Segmented ODETLAP Compression

Wenli Li, W. Randolph Franklin, Salles V. G. Magalhaes
Rensselaer Polytechnic Institute, Troy, NY, USA
liw9@rpi.edu, mail@wrfranklin.org, vianas2@rpi.edu

ABSTRACT

We have designed an algorithm for segmented ODETLAP
compression. It can be more than 3 times as fast as unseg-
mented compression and use less than 10% more points for
better compression errors. When hardware is available, it
can process segments in parallel.

1. INTRODUCTION

ODETLAP is a discrete space approximation and compres-
sion method created by Franklin [1]. ODETLAP has two
components: approximation and lossy compression. For ap-
proximation, it estimates grid point values from a subset
of known points by building and solving an overdetermined
system of linear equations. The equations include an averag-
ing equation for each point and an additional known-value
equation for each known point. The basic format of the
averaging equation is the finite-difference approximation of
the Laplace’s equation, which makes the value of each point
(z,y) equal to the average value of its neighbors:

u(lz—1,y)+u(z+1,y)+u(z,y—1)+u(z,y+1)—4u(z,y) = 0.
Multiplying both sides of the equation with a positive pa-
rameter R gives
R(u(z—1,y)+u(z+1,y)+u(z, y—1)+u(z, y+1)—4u(z, y)) = 0.
R does not change the equation but changes its weight rela-

tive to other equations. The known-value equation for each
known point sets its value to its known value:

u(z,y) = f(z,y).

The last two equations constitute an overdetermined sys-
tem of more equations than unknowns, whose approximate
solution assigns a value to each point of the domain. The
approximate value of a point is not exactly the average of
its neighbors, and the approximate value of a known point
is not exactly its known value. R controls the smoothness
of the approximation by specifying the weight of averaging
equations relative to known-value equations. Therefore, R is
called the smoothing factor.

The other component of ODETLAP is lossy data compres-
sion. The method is to select an important subset of data
points S from a dataset as its compressed representation, and
decompress it by interpolating S on a grid using ODETLAP
approximation. Xie [5] used a greedy method to select impor-
tant points from a DEM. It first builds an initial point set S,
for example, using the vertices of a TIN, and reconstructs a
surface using ODETLAP approximation. Then it iteratively
adds a number of points with the greatest absolute vertical
errors to S, and reconstructs a new surface from S. The
process stops when the root-mean-square error of the approx-
imation is not more than a predefined threshold. To prevent
the points added in the same iteration from clustering, a
forbidden zone is applied to each new point so that additional
new points are at least some distance apart from it.

To accelerate ODETLAP approximation, Stookey [4] paral-
lelized it on an IBM Blue Gene/L by dividing a grid into

Table 1: Unsegmented results
Time AVGEE RMSEE MAXEE
6386 52m26s 12.0 15.6 50.0

Points

overlapping patches. For example, to approximate a ter-
rain, the method divides the grid and known points into
overlapping patches of size 100 x 100, whose lower left cor-
ners are at (50%,505), 4,7 = 0,1,... Then it computes an
approximation for each patch and merges the results using
bilinear interpolation. The patches are grouped into blocks
that are processed in parallel. To save time and memory for
ODETLAP approximation, Li[2] used a method that divides
a grid into two overlapping sets of boxes. Then it computes
an approximation for each box and merges the results from
the two sets using weighted average.

Mitdsova and Mitds [3] developed a segmentation procedure
for the interpolation of large datasets using completely regu-
larized splines. The method is based on the local behavior
of the interpolation function. It divides a grid into square
segments so that the number of known points in each seg-
ment and its neighborhood is less than a threshold. Then it
computes an interpolation for each segment from the points
in its neighborhood of 3 x 3, 5 X 5 or more segments, so that
the number of points is more than a threshold.

2. SEGMENTED ODETLAP COMPRESSION

Solving large linear systems is time-consuming but can be
accelerated by parallel processing on GPU. We implemented
ODETLAP approximation using the Cusp library, which is
based on the Thrust library. On our server, the speedup of
ODETLAP approximation is about 8 times using an NVIDIA
Tesla K20Xm, over using a single thread of an Intel Xeon E5-
2687W. With GPU-accelerated ODETLAP approximation,
we can afford to process bigger datasets, and to add one
point in each iteration of the greedy point selection method.
However, it is still a time-consuming process. For example,
Figure 1 shows a 600 x 600 DEM down-sampled from NED
1 x 1 degree block n43w074. Point values are in integer
meters and have a range of [—1,1138].

0

Table 1 shows the number
of selected points, running 100
time and compression errors
of adding one point per it-
eration to an initial set of

200!

300!

40 x 40 regular points at posi- 400

tions (157 + 7,155 + 7), until 500

the maximum absolute eleva-

tion error (MAXEE) is less ®%% 100 200 300 400 500 600

than 50 meters. The other Figure 1: Sample dataset.
errors are average absolute elevation error (AVGEE) and
root-mean-square elevation error (RMSEE) in meters. The
smoothing factor of ODETLAP approximation is R = 0.01.

ODETLAP approximation shows local behavior in that the
influence of a known point decreases with the increase of

Figure 2: Neighborhood types.

distance. In stead of segmented approximation, we designed
segmented compression such that adding a point only requires
an approximation for a single segment.

2.1 Algorithm

The main idea of the algorithm is to divide an nrows x ncols
dataset into *gg* x % segments of size SS x SS, and then
compress each segment in association with neighboring seg-
ments. Given a segmented dataset, it selects points from each
segment until the maximum absolute approximation error of
each segment is less than a threshold. The approximation of
a segment is computed as part of the approximation of its
neighborhood. A segment still needs processing if either its
maximum approximation error is not less than the threshold,
or new points are selected in its neighborhood from other
segments. When a point is selected, all segments whose
neighborhood contains it will need processing. To maintain
uniform progress among all segments, they are processed in a
round-robin manner. The details are shown in Algorithm 1.

Algorithm 1: Segmented compression

Data: a segmented dataset
Result: a set S of selected points
add the center of each segment to S;

mark all segments as needing processing;
while there are segments that need processing do
for each segment s that needs processing in an order do
while s needs processing for up to a number of
iterations do
compute the ODETLAP approximation of s’s
neighborhood;
if the mazimum absolute error in s is less than a
threshold then

‘ mark s as not needing processing;
else

L add the worst point p in s to S;

for each other segment t in s’s neighborhood do
if p is in t’s neighborhood then
| mark ¢ as needing processing;

The parameters are SS: segment size; NT': neighborhood
type; MAXITER: the maximum number of iterations in
processing a segment; and ORDFER: the order of processing
the segments that need processing.

2.2 Experiments

We considered three neighborhood types: (a) one extra point
wide, (b) £ extra points wide, and (c) one extra segment
wide. Figure 2 shows each type of neighborhood as a gray

box when SS = 5.

In experiments, we set SS = 15 and the maximum approxima-
tion error threshold of each segment to 50. The initial point

Table 2: Segmented results (NT')
NT Points Inflation Time Speedup AVGEE RMSEE MAXEE

(a) 8071 1.26x 6mdbs 7.76x 12.0 15.6 50.0
(b) 7483 1.17x 9m26s 556x 11.8 15.3 50.0
() 7014 1.10x 20mlds 2.59x 11.8 15.3 50.0

Table 3: Segmented results (MAXITER)

M.I. Points Inflation Time Speedup AVGEE RMSEE MAXEE

3 6915 1.08x 16m40s 3.15X 11.8 15.3 49.9
4 6898 1.08x 15mb3s 3.30X% 11.8 15.3 50.0
5 6888 1.08x 15m40s 3.35X 11.9 15.4 50.0

set consists of the center of each segment, or 40 x 40 regular
points. The smoothing factor of ODETLAP approximation
R = 0.01. Table 2 shows the results of the algorithm using
different NT’s, with MAXITER = 1 and ORDER being row-
column order. The approximation of a dataset consists of
the approximation of each segment. The table also shows the
inflation of the number of selected points and the speedup
of running time. As neighborhood size increases from (a) to
(c), the inflation, speedup and errors all decrease.

Table 3 shows the results using different MAXITER’s, with
NT being (c) and ORDER being row-column order. In
general, as MAXITER increases, the speedup decreases but
converges quickly, while the other results are similar.

Table 4 shows the results with NT being (c), MAXITER = 4
and ORDER being random order. Random order is slightly
faster than row-column order.

3. CONCLUSIONS

We have designed segmented ODETLAP compression. For
the sample dataset and a maximum error of 50, it is more
than 3 times as fast as unsegmented compression. Average
and RMS errors are sightly better, but the number of se-
lected points is about 7% larger. Because a GPU is more
efficient with a larger problem size, the speedup is greater if
ODETLAP approximation is on CPU. The algorithm also
works better for more unbalanced datasets. Besides, when
hardware is available, segments can be processed in parallel.

Acknowledgement. This research was partially supported
by NSF grant I1S-1117277 and CAPES (Ciéncia sem Fron-
teiras).

4. REFERENCES

[1] W. R. Franklin and M. Gousie. Terrain elevation data
structure operations. In C. P. Keller, editor, Proceedings of
the 19th International Cartographic Conference, pages
1011-1020, Aug. 1999.

[2] Y. Li. CUDA-accelerated HD-ODETLAP: a high dimensional
geospatial data compression framework. PhD thesis,
Rensselaer Polytechnic Institute, 2011.

[3] H. Mit4sovd and L. Mités. Interpolation by regularized spline
with tension: I. theory and implementation. Mathematical
Geology, 25(6):641-655, 1993.

[4] J. Stookey. Parallel terrain compression and reconstruction.
Master’s thesis, Rensselaer Polytechnic Institute, 2008.

[5] Z. Xie. Representation, compression and progressive
transmission of digital terrain data using over-determined
laplacian partial differential equations. Master’s thesis,
Rensselaer Polytechnic Institute, 2008.

Table 4: Segmented results (ORDER)
Points Inflation Time Speedup AVGEE RMSEE MAXEE
6821 1.07x 156m28s 3.39% 11.9 15.4 50.0

