 thousand ce
- Good edges/vertices

Up to ~3 million 3ts edges/vertices

Maps:	$BrSoil \times BrCounty$			Us	$UsAq. \times UsCounty$			$UsWBodies \times UsBBound.$		
Grid size:		200×2	200		400×4	100		2000×2000		
	Time	(sec.)	Parallel	Time	(sec.)	Parallel	\mathbf{Time}	(sec.)	Parallel	
Threads:	1	32	speedup	1	32	speedup	1	32	speedup	
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1	
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3	
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16	
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16	
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10	
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9	
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1	
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	9	
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6	

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5
- Second \sim 200-300 thousand \sim
- Good sedges/vertices

Up to ~3 million 3ts edges/vertices

Maps:	$BrSoil \times BrCounty$			Us	$UsAq. \times UsCounty$			$UsWBodies \times UsBBound.$		
Grid size:		200×2	200		400×4	100		2000×2	000	
	Time	(sec.)	Parallel	Time	(sec.)	Parallel	\mathbf{Time}	(sec.)	Paral	\mathbf{lel}
Threads:	1	32	speedup	1	32	speedup	1	32	\mathbf{speed}	up
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	d	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0		3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	eq	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	be	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	S	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	poo	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	Ö	1
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	G	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2		6

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5
- Second ~ 200-300 thousand get
- Good edges/vertices

Up to ~3 million ats edges/vertices

Maps:	BrS	$Soil \times B$	rCounty	Us	$Aq. \times Us$	sCoun'	WBc	$odies \times i$	UsBBound.
Grid size:		200×2	200		400×4	·00 I/C)	$2000 \times 2000 \times $	000
	Time	(sec.)	Parallel	Time	(sec.)	Par	ll.	(sec.)	Parallel
Threads:	1	32	speedup	1	32	speedup	1	32	speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	7.1		12/0 /	113.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	I/O	455.9	265.2	6

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5
- Second ~ 200-300 thousand ce
- Good edges/vertices

Up to ~3 million ats edges/vertices

Maps:	BrS	$Soil \times B$	rCounty	Us	$Aq. \times Us$		No. 6 Sept. March 2015	$odies \times i$	UsBBound.
Grid size:		200×2	200		400×4	⁽ Mem. all	OC.	2000×20	000
	Time	(sec.)	Parallel	Time	(sec. $)$		415.	(sec.)	Parallel
Threads:	1	32	$\mathbf{speedup}$	1	32	speedup	1	50	speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	0.1	4	0.9	0.2	5	110.4	11.8	9
Write output	1.0	0.6	2	4.5	4.6	1	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	7.1	6	1342.4	149.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6

- Processing time.
- First level grid: created s.t. the expected number of edges-edges tests per cell = 5
- Second \sim 200-300 thousand \sim
- Good edges/vertices

Up to ~3 million 3ts edges/vertices

Maps:	Br	$Soil \times Bi$	rCounty	$UsAq. \times UsCounty$			$UsWBodies \times UsBBound.$		
Grid size:		200×2	00		400×4	00	2000×2000		
	Time	(sec.)	Parallel	Time	e (sec.)	Parallel	\mathbf{Time}	(sec.)	Parallel
Threads:	1	32	speedup	1	32	speedup	1	32	speedup
Read maps	1.0	1.0	1	5.3	5.5	1	73.1	74.5	1
Make grid	2.0	0.6	3	14.2	4.4	3	185.9	58.0	3
Refine 2-level grid	6.3	0.4	15	8.4	0.5	16	161.6	9.9	16
Intersect edges	1.0	0.1	8	2.6	0.3	8	505.5	30.9	16
Locate vertices	4.8	0.4	12	15.3	1.7	9	379.0	38.5	10
Comp. output faces	0.5	Cuana	· (a a vi a l/a	-+ ->-	-4\. FOC	5	110.4	11.8	9
Write output	1.0	Grass	s (serial/n	ot exa	(Ct): 532	$\frac{21S}{1}$	40.4	41.6	1
Total w/o I/O	14.6	1.6	9	41.4	1.1	6	1342.4	149.1	9
Total with I/O	16.6	3.6	5	51.2	17.2	3	1455.9	265.2	6

- Why not have 3, 4, 5 levels, ..., quadtree?
- Uniform grid: simple and easily parallelizable.
- More levels: +memory and +time to create.

		3-	Quadtree			
Maps overlaid	1^{st}	$2^{\mathrm{nd}}~\&~3^{\mathrm{rd}}$	Time (sec.)	Size (GB)	Time (sec.)	Size (GB)
$BrSoil \times BrCounty$	200^{2}	40^{2}	54	1.1	70	1.7
$UsAquifers \times UsCounty$	400^{2}	40^{2}	472	1.5	440	2.5
$UsWBodies \times UsBBound.$	2000^{2}	40^{2}	290	43.7	8312	15.5

- Why not have 3, 4, 5 levels, ..., quadtree?
- Uniform grid: simple and easily parallelizable.
- More levels: +memory and +time to create.

More time than our entire algorithm!

		3-	level grid	Quadtree			
Maps overlaid	1^{st}	$2^{\mathrm{nd}}~\&~3^{\mathrm{rd}}$	Time (sec.)	Size (GB)	Time (sec.)	Size (GB)	
$BrSoil \times BrCounty$	200^{2}	40^{2}	54	1.1	70	1.7	
$UsAquifers \times UsCounty$	400^{2}	40^{2}	472	1.5	440	2.5	
$UsWBodies \times UsBBound.$	2000^{2}	40^{2}	290	43.7	8312	15.5	

Next steps: 3D-EPUG-OVERLAY

• Work in progress.

- Will use similar techniques:
 - Rational numbers
 - "3D maps" represented by a set of triangles
 - Triangles: left/right objects
 - 3D uniform grid for intersection and point in polygon
 - Simulation of simplicity
 - Algorithm designed to be **parallel**

Conclusions

- EPUG-OVERLAY is an efficient method.
- Use precise arithmetic, but the performance is comparable with GRASS.
- Parallelizable algorithm → use computing power of modern computers.
- Work in progress: 3D-EPUG-OVERLAY.
- Future work:
 - •Compare the quality of the output.
 - •Perform more theoretical analysis.

Thank you!

Acknowledgement:

Salles V. G. de Magalhaes: vianas2@rpi.edu W. Randolph Franklin: mail@wrfranklin.org

37

- The importance of the two-level uniform grid.
- UsWBodies x UsBBound.
- 1 level: 20,000 cells w/ 10,000+ pairs of edges
- 2 levels: 100 cells w/10,000+ pairs of edges!

