XVI Brazilian Symposium on Geolnformatics
{ November 29" to December 2", Campos do Jord&o, SP, Brazil

)GEOQINFO 2015

USING RATIONAL NUMBERS AND PARALLEL
COMPUTING TO EFFICIENTLY AVOID ROUND-OFF
ERRORS ON MAP SIMPLIFICATION

Mauricio G. Gruppi’

Salles V. G. de Magalhaes'?
Marcus V. A. Andrade’

W. Randolph Franklin?
Wenli Li?

"Departamento de Informatica - Universidade Federal de Vicosa
2Rensselaer Polytechnic Institute - USA

CONTENTS

1. Introduction
- What is Map Simplification?
- Topological Consistency

2. Related Works

- Simplification Algorithms
- Round-off Errors in Floating-point Arithmetic

Round-off Errors on Map Simplification
The EPLSimp Method
Experimental Evaluation

o v koW

Conclusions

-

INTRODUCTION

MAP SIMPLIFICATION

What is Map Simplification?

- It's the process of reducing the amount of detail of a map.
- Such as reducing the number of vertices of a polygonal chain

when altering scale.
- However, there are key features that must be preserved.

MAP SIMPLIFICATION

@) (b)

(a) shows an example of input set. A topologically consistent
simplification of (a) is shown in (b).

MAP SIMPLIFICATION

-
(a) (b)

(b) shows a topologically inconsistent simplification of (a).

RELATED WORKS

SIMPLIFICATION ALGORITHMS

Ramer-Douglas-Peucker’s Algorithm (RDP)
[Douglas and Peucker, 1973][Ramer, 1972]

- Simplification by selection.
- May produce inconsistency.

- [Saalfeld, 1999]
- [Li et al,, 2013]

SIMPLIFICATION ALGORITHMS

Visvalingam-Whyatt's Algorithm (VW) [Visvalingam and Whyatt, 1993]

- Simplification by elimination.
- Ranks points by effective area.

- Removes points whose effective area is smaller than a given
threshold.

SIMPLIFICATION ALGORITHMS

VW’s Algorithm

SIMPLIFICATION ALGORITHMS

VW's Algorithm

- Calculates every point’s
effective area in L.

- Definition: The effective area of
a polyline vertex v; is the area
of the triangle formed by v;_,, v;
and vi,q.

=

SIMPLIFICATION ALGORITHMS

VW’s Algorithm

- Calculates every point’s
effective area in L.

- Find the point p with smallest
effective area.

SIMPLIFICATION ALGORITHMS

VW’s Algorithm

- Calculates every point’s
effective area in L.

- Find the point p with smallest
effective area.

- Remove p from L.

SIMPLIFICATION ALGORITHMS

VW’s Algorithm

- Calculates every point’s
effective area in L.

- Find the point p with smallest
effective area.

- Remove p from L.

- Calculate the new effective area
for p’s neighbors.

=

SIMPLIFICATION ALGORITHMS

VW’s algorithm can produce topologically inconsistent results.

SIMPLIFICATION ALGORITHMS

VW'’s Algorithm

- Input: 2 polygonal chains (black
and red).

1

SIMPLIFICATION ALGORITHMS

VW'’s Algorithm

- Input: 2 polygonal chains (black
and red).

- Remove d from L.

1

SIMPLIFICATION ALGORITHMS

VW'’s Algorithm

- Input: 2 polygonal chains (black
and red).

- Remove d from L.

- An intersection has been
created between both lines.

1

TopoVW [Gruppi et al,, 2015]
- Ranks points by effective area.

- Checks for points inside each
p's triangle.
- Removes p if there is none.

- Stops when a certain number of
points have been removed.

© May not be removed ®May be removed

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

- Algorithms previously mentioned were designed for floating-point
arithmetic.

- Arbitrary precision numbers represented as fixed precision
numbers.

- May incur round-off errors.

- Therefore producing wrong results.

=

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

- Round-off errors affect planar
orientation predicate f
[Kettner et al.,, 2008].

- The problem of finding whether
three points p, g, r:

- are collinear.

- make a left-turn. p
- make a right-turn.

14

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

- Round-off errors affect planar
orientation predicate f
[Kettner et al.,, 2008].

- The problem of finding whether
three points p, g, r:

- are collinear.

- make a left-turn. p
- make a right-turn.

14

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

- Round-off errors affect planar
orientation predicate
[Kettner et al., 2008].
- The problem of finding whether
three points p, g, r:
- are collinear.
- make a left-turn.
- make a right-turn.

14

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

- Round-off errors affect planar
orientation predicate
[Kettner et al.,, 2008].
- The problem of finding whether
three points p, g, r:
- are collinear.

- make a left-turn.
- make a right-turn.

14

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

1 px Py
orientation = sign T agx qy

T ey

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

' . . 1 px py
orientation = sign 1 ax qy
T oy
Sign:
<+ left turn.
- = right turn.
- 0: collinear.

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

T px Dy
orientation = sign T agx qy

T oy
Sign: Possible problems:
-+ left turn. - rounding to zero.
- - right turn. - perturbed zero.

- 0: collinear. - sign-inversion.

ROUND-OFF ERRORS IN FLOATING POINT ARITHMETIC

0.50000000000002531
0.5000000000000171

17.300000000000001 8.8000000000000007
(17.300000000000001) (8.8000000000000007)
34.00000000000005 121

(24.0000000000000517763) (121)

Result of the planar orientation problem using floating-point arithmetic.
Source: [Kettner et al., 2008].

i ™S
16

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

ROUND-OFF ERRORS IN MAP SIMPLIFICATION

We have tested floating-point round-off errors on map
simplification:

- We needed to determine whether p is inside triangle T formed by
(r,s,1).
- This was done by using barycentric coordinates of p in T.

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

Let a, b and ¢ be scalars such that:

- Py = Qry + bsy + cry
- py =ary+ bs, +cry
ca+b+c=1

p liesinside Tifand only if 0 < a,b,c <1

19

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

- Afunction is_inside(r,s, t,p) was implemented in C++ using
floating-point numbers.

20

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

- Afunction is_inside(r,s, t,p) was implemented in C++ using
floating-point numbers.

- false inside: outer point said inside.

20

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

- Afunction is_inside(r,s,t,p) was implemented in C++ using
floating-point numbers.

- false inside: outer point said inside.

- May prevent simplification.

20

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

- Afunction is_inside(r,s, t,p) was implemented in C++ using
floating-point numbers.

- false inside: outer point said inside.

- false outside: inner point said outside.

20

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

- Afunction is_inside(r,s,t,p) was implemented in C++ using
floating-point numbers.

- false inside: outer point said inside.

- false outside: inner point said outside.

- May create improper intersections and self-intersections.

20

ROUND-OFF ERRORS ON MAP SIMPLIFICATION

=

(b)

p was a false outside. Thus the removal of g was possible, creating
self-intersections.

21

SOLUTION TO ROUND-OFF ERRORS

- e-tweaking
- Snap-rounding
- Exact Arithmetic

22

€-TWEAKING

e-tweaking uses a tolerance value when comparing two numbers:

x=yif|x—yl <e

- Automatically activates rounding to zero.

- Finding e is difficult. Especially for big datasets.

23

SNAP-ROUNDING

Snap-rounding splits the map into pixels (cells). Rounds every
endpoint to the center of its bounding pixel.

~N
Xt
NGl oINS

(=) (b)

Figure: (a) before snap-rounding. (b) after snap-rounding. Intersections
were introduced.

2%

EXACT ARITHMETIC WITH RATIONAL NUMBERS

Exact Arithmetic with Rational Numbers:

- Non-integer variables are represented as arbitrary precision
rational numbers.
- Slower than floating-point arithmetic but round-off errors free.

- Overhead can be reduced using parallel computation.

25

OUR METHOD

- EPLSimp uses exact arithmetic for simplifying polylines.

- A uniform-grid structure is used for determining which points
needed to be tested for each triangle.

- Parallel computing used for performance.

- Lines are then subdivided into sets that can be simplified in
parallel.

=

26

OUR METHOD

- Construct a uniform-grid in o T
parallel. /

27

OUR METHOD

- Construct a uniform-grid in o T
parallel. /

- Simplify line R. -

27

OUR METHOD

- Construct a uniform-grid in A
parallel. //\

- Simplify line R. "

- Decrease grid resolution.

- More lines inside single cells.
- Allows parallel simplification.

27

OUR METHOD

- Simplify line S.

27

OUR METHOD

- Simplify line S.

\‘

- Decrease grid resolution.

27

OUR METHOD

- Simplify line S.

- Decrease grid resolution.

- Simplify the remaining lines (if v
any).

27

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS - CONSISTENCY

- EPLSimp was implemented in C++ using the GMPXX library
[Granlund and the GMP development team, 2014].

- Artificial datasets were created to evaluate the occurrence of
round-off errors.

- EPLSimp did not produce any topological inconsistencies.

=

29

EXPERIMENTAL RESULTS - PERFORMANCE

Table: Times (in ms) for the main steps of the map simplification algorithms. Rows Max
represent the time for removing the maximum amount of points from the map while rows Half
represent the time to remove half of the points.

Dataset 1 2 3

Method TopoVW EPLSimp TopoVW EPLSimp TopoVW EPLSimp
. Initialize 4 22 28 190 1828 5353
é Simplify 39 60 626 445 46069 57095
Total 43 82 654 635 47897 62448
- Initialize 4 22 28 186 1847 5447
r?g Simplify 25 41 357 331 23021 48090
Total 29 63 384 517 24868 53537

-

30

EXPERIMENTAL RESULTS - PERFORMANCE

Table: Times (in ms) for initializing and simplifying maps from the 3 datasets considering
different number of threads. The simplification was configured to remove the maximum amount
of points from the maps.

Initialization Simplification
Dataset 1 2 3 1 2 3
1 71 655 26833 176 1574 250237
L 2 91 568 15483 152 1150 131310
g 4 54 422 9853 99 689 82641
= 8 34 240 6552 61 483 62089
16 22 190 5353 60 445 57095

31

CONCLUSIONS

- We were able to avoid round-off errors using exact arithmetic with
rational numbers.

- Parallel computing helped alleviating the overhead, approaching
floating-point’'s processing time.
- Future works include:

- Adapting EPLSimp for simplifying vector drawings and 3D objects.
- Use exact arithmetic for other GIS algorithms.

N

32

THANK YOU

D

CAPES
RAcnPq

Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldgico

@

FAPEMIG

mauricio.gruppi@ufv.br
salles@ufv.br
marcus@ufv.br
mail@wrfranklin.org

	Introduction
	Related Works
	Round-off errors on Map Simplification
	Experimental Results

