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My background

My background

• Philosophically a Computer Scientist.
• PhD officially in Applied Math.
• Working in Electrical, Computer, and Systems Engineering.
• Teaching Engineering Parallel Computing.
• Collaborating with Geographers for 45 years.
• Working for Peucker and Douglas, implemented the first Triangulated
Irregular Network (TIN) in geography in 1973.

• Enjoy applying computer science and engineering to GIS.
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Important concerns in Spatial Search

Important concerns in Spatial Search

New:
• problems.
• hardware.
• SW tools.
• algorithms and data structures.

No ArcGIS in this talk
• ESRI is a technological follower.
• I like to do new things.
• They do have some useful tools and make beautiful maps.
GIS has similarities to parts of Computer Aided Design (CAD).
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New search problems

New search problems

• Coincidences in temporal track logs:
• past near collisions between aircraft — but note the distance metric.
• ≥ 5 people from a group of 1000 flocked together.

• Point inclusion against 106 polygons — if this is a function in a larger
system, then unlikely errors cannot be overlooked.

• Find good observers, or good sites, in 50 000× 50 000 map.
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Why parallel HW?

Why parallel HW?

• More processing → faster clock speed.
• Faster → more electrical power. Each bit flip

(dis)charges a capacitor through a resistance.
• Faster → requires smaller features on chip
• Smaller → greater electrical resistance !
• =⇒⇐=.
• Serial processors have hit a wall.
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Parallel HW features

• IBM Blue Gene / Intel / NVidia GPU / other
• Most laptops have NVidia GPUs.
• Thousands of cores / CPUs / GPUs
• Lower clock speed 750MHz vs 3.4GHz
• Hierarchy of memory: small/fast → big/slow
• Communication cost � computation cost
• Efficient for blocks of threads to execute SIMD.
• OS:
• 187th fastest machine in 6/2013 top500.org runs .

• 1st through 186th fastest run variants of .
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Massive Shared Memory

Massive Shared Memory

• Massive shared memory is
an underappreciated
resource.

• External memory
algorithms are not needed
for most problems.

• Virtual memory is obsolete.
• $40K buys a workstation
with 80 cores and 1TB of
memory.

Code

const long long int n(5*000*000*000);
static long long int a[n];
int main() {
double s(0);
for (long long int i=0; i<n; i++)

a[i] = i;
for (long long int i=0; i<n; i++)

s += a[i];
std::cout << "n=" << n << ", s="

<< s << std::endl; }

Runtime: 60 secs w/o opt to loop and r/w
40GB. (6 nsec / iteration)
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Spatial geometric Databases

Spatial geometric Databases

• LIDAR — 105 × 105 terrains.
• New York City taxi logs — 14 million trips in 2013.
• Streaming sensors — process it in real time or lose it.
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Tools

Tools
• OpenMP
• CUDA
• Thrust
• gmp++ – big
rationals.

• Computational
Geometry
Algorithms
Library (CGAL).

• Matlab
• Mathematica
Commercial tools
are expensive. (Highlights of the 42nd Top500 List, SC13)
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Tools OpenMP

OpenMP

• Shared memory, multiple CPU core model.
• Good for moderate, not massive, parallelism.
• Easy to get started.
• Options for protecting parallel writes:
• Sum reduction: no overhead.
• Atomic add and capture: small overhead.
• Critical block: perhaps 100K instruction overhead.

• Cost metric: real elapsed clock time.
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Tools

OpenMP Example

const int n(500000000);
int a[n], b[n];
int k(0);
int main () {

#pragma omp parallel for
for(int i = 0; i < n; i++) a[i]=i;
#pragma omp parallel for
for(int i = 0; i < n; i++) {

#pragma omp atomic capture (or critical)
j = k++;
b[j] = j; }

double s(0.);
#pragma omp parallel for reduction(+:s)
for (int i=0;i<n;i++) s+=a[i];
cout << "sum: " << s << endl; }
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Tools CUDA

CUDA
• NVIDIA’s parallel
computing platform and
programming model.

• Direct access to
complicated GPU
architecture.

• Learning curve: Efficient
programming is an art.

• One CUDA core is only 5%
as powerful as one Intel
Xeon core.

• Following slide from
http://www2.engr.arizona.edu/
~yangsong/gpu2.png.

Code Fragment

__global__ void device_greetings(void)
{
cuPrintf("Hello, from the device!\n");
}
cudaMalloc((void**)&device_array,

num_bytes)
cudaMemcpy(host_array, device_array,

num_bytes, cudaMemcpyDeviceToHost);
device_greetings<<<2,3>>>();
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Tools CUDA

GPU Architecture
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Tools Multiprecision big rationals

Multiprecision big rationals
• Solves problem of roundoff error when intersecting lines.
• Example uses gmp++ via boost.

Code

#include <boost/multiprecision/gmp.hpp>
using namespace boost::multiprecision;
int main() {

mpq_rational v;
for(mpq_rational i = 1; i <= 8; ++i) {

v += (2*i)/(2*i+1);
std::cout << i << ": " << v
<< std::endl;

}}

Output

1: 2/3
2: 22/15
3: 244/105
4: 1012/315
5: 14282/3465
6: 227246/45045
7: 269288/45045
8: 5298616/765765
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Algorithm Tactics
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Algorithm Tactics

Algorithm Tactics

• I/O more limiting than computation → minimize storage.
• For N � 1000000, lgN is nontrivial → deprecate binary trees.
• Minimize explicit topology, expecially 3D.
• Plan for 3D; many 2D data structures not easily extensible to 3D, e.g.,
line sweep.

• E.g., Voronoi diagram: 2D is Θ(N lgN). 3D is Θ
(
N2)

• Optimize function composition, e.g. Volume(Union(S)).
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Tools Multiprecision big rationals

Uniform Grid
• Overlay a uniform 3D grid on the universe.
• For each input primitive — cube, face, edge — find overlapping cells.
• In each cell, store set of overlapping primitives.
• Major disadvantage: It’s so simple that it apparently cannot work,

especially for nonuniform data.
• Major advantage: For the operations I want to do (intersection,
containment, etc), it works very well for any real data I’ve ever tried.
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Tools Multiprecision big rationals

Uniform Grid Time Analysis

For i.i.d. edges (line segments), show that time to find edge–edge
intersections in E 2 is linear in size(input+output) regardless of varying
number of edges per cell.
• N edges, length 1/L, G × G grid.
• Expected # intersections = Θ

(
N2L−2)

.
• Each edge overlaps ≤ 2(G/L + 1) cells.

• η
∆
= # edges per cell, is Poisson distributed. η = Θ(N/G2(G/L + 1)).

• Expected total # intersection tests: N2/G2(G/L + 1)2.
• Total time: insert edges into cells + test for intersections.

T = Θ
(
N(G/L + 1) + N2/G2(G/L + 1)2)

.
• Minimized when G = Θ(L), giving T = Θ

(
N + N2L−2)

.
Q.E.D.

Franklin (RPI) Problems, database, tools... (U Zürich 2015) 24 Aug 2015 20 / 33



Current grad students
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Current grad students

Current grad students

• Wenli Li
• Salles Magalhães
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Multiple observer siting –
Workflow
• Purpose: placing observers to cover targets on a terrain

• Workflow: VIX -> FINDMAX -> VIEWSHED -> SITE



Multiple observer siting –
Optimization 1
• VIX

• Algorithm
1. For each point

2. Pick a number of random targets

3. Compute the ratio of visible targets

• Approximate visibility

• Fixed stride: 1, 2, 4, 8,…

• Increasing stride: 2𝑖

O T

stride                 stride stride stride



Multiple observer siting –
Optimization 2
• SITE

• Algorithm
1. While not stop

2. Compute the area of 𝑉 ∪ 𝐶 for the viewshed 𝑉 of each 
unused observer

3. Add the observer with the largest area

4. Update the cumulative viewshed 𝐶 = 𝐶 ∪ 𝑉

• 𝐴𝑟𝑒𝑎(𝑉 ∪ 𝐶): 𝑂 𝑛2

• 𝐴𝑟𝑒𝑎(𝑉 − 𝐶𝑉): 𝑂 𝑟𝑜𝑖2

• Compute for unused observers within 2 × 𝑟𝑜𝑖 of the last 
addition



Multiple observer siting –
Parallelization
• OpenMP: compiler directives

• CUDA
1. Compute visibility indices

2. Select tentative observers

3. Compute observer viewsheds

4. Find observers within 2 × 𝑟𝑜𝑖 of the last addition

5. Compute the extra area of an observer viewshed

6. Find the observer for addition

7. Update the cumulative viewshed



Multiple observer siting –
Results 1
• 16K DEM, 26896 tentative observers

• Running time of CUDA VIX

• Percentage coverage

• Number of selected observers

30 targets 120 targets

stride Time (s) Coverage Observers Time (s) Coverage Observers

1 87 95.5 25224 340 96.5 25108

2 50 95.5 25228 193 96.5 25130

4 30 95.5 25272 114 96.5 25137

8 19 95.5 25298 71 96.4 25214

2𝑖 11 96.0 25353 37 96.8 25239



Multiple observer siting –
Results 2
• Running time

• Dataset: 1K, 2K, 4K, 8K, 16K DEMs

• Hardware: two 8-core Xeon E5, Tesla K20Xm

• Speedup
• OpenMP: 13—16

• CUDA: 6—35



ODETLAP –
Overview
• Overdetermined Laplacian Partial Differential 

Equations

• Two components: interpolation and lossy
compression

(Franklin et al. CUDA-accelerated HDODETLAP: Lossy high 
dimensional gridded data compression. Modern Accelerator 
Technologies for Geographic Information Science, 2013.)



ODETLAP –
Interpolation
• Two types of equations

• Given a domain 𝑚 × 𝑛 and known points {(𝑥𝑖 , 𝑦𝑖 , 𝑣𝑖)}𝑘
• Averaging equation
4𝑧 𝑥, 𝑦 − 𝑧 𝑥 − 1, 𝑦 − 𝑧 𝑥 + 1, 𝑦 − 𝑧 𝑥, 𝑦 − 1 − 𝑧 𝑥, 𝑦 + 1 = 0

• Smoothing factor 𝑅
4𝑅𝑧(𝑥, 𝑦) − 𝑅𝑧(… ) − 𝑅𝑧(… ) − 𝑅𝑧(… ) − 𝑅𝑧(… ) = 0

• Known-value equation
𝑧 𝑥𝑖 , 𝑦𝑖 = 𝑣𝑖

• Overdetermined system
𝑨(𝑚𝑛+𝑘)×𝑚𝑛𝒙 = 𝒃
𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃



ODETLAP –
Lossy compression
• Xie et al. Surface compression using over-determined 

Laplacian approximation. SPIE 6697, Advanced Signal 
Processing Algorithms, Architectures, and Implementations 
XVII, 2007.

• ODETLAP-based compression
1. Select a set of initial points 𝑃 using TIN construction

2. Interpolate 𝑃 using ODETLAP

3. While stop condition is not satisfied

4. Add a number of important points to 𝑃

5. Interpolate 𝑃 using ODETLAP



ODETLAP –
Advantages over PDE
• Advantages

• ODETLAP is overdetermined

• ODETLAP can infer local extrema

• Result is smoother across known points

• 𝑅 trades off accuracy vs. smoothness



ODETLAP –
Application 1
• Lau et al. Sea floor bathymetry trackline surface fitting without visible 

artifacts using ODETLAP. 17th ACM SIGSPATIAL International Conference 
on Advances in Geographic Information Systems, 2009.

• Lau and Franklin. Automated artifact-free seafloor surface 
reconstruction with two-step ODETLAP. SIGSPATIAL Special, 2012.
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Our research
● Efficient parallel algorithms for GIS.
● Algorithms for raster and vector maps.
● Main fields in GIS:

● Hydrography
● Visibility
● Operations with vector maps
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● RWFlood
● Fast flow direction and accumulation
● Linear-time algorithm
● More than 100 times faster than others

● EMFlow
● RWFlood for external memory
● TiledMatrix (tiling+fast compression) 
● 20x faster than TerraFlow and r.watershed.seg

Previous work: hydrography
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● TiledVS
● Visibility map computation on external memory
● Uses TiledMatrix

● Parallel Viewshed
● Multi-core implementation of the sweep-line viewshed 
● OpenMP
● Up to 12x faster than the serial (using 16 threads)

Previous work: visibility



5

R
P

I 
- 

R
e
n

s
s
e
la

e
r 

P
o
ly

te
c
h

n
ic

 I
n

s
ti

tu
te

● GPU observer siting
● Local search heuristic for observer siting
● Given a solution S, iteractively replace S with its 

best neighbor
● Neighbor(S): solution where an observer in S is 

replaced with an observer not in S.
● Challenge: efficiently find the best neighbor 
● Solution: sparse matrices, adapted sparse-dense 

MM to compute visible areas.
● Up to 3x faster than our previous GPU 

implementation.
● Up to 7000x faster than our previous serial 

implementation (using dense matrices).

Previous work: visibility
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Current work: map intersection

● Finite precision of floating point →roundoff errors.
● Big amount of data → increase problem.

● Proposed solution: Rat-overlay
● Uses rational numbers.
● Parallelizable.
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● Topological representation.
● Each region has one id.
● Edges represent boundaries.
● Sequence of edges bounding two regions: 

● chain: (id, #vertices, node
0
 , node

1
 , pol

left
, pol

right
)

Chains:
(1,4,1,2,2,0)
(0,2);(0,0);(2,0);(2,2)
(2,2,1,2,1,2)
(0,2);(2,2)
(3,3,2,1,1,0)
(2,2);(3,3);(0,2)
(4,5,3,3,2,0)
(5,2);(3,2);(3,0);(5,0);(5,2)

“outside”

Current work: map intersection
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Current work: map intersection
● Algorithm:

● Find all intersections.
● Locate vertices in the other map.
● Compute output polygons.
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Current work: map intersection
● Computing the intersections
● Test pair of edges for intersection.
● For efficiency: uniform grid.

● Insert edges in grid cells (edge may be in several cells).
● For each grid cell c, compute intersections in c.

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges
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Current work: map intersection
● Locating vertices in the other map
● Also implemented using a uniform grid.
● Given p, find the lowest edge above p.
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Current work: map intersection
● This algorithm →few data dependency →very parallelizable.

● Uniform grid creation: edges in parallel.
● Locate vertices in polygons.
● Compute intersections: cells in parallel.
● Compute output edges: process input edges in parallel.

● Implemented using C++/OpenMP.

source: wikipedia
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Current work: map intersection
● Computation is performed using rational numbers → no roundoff 

errors.

● Rat-overlay implemented using GMPXX.

● Special cases: simulation of simplicity.
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Current work: map intersection
● Rat-overlay implemented in C++ .
● Tests:

● Dual Xeon E5-2687  → 16 cores / 32 threads.
● 128 GiB of RAM.
● Linux Mint 17
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Current work: map intersection
● 2 Brazilian and 2 North American datasets.
● Shapefiles converted to our format.

● BrCounty: 342,738 vertices, 2,959 polygons
● BrSoil: 258,961 vertices, 5,567 polygons.
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Current work: map intersection
● 2 Brazilian and 2 North American datasets.
● Shapefiles converted to our format.

● UsAquifers: 195,276 vertices, 3,552 polygons
● UsCounty: 3,648,726 vertices, 3,110 polygons
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Current work: map intersection
● Sequential vs Parallel Rat-overlay vs GRASS GIS (sequential).
● Parallel: 

● Always faster than GRASS.
● Speedup << 32

● Critical sections.
● 16 physical cores.
● Amdahl's law.
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Future: Modeling of Valid Terrain

Future: Modeling of Valid Terrain

• What’s the purpose of the HW and SW tools described earlier?
• My big long-term unsolved problem is to devise a mathematics of
terrain.

Goals: Math that
• allows the representation of only legal terrain (= height of land above
geoid),

• minimizes what needs to be stated explicitly, and
• enforces global consistencies.
Why? To put compression and other ops on a logical foundation.

Franklin (RPI) Problems, database, tools... (U Zürich 2015) 24 Aug 2015 24 / 33



Tools Terrain properties

Terrain properties
Messy, not theoretically nice.

• Often discontinuous (C−1).
• Many sharp local maxima.
• But very few local minima.
• Lateral symmetry breaking — major river systems.
• Different formation processes in different regions. Peninsulas or fjords?
• Features do not superimpose linearly; two canyons cannot cross and add
their elevations.

• C∞ linear systems, e.g,. Fourier series, are wrong.
• Structure that people can recognize even though hard to formalize; see
Figure.

• Multiple related layers (elevation, slope, hydrology).
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Tools Current representations

Current representations

• Array of elevation posts.
• Triangular splines, linear or higher.
• Fourier series.
• Wavelets
Theory vs practice:
• Slope is derivative of elevation, but
• that amplifies errors, and
• lossy compression has errors, so
• maybe we want to store it explicitly.
Also, shoreline is a level set, but...
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Tools Inconsistencies between layers

Inconsistencies between layers

Elevation contours crossing shoreline
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Tools Math should match physics

Math should match physics

• Fourier series appropriate for small vibrations, not terrain.
• Truncating a series produces really bad terrain.
• Anything, like Morse complexes, assuming continuity is irrelevant.
• Fractal terrain is not terrain.
• Wavelets: how to enforce long-range consistency?
• Topology, by itself, is too weak.
• Terrain is not linear, not a sum of multiples of basis function.
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Tools Terrain formation by scooping

Terrain formation by scooping

• Problem: Determine the appropriate operators, somewhere inside the
range from conceptually shallow (ignoring all the geology) to deep
(simulating every molecule).

• One solution: Scooping. Carve terrain from a block using a scoop that
starts at some point, and following some trajectory, digs ever deeper
until falling off the edge of the earth.

• Properties: Creates natural river systems w cliffs w/o local minima.
• Every sequence of scoops forms a legal terrain.
• Progressive transmission is easy.

Chris Stuetzle, Representation and generation of terrain using
mathematical modeling, PhD, 2012.
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Tools Terrain formation by features

Terrain formation by features

• Represent terrain as a sequence of features — hills, rivers, etc ..
• plus a combining rule.
• This matches how people describe terrain.
• Progressive transmission.
• The intelligence is in the combining rule.

How compact is this rep? How to evaluate it?
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Tools Implications of a better rep

Implications of a better rep

• Put earlier empirical work on a proper foundation.
• Formal analysis and design of compression.
• Maximum likelihood interpolation, w/o artifacts.
• Treat more sophisticated metrics, like suitability for operations like path
planning, or recognizability.

• Close the loop to pre-computer descriptive geometry.
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Tools Multiprecision big rationals
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Summary

Summary
Guiding principles — to process big geometric and GIS datasets on parallel
machines
• GPUs, memory are affordable.
• Build on powerful existing tools.
• Use minimal possible topology, and compact data structures.
• Use lots of memory; run BIG examples to show the linear time.

Source code (prototype quality) freely available for nonprofit research and
education; I welcome stress tests and error reports.
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