
Fast path planning under polygonal obstacle constraints

Salles Viana Gomes
Magalhães

Rensselaer Polytechnic Inst.
Troy, NY, USA

vianas2@rpi.edu

Marcus Vinicius Alvim
Andrade

Univ. Federal de Viçosa
Viçosa, MG, Brazil
marcus@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.

Troy, NY, USA
mail@wrfranklin.org

Wenli Li
Rensselaer Polytechnic Inst.

Troy, NY, USA
liw9@rpi.edu

ABSTRACT
This paper presents UPLAN, an efficient algorithm for path
planning on road networks with polygonal constraints. U-
PLAN is based on the A* algorithm and it uses a uniform
grid for efficiently indexing the obstacles. As shown in the
experiments, UPLAN can quickly compute shortest paths
on maps and, thanks to the uniform grid, it is can efficiently
process very many polygonal obstacles. UPLAN was one of
the top 3 finishers in the ACM GISCUP 2015 competition.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations

General Terms
Algorithms, Experimentation, Performance

Keywords
Path planning, obstacle-avoidance, uniform grid

1. INTRODUCTION
Path planning, an important application in GIS, mobile sys-
tems, and robotics, has been studied for a long time. How-
ever the increasing volume of data available poses a new
challenge that requires new strategies. For example, the
NASA’s Earth Observatory System satellites collect about 1
TB of spatial data every day. There is also a huge volume
of data collected by GPS-enabled mobile devices.

This paper presents an efficient method for path planning
that, given a road network and a set of polygons represent-
ing obstacles, determines the shortest path connecting two
nodes (the source and the destination) on the road network,
while avoiding all obstacles.

2. RELATED WORK
This is a well-established research area with applications in
several domains in two or three dimensions. Many works [5,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
23rd ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (ACM SIGSPATIAL) 2015 Seattle, WA, USA
Copyright 2015 ACM ISBN 978-1-4503-3132-6 ...$15.00

6, 8, 12] have focused on finding the shortest path on re-
gions represented by grid points (for example, terrains). In
general, the algorithms process a 2D matrix of cells where
some cells are marked as obstacles that cannot be visited.
This problem is a common application in the robotics, GIS,
and virtual environment communities; the goal is to find
the path that avoids obstacles and minimizes the total num-
ber of cells visited or the safest path, that is, the path that
keeps as far away from obstacles as possible. In [5, 6, 12] a
sophisticated cost function is implemented for a path over
terrrain that first minimizes distance traveled inside forbid-
den regions, second minimizes distance traveled uphill, and
third minimizes horizontal distance traveled. One applica-
tion assumes that the forbidden regions are the viewsheds
of observers, and that a traveler wants to remain hidden as
much as possible.

Many other algorithms [1, 11, 14] perform path planning on
road maps represented as graphs. Again, the obstacles are
represented as polygons and the goal is to determine “the
best” path, that is, the shortest or the fastest, avoiding the
obstacles. Most of these algorithms are based on a variation
of the A* search [10] or Dijkstra’s algorithm [4].

The A* algorithm is a general-purpose guided search al-
gorithm, which can be adapted to efficiently solve path-
planning problems. This serves as the basis for UPLAN.

3. UNIFORM GRID
The uniform grid is a simple indexing data structure that
superimposes a grid over a polygon, a map or any set of seg-
ments, and then identifies the grid cells intersected by each
segment. Then, given a query segment, a superset of other
segments that are close to (or intersect) the query can be
efficiently determined. If the grid size is chosen to make the
expected number of segments per cell to be constant, then
the expected query time is also constant. Even if the number
of segments per cell varies, perhaps under a Poisson distribu-
tion, because the segments are chosen from an independent
and identical probability distribution, the algorithm is still
efficient. The uniform grid has been used in many applica-
tions including map overlay [3, 9], map generalization [7],
and segment intersection [2].

For the GISCUP 2015 [13] problem solution, we used a uni-
form grid for obstacle indexing. During the path compu-

tation, each road explored by the algorithm is checked for
intersection with any obstacle. More precisely, a grid with
a given resolution is created, and the line segments repre-
senting the obstacles are inserted into the intersecting grid
cells. Then, when the shortest path computation algorithm
processes an edge (road) on the graph, it selects the grid
cells intersected by the polyline l representing this road and
verifies if any line segment in these cells intersects l. If an
intersection is detected, the edge is ignored.

Thus, the uniform grid is used to quickly identify those map
roads that can’t be used because they intersect an obstacle.

4. PATH PLANNING
First, we create a directed graph G from the shapefile rep-
resenting the road network. The vertices in G represent the
road intersections. The edges are created such that a one-
way road connecting the intersection u to v is represented by
a directed edge (u,v) and a two-way road is represented by
two edges (u,v) and (v,u). Since graphs representing roads
are usually sparse, G is represented by an adjacency list.

Next, we create a uniform grid to index the obstacle edges.

Third, an implementation of A* [10] is used to find the best
path between the source node s and the target node t; see
Algorithm 1. This algorithm computes the cost of the short-
est path between s and t; the actual path can be computed
by keeping track of the parent of each node during the search
procedure.

The basic idea is to explore the graph using a priority queue
such that, in each step, the non-explored vertex that is “clos-
est” to the source node s is processed. For performance pur-
poses, the A* algorithm uses a heuristic function heuristic(v)
that returns a lower bound for the cost between the node v
and the target node t. When a node v is inserted into the
priority queue, the priority of this node is incremented with
heuristic(v) and, therefore, this heuristic is used to guide
the search such that nodes that have more potential to be
in the shortest path are processed first.

A* gives the best performance when the heuristic returns
high estimates for the lower bound (that is, when the esti-
mates for the cost are similar to the real cost of the paths) [10].
If the heuristic function returns small estimates (for exam-
ple, numbers close to zero), even though the algorithm will
always compute the shortest path, it may need to explore a
larger portion of the graph (behaving similarly to Dijkstra’s
algorithm). If the heuristic returns an estimate larger than
the actual cost, the resulting path is not guaranteed to be
the shortest one.

The heuristic for computing the path based on distance was
defined to be the length of a straight path between the cur-
rent node and the target node. Since the time needed to
traverse the paths depends on the speed and length of the
roads, the heuristic for computing the shortest path based
on time is defined to be the ratio of the length of the straight
path between the current node and the target node and the
highest speed of the roads on the maps. These two func-
tions will always return lower bounds for the cost of the
paths, and, thus, the A* will always find the best paths.

In order to avoid obstacles, Algorithm 1 never explores an
edge whose corresponding road (polyline) intersects an edge
of the obstacle polygons. We could have preprocessed G to
remove edges intersecting obstacles. However, we decided
not to do this because the A* algorithm is a guided search
that does not explore the whole graph and, therefore, not all
edges in G need to be tested for intersection. This strategy
improves the performance of UPLAN mainly in situations
where the shortest path is small when compared to the size
of the graph and, therefore, only a few edges are explored.

Finally, since neither the index nor the road graph changes
during the path planning, paths between different pairs of
nodes or using different criteria for the cost may be easily
computed in parallel. Since in the GISCUP competition, the
algorithm was required to compute both the path based on
traveling time and the one based on distance, we computed
these two paths in parallel (using OpenMP).

Algorithm 1 Path planning algorithm.

1: G: graph representing the input road network
2: s: start node
3: t: end node.
4: heuristic(v): heuristic function
5: cost[v]: cost of the shortest path from s to v.
6: PQ ← priority queue of vertices sorted in ascending or-

der
7: cost[v] ← 0 if v = s or infinity otherwise
8: while PQ is not empty do
9: v ← front of PQ

10: if v = t then
11: Return the priority of v
12: end if
13: Label v as explored
14: cost[v] ← v’s priority
15: for each edge e = (v, u) in G do
16: if e crosses an obstacle or u was explored then
17: Continue the for loop
18: end if
19: u’s priority ← cost[v] + |e| + heuristic(u)
20: if e isn’t in PQ then
21: Insert u into PQ
22: else
23: Update u’s priority in PQ
24: end if
25: end for
26: end while

5. EXPERIMENTS
UPLAN was tested on a computer with a dual E5-2687
Intel Xeon CPU and 128 GB of RAM. Since we wanted
to understand the performance of each step of UPLAN,
the experiments used a single-threaded version of UPLAN.
However as mentioned above, UPLAN can easily compute
many paths in parallel.

The experiments were performed on the sample dataset road
map provided by the GISCUP 2015 challenge [13]. This
map contains 42407 nodes and 96849 polylines, containing
302785 edges. To evaluate UPLAN with varying numbers of
obstacles, we used four different polygonal obstacle datasets.
Dataset 1 is the polygonal map provided by the GISCUP;
it contains 4 edges representing a quadrilateral. Datasets

2 and 3 were created manually and contain, respectively,
15783 edges (91 polygons) and 1414861 edges (2658 poly-
gons). Dataset 4 contains the same number of edges as
Dataset 3, but the obstacles were positioned further from
the main roads used in the paths. This was done to evaluate
the performance of the algorithm on maps with a large num-
ber of constraints that are far from the roads (since ideally
such distant constraints should not affect the performance
of the algorithm).

All experiments were performed by computing the shortest
path between pairs of nodes in three sets containing 20 pairs
of nodes each. The Close and Far sets were generated by
randomly creating 3000 pairs of edges and choosing the 20
pairs whose shortest path had, respectively, the smallest and
largest lengths. Similarly, the Median set was created by
choosing from the 3000 pairs of edges the 20 pairs whose
shortest paths are closest to the median shortest distance.

UPLAN was configured to choose the uniform grid resolu-
tion such that the average number of edges per grid cell is
3. (In previous applications, the precise grid size has not
been important.) Preliminary experiments show that this
configuration leads to a suitable performance.

Table 1 presents the average running time, and several other
statistics, of each step of UPLAN on the 4 different datasets
considering the three sets of pairs of nodes.

As expected, the time to create the uniform grid depends on
the number of edges in the obstacle polygons. For Datasets
3 and 4, most of the processing time was spent creating
the grid. However, in these two datasets the obstacles were
artificially created with many edges (5 times more edges
than the number of line segments in the input road map)
in order to stress-test the index. Also, the index is usually
created once and then reused for many queries.

The most important factor determining the time to compute
the shortest paths is the distance between the start and end
nodes, and so the number of nodes that need to be explored.
As expected, queries with start and end nodes that are far
from each other (see node set Far) take much more time
(and need to visit more vertices) than queries with close
nodes.

For the same sets of start and end nodes, the time for com-
puting the shortest paths varies by no more than a factor
of 2, suggesting that, thanks to the uniform grid indexing,
even large sets of obstacles have little influence on the per-
formance.

It is interesting to observe the performance of the path plan-
ning in Dataset 4: this dataset was created to test the perfor-
mance of UPLAN when there are many obstacles that are
distant from the shortest paths. Here, the performance of U-
PLAN was similar to its performance on Dataset 1 where the
number of obstacles was very small. This suggests that, if
the obstacles are not close to the edges explored by the algo-
rithm, even many obstacles do not significantly slow things
down.

We also tested the effect of disabling the heuristic. When

enabled, the time for computing the shortest path based
on distance is usually smaller than or equal to the time for
computing the path based on shortest traveling time. This
happens because the heuristic function for the path based
on distance presents a better lower bound than the heuristic
for the path based on time (this latter heuristic depends on
the range of speeds on the map). This difference is larger
for the Median set of pairs of nodes.

If the heuristic function is disabled, the time for computing
the paths based on shortest distance increases, becoming
more similar to the time for computing the path based on
shortest time. Considering the path based on time, even
though the average number of vertices explored increases
when the heuristic function is disabled, this increase is not
enough to make difference in the processing time.

These results open possibilities for future work: evaluate the
importance of the heuristic function on larger road networks,
and explore different heuristic functions. If processing time
is a critical factor, one possible way to improve the per-
formance of computing the shortest time path is to use a
heuristic based on the average speed on the roads (instead
of the maximum speed). However, even though this may
improve the performance (since the estimates obtained by
the heuristic will be larger), the resulting path will be only
an approximate shortest path since the heuristic will not be
guaranteed to always return a lower bound.

6. CONCLUSIONS
We have presented UPLAN, an efficient algorithm for path
planning on maps represented by road networks with polyg-
onal obstacle constraints. UPLAN uses a uniform grid for
indexing the obstacles and, as showed in the experiments, it
can quickly compute shortest paths even when the number
of obstacles is large. In fact, UPLAN’s performance was
affected by a maximum factor of 2 even if a set of obsta-
cles with more than one million edges is used (5 times the
number of line segments representing the roads).

In the future, we intend to explore other strategies for defin-
ing the heuristic function used for planning paths based on
shortest traveling time. Allowing the path to cross an ob-
stacle, but at an increased cost, also looks interesting.

This research was partially supported by NSF grant IIS-
1117277, by CAPES (Ciencia sem Fronteiras) and FAPEMIG.

7. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.

Werneck. A hub-based labeling algorithm for shortest paths
in road networks. In Proceedings of the 10th International
Conference on Experimental Algorithms, SEA’11, pages
230–241, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] V. Akman, W. R. Franklin, M. Kankanhalli, and
C. Narayanaswami. Geometric computing and the uniform
grid data technique. Comput. Aided Design, 21(7):410–420,
1989.

[3] S. Audet, C. Albertsson, M. Murase, and A. Asahara.
Robust and efficient polygon overlay on parallel stream
processors. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, SIGSPATIAL’13, pages 304–313,
New York, NY, USA, 2013. ACM.

Table 1: Running-time (in milliseconds) for each step of UPLAN considering the computation of the shortest
path based on travel time and of the shortest path based on distance. Column Time grid represents the time
for initializing the uniform grid. Columns Nodes visit. and #Tests represent, respectively, the number of
nodes that were visited by the algorithm during the shortest path computation and the number of intersection
tests performed to filter roads traversing obstacles.

Node Osbatcles Grid Grid init. Path based on distance Path based on travel time

Set Dataset # Edges size Time Time #Vert.visit. #Tests Time #Vert.visit. #Tests

W
it

h
h
eu

ri
st

ic

C
lo

se

1 4 1 0 0.1 48 0 0.1 127 0
2 15784 72 1 0.1 48 1 0.1 127 1
3 1414861 686 59 0.1 45 1 0.1 123 2
4 1414861 686 58 0.1 48 0 0.1 127 0

M
ed

ia
n 1 4 1 0 0.9 3799 0 2.0 10149 11

2 15784 72 1 1.8 4157 436 3.6 10303 966
3 1414861 686 59 2.0 4265 411 3.9 10723 768
4 1414861 686 58 1.1 3732 7 2.3 9899 21

F
a
r

1 4 1 0 4.2 21642 36 5.3 28752 38
2 15784 72 1 7.7 22566 2201 8.8 28467 2697
3 1414861 686 59 8.5 21581 1920 8.4 26833 2136
4 1414861 686 57 4.1 21640 22 4.9 28748 34

W
it

h
o
u
t

h
eu

ri
st

ic C
lo

se

1 4 1 0 0.1 229 0 0.1 227 0
2 15784 72 1 0.1 229 2 0.1 227 2
3 1414861 686 59 0.2 224 4 0.1 222 3
4 1414861 686 57 0.2 229 0 0.1 227 0

M
ed

ia
n 1 4 1 0 2.4 14142 20 2.3 14569 19

2 15784 72 1 3.5 14145 1251 3.6 14623 1282
3 1414861 686 58 3.9 13696 1003 4.0 14468 1057
4 1414861 686 57 2.4 13731 30 2.3 14200 31

F
a
r

1 4 1 0 4.7 30833 41 4.9 30671 41
2 15784 72 1 7.6 30735 2803 6.9 30509 2754
3 1414861 686 71 9.4 28148 2190 9.4 27999 2173
4 1414861 686 57 4.8 30772 101 4.8 30598 104

[4] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[5] W. R. Franklin, M. Inanc, Z. Xie, D. M. Tracy, B. Cutler,
and M. V. A. Andrade. Smugglers and border guards: the
geostar project at RPI. In 15th ACM International
Symposium on Geographic Information Systems, ACM-GIS
2007, November 7-9, 2007, Seattle, Washington, USA,
Proceedings, page 30, 2007.

[6] W. R. Franklin, D. M. Tracy, M. Andrade, J. Muckell,
M. Inanc, Z. Xie, and B. Cutler. Slope accuracy and path
planning on compressed terrain. In Symposium on Spatial
Data Handling, Montpellier FR, June 2008.

[7] M. G. Gruppi, S. V. G. Magalhães, M. V. A. Andrade,
W. R. Franklin, and W. Li. An efficient and topologically
correct map generalization heuristic. In ICEIS 2015 -
Proceedings of the 17th International Conference on
Enterprise Information Systems, Volume 1, Barcelona,
Spain, 27-30 April, 2015, pages 516–525, 2015.

[8] N. Lebeck, T. Mølhave, and P. K. Agarwal. Computing
highly occluded paths using a sparse network. In
Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, Dallas/Fort Worth, TX, USA, November 4-7,
2014, pages 3–12, 2014.

[9] S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin,
and W. Li. Fast exact parallel map overlay using a two-level
uniform grid. In Proceedings of the 4rd ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial
Data, BigSpatial ’15, New York, NY, USA, 2015. ACM.

[10] N. J. N. P. E. Hart and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems, Science, and Cybernetics,
SSC-4(2):100–107, 1968.

[11] O. Salzman, D. Shaharabani, P. K. Agarwal, and
D. Halperin. Sparsification of motion-planning roadmaps by
edge contraction. I. J. Robotic Res., 33(14):1711–1725,
2014.

[12] D. M. Tracy, W. R. Franklin, B. Cutler, F. T. Luk, and
M. Andrade. Path planning on a compressed terrain. In
Proceedings of the 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, GIS ’08, pages 56:1–56:4, New York, NY, USA,
2008. ACM.

[13] R. R. Vatsavai, X. Chen, and S. Ravada. GISCUP - ACM
SIGSPATIAL CUP 2015.
http://research.csc.ncsu.edu/stac/GISCUP2015/index.php
(accessed on Oct–2015).

[14] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and
S. Zhou. Shortest path and distance queries on road
networks: An experimental evaluation. Proc. VLDB
Endow., 5(5):406–417, Jan. 2012.

