
An efficient external memory algorithm for terrain viewshed
computation

Chaulio R. Ferreira and Marcus V. A. Andrade and Salles V. G. Magalhães, DPI - Federal
University of Viçosa - Brazil
W. Randolph Franklin, ECSE Dept - Rensselaer Polytechnic Institute - Troy NY - USA

This paper presents TiledVS, a fast external algorithm and implementation for computing viewsheds.
TiledVS is intended for terrains that are too large for internal memory, even over 100000×100000 points.

It subdivides the terrain into tiles that are stored compressed on disk and then paged into memory with a

custom cache data structure and LRU algorithm. If there is sufficient available memory to store a whole row
of tiles, which is easy, then this specialized data management is faster than relying on the operating sys-

tem’s virtual memory management. Applications of viewshed computation include siting radio transmitters,

surveillance, and visual environmental impact measurement.
TiledVS runs a rotating line of sight from the observer to points on the region boundary. For each

boundary point, it computes the visibility of all the terrain points close to the line of sight. The running

time is linear in the number of points. No terrain tile is read more than twice. TiledVS is very fast, for
instance, processing a 104000×104000 terrain on a modest computer with only 512MB of RAM took only

1 1
2 hours. On large datasets, TiledVS was several times faster than competing algorithms such as the ones

included in GRASS. The source code of TiledVS is freely available for nonprofit researchers to study, use,

and extend.

A preliminary version of this algorithm appeared in a 4-page ACM SIGSPATIAL GIS 2012 conference
paper “More efficient terrain viewshed computation on massive datasets using external memory”. This more

detailed version adds the fast lossless compression stage that reduces the time by 30% to 40%, and many

more experiments and comparisons.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical problems and computa-
tions

1. INTRODUCTION
Visibility, or line-of-sight, computation is an important component of terrain modeling in both
Geographical Information Science (GIS) and military Modeling and Simulation. It determines the
viewshed, or set of target points that can be seen from a given observer point [de Floriani et al.
2000; Franklin and Ray 1994; Nagy 1994]. The observer and targets might be at some given height
above the terrain. Applications range from visual nuisance abatement to radio transmitter siting and
surveillance. Possible goal applications include minimizing the number of cellular phone towers
required to cover a region [Ben-Shimol et al. 2007; Camp et al. 1997; Bespamyatnikh et al. 2001],
optimizing the number and position of guards to cover a region [Franklin and Vogt 2006; Eidenbenz
2002; Magalhães et al. 2011], analysing the influences on property prices in an urban environment
[Lake et al. 1998], and optimizing path planning [Lee and Stucky 1998]. Other applications are
presented in Champion and Lavery [2002], where the term line of sight is used.

Currently active visibility research potentially benefiting from faster viewshed computations
includes optimizing a moving observer’s path within a polygonal domain to see the target as quickly
as possible [Polishchuk et al. 2016], maximizing visibility while sweeping a terrain with a set of
flying observers [Efrat et al. 2013], and optimizing observer (sensor) placement in a polygonal
domain when the sensors have a short battery life and cannot be on all the time [Arkin et al. 2014].

Lebeck et al. [2014] present a new method for quickly computing occluded paths over a terrain
using a sparse 1-dimensional network over the terrain. They describe three different strategies for
constructing the sparse network and present experimental results showing that their approach is
significantly faster than others, and that the different strategies offer a tradeoff between higher-quality
paths and lower preprocessing times.

Hurtado et al. [2014] present a pioneering theoretical study about visibility in polyhedral terrains
in the presence of multiple viewpoints. They analyze the complexity and describe algorithms to

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:2 C. R. Ferreira et al.

compute three visibility structures: the visibility map, which is a partition of the terrain into visible
and invisible regions; the colored visibility map, which is a partition of the terrain into regions whose
points have exactly the same visible viewpoints; and the Voronoi visibility map which is a partition of
the terrain into regions whose points have the same closest visible viewpoint. For example, Hurtado
et al. [2014, Theorem 11] prove that the colored visibility map of a polyhedral terrain may be
computed in O(m(nα(n)+min(kc,n2)) logn+mkc) time, where n is the number of vertices, m the
number of viewpoints, α(·) is the inverse Ackermann’s function (for practical purposes, a constant),
and kc is the size of the colored visibility map. The max size of kc = Θ(m2n2). In contrast, the
algorithm presented in this paper solves a much simpler problem, but has been implemented and
shown to run linearly and fast when processing very large raster datasets on small machines.

Alderson and Samavati [2015] describe some techniques for speeding up line of sight algorithms.
They use a terrain simplification strategy that counteracts the loss of accuracy due to simplification
with some iterative methods (using residual multiresolution vectors) to try to improve the accuracy.
They present a hierarchical line of sight algorithm that combines Bresenham’s algorithm, a quad tree
data structure and simplification.

Returning to the current paper, there is the question of the future relevance of an algorithm designed
to use small amounts of memory when workstations with tens of gigabytes of main memory (RAM)
are available. First, as of February 2016, many widely used current computers have small amounts of
RAM. The Dell Chromebook 11 has only 2GB [Dell Inc. 2016], much of which is needed by the
operating system and window manager. Typical smartphones have only 2GB of RAM [Tom’s Guide
2016]. Some flight simulators are 32-bit programs, and so have a total of only 3GB of addressable
RAM available for the whole program. Now, combine this with recent available high-resolution
terrestrial data, such as the 30-meter resolution terrain data from NASA’s Shuttle Radar Topography
Mission (SRTM) and sub-meter resolution LIDAR data. Processing these large datasets on those
small platforms will require external algorithms.

The computer hardware design community has also been studying the time/space tradeoffs of
compressing memory and cache pages [Pekhimenko et al. 2012].

Since external memory accesses are about 106 times slower than internal accesses [Dementiev
et al. 2005], we need to minimize data transfer operations in addition to CPU time. A common
model [Aggarwal and Vitter 1988] considers the cost to be the number of I/O operations, each the
transfer of one disk block of size B between external and internal memory. CPU time is assumed to
be comparatively insignificant (within reasonable limits).

This paper extends our earlier algorithm TILEDVS [Ferreira et al. 2012], an efficient method to
compute viewsheds on terrains in external memory. TILEDVS was an adaptation of RFVS, an internal
memory algorithm proposed in Franklin and Ray [1994]. TILEDVS allows efficient manipulation of
large terrains. It reduces the number of disk accesses by using a custom virtual memory manager
to manage the data movement between external and internal memory. The novel component of the
algorithm in this paper is a fast lossless compression technique to reduce the processing by 30%
to 40%. This paper also reports the results of many new experiments and comparisons on various
hardware configurations. Compared to the previously best published methods (EMVIEWSHED
[Andrade et al. 2011] and IO RADIAL2, IO RADIAL3 and IO CENTRIFUGAL [Fishman et al. 2009]),
TILEDVS is much simpler, and up to four times faster. TILEDVS has processed terrains with over 20
billion points on a modest computer.

TILEDVS and its implementation are publicly available for other nonprofit researchers and
educators to use and extend.

2. DEFINITIONS
We work with a region of interest R of the earth’s geoid (i.e., the hypothetical sea-level extended also
to cover the land [National Digital Elevation Program 2015]) that is small enough that the earth’s
curvature can be ignored. Thus R can be considered to be planar. (If R is large enough that the
curvature is significant, but still small compared to the radius of the earth, then a one-time correction

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:3

O

T1

T2

T3

Fig. 1: Targets’ visibility: T1 and T3 are not visible but T2 is.

to elevations will remove the first order error.) We impose a 2-D coordinate system (x,y) on R, with
x,y ∈ℜ, the real numbers.

A terrain τ is a scalar-valued function from R to real numbers h called heights. A point on the
terrain is denoted by (x,y,hx,y). We call (x,y) ∈R, the base of that point. hx,y is the height of the
point above the geoid.

There are two common data structures to represent a terrain, TIN and Raster DEM. A Triangulated
Irregular Network (TIN) is a piecewise planar triangular spline over R. (The use of a higher-degree
triangular spline has apparently not yet been studied in GIS.) The 2D projection of the triangulation
is usually Delaunay, that has various desirable properties, such as maximizing the minimum angles
in the triangles, compared to other possible triangulations like minimizing the total projected edge
length.

In contrast, the raster digital elevation model, briefly “DEM”, used in this paper, partitions R
into a square grid of cells, each with a point (or elevation post [National Digital Elevation Program
2015]) in its center, and stores a height hx,y for each point. The meaning of hx,y depends on the data
collection technology, but is probably a convolution of the terrain’s scalar height field with a spread
function depending on the wavelength and effective lens size of the beam of radiation, whether light
or radar.

More confusingly, the term “DEM” has been used both to refer to a simple elevation array, usually
rectangular, and to that array plus metadata including size and accuracy standards defined by the
USGS [MindSites Group 2016]. This paper does not use such metadata.

Both TIN and DEM have advantages and disadvantages, so that neither is clearly better than the
other. Nevertheless, one objection to the DEM is that it uses too much space because it does not adapt
to the varying information content of different regions of the terrain. However, this can be handled
by postprocessing with an adaptive compression technique, such as Stookey et al. [2008]. Factoring
the compression out into a separate step also follows good software design principles. In contrast,
storing the topology (that is, the incidence and adjacency relationships) in a TIN usually takes much
more space than is required to store the elevations [Li et al. 2005], although tradeoffs between space
and data structure complexity are possible. In the limit, if the TIN is Delaunay, no topology needs to
be stored at all since the triangulation could be rederived as needed (at some cost). There are also
intermediate data structures to compactly represent planar graphs [Rossignac 1999].

An observer is a point from where we attempt to see other points, the targets. Each is defined by a
base point (x,y) in R and a height above the corresponding terrain point. E.g. the observer at point
(20,30) may be 10m above the terrain at (20,30), which is itself 100m above the geoid there. We
often assume that the observer can see only targets that are closer than some given radius of interest,
ρ . In this work, ρ is large enough to cover the entire terrain. In practice, we bound the circle with a
square of side 2ρ +1, equivalent to using an L∞ distance metric. For convenience, this distance is
measured in the plane in R because that is simpler and effectively the same as measuring exactly in
three dimensions. Apart from that, target T is visible from O if and only if the straight line, the line
of sight, from O to T is always strictly above τ; see Figure 1.

The viewshed of O is the set of all base points corresponding to targets that can be seen by O. Thus,
if the target height ht = 2, the viewshed of O would represent the set of the terrain points where 2
meter tall people would be visible from O. We represent the viewshed by a square (2ρ +1)×(2ρ +1)
bitmap centered on the observer, with 1 indicating that the associated target is visible.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:4 C. R. Ferreira et al.

O

T

Fig. 2: The rasterization of the line of sight projection.

Both terrain models are lossy, and store elevation data at only a finite number of points. When
an elevation is needed at a point that is not stored, some interpolation rule is required. (With other
representations, such as Fourier series or wavelets, the interpolation rule is part of the representation.
However, the representation is still lossy, but with the lost information expressed in a different format,
such as missing high frequency components. It is not clear that such a terrain representation would
be an improvement.)

In any case, what is an appropriate rule is an open topic, but must be considered when determining
visibility. A line of sight rarely goes exactly above a terrain point, but almost always runs between
them, see Figure 2. Even if the original dataset is a soup of LIDAR points, some notion of what those
points imply about the underlying continuous surface, i.e., some interpolation rule, is required.

Our interpolation rule will follow Ray [1994]. That is, for lines with absolute slope less than 1, for
each integral value of x along the line, we use the elevation of the closest point in R, otherwise for
each integral value of y along the line, we use the elevation of the closest point in R. More about
this in Section 3.2. There are other alternatives, and so different viewshed algorithms obtain slightly
different results.

3. RELATED WORK
3.1. Viewshed algorithms
A raster DEM can be processed by Van Kreveld’s algorithm [Van Kreveld 1996] and RFVS [Franklin
and Ray 1994]. These two algorithms are very efficient, that is, they are economical in their use of
resources such as computing time, as the size of the input grows. Both have been recently extended
to efficient external memory viewshed algorithms. An adaptation of Van Kreveld’s algorithm was
presented in Fishman et al. [2009] and an adaptation of RFVS was presented in Andrade et al. [2011].
The next sections will describe these two algorithms.

3.1.1. The RFVS algorithm. RFVS [Franklin and Ray 1994] is an efficient algorithm whose
running time is Θ(n), where n = ρ2. That is, it runs in linear time in the number of points within the
radius of interest. The process goes as follows.

(1) Consider a square box (region of interest) of side 2ρ +1 points centered on the observer.
(2) Order the 8ρ points on its perimeter by their angle relative to the observer, which is at (0,0):

(ρ,0),(ρ,1),(ρ,2), · · · ,(ρ,ρ−1),(ρ,ρ),(ρ−1,ρ), · · · ,(ρ,−1).
(3) Rotate a line of sight λ from the observer to each of these 8ρ targets t in turn. For each λ , do the

following.
(a) Determine the ordered list P of points p0, p1, · · · , pk = t that are sufficiently close to λ . For

target pi with |yi/xi| ≤ 1 those are points differing in y by ≤ 1/2. For the other targets, use
the difference in x. Many points (mainly those close to the observer) are processed more
than once. On average, each point is processed twice since there are 8ρ rays and each ray
has ρ points, so 8ρ2 points are processed in all, while the terrain has 4ρ2 points. Use any
line rasterization algorithm.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:5

(b) Compute the vertical slope αi of the line from the observer to the base point of each pi as
follows, where the observer’s point is (0,0,h00), its height above the terrain is ho, the target’s
point is (xi,yi,hi) and its height above the terrain is ht :

αi =
hi−h00−ho√

x2
i + y2

i

(c) Iterate along P updating µi, the maximum slope seen so far. Initially µ0 =−∞, then µi =
max(µi−1,αi).

(d) pi is visible if hi +ht ≥ µi×
√

x2
i + y2

i +h00 +ho, that is, if it is not below the line with the
highest angle seen so far. If a point is processed more than once, report it as visible if it is
visible on any line of sight.

Each point within a square within the radius of interest is processed twice (on average), at a constant
time per point, and so the execution time is linear in n, the number of points within the radius of
interest.

3.1.2. Van Kreveld’s algorithm. Van Kreveld’s fast viewshed algorithm [Van Kreveld 1996] runs in
Θ(n logn) time. It rotates a sweep line λ around the observer that computes the visibility of each
point as λ passes over it. It maintains a balanced binary tree (the agenda) to store the slopes of
the lines from the observer to the center points of the cells currently being intersected by λ , keyed
by their distance from the observer. When λ passes over the center point of a cell c, the agenda is
searched to check its visibility. In more detail,

(1) Three types of events are defined for each c: enter, center, and exit, which indicate, respectively,
when λ starts intersecting c, passes over c’s center point, and stops intersecting c. The algorithm
maintains a list E of these events for all c inside the region of interest, sorted by their center
points’ azimuth angle.

(2) The algorithm then sweeps E, processing each type of event as follows.
(a) Enter: Insert c into the agenda.
(b) Center: Search the agenda for any cell closer to the observer than c that has slope greater or

equal to the slope of the line of sight to c. c is visible iff no such cell is found.
(c) Exit: Remove c from the agenda.

The agenda performs insertions, removals and queries in Θ(logn) time, making the algorithm’s
time Θ(n logn). As ρ increases, the cost of maintaining the ever deeper balanced binary tree grows,
and so this algorithm’s performance becomes relatively worse and worse compared to RFVS.

3.2. Comparative accuracies
The above two algorithms solve the same problem, albeit with different efficiencies and approximate
visibility models. Both approximate the terrain as piecewise horizontal. Van Kreveld assumes a
square cell around each point, while RFVS assumes a more complicated shape. Since computed
viewshed is only an approximation whose precision is dependent upon the resolution and accuracy of
the terrain representation [Fisher 1993; Goodchild and Lee 1989; Lee et al. 1992], neither is clearly
better, but RFVS is faster.

We might compute visibility with a more sophisticated terrain approximation model that interpo-
lates the elevation between adjacent points. In that case, changing the interpolation rule from min to
interpolate to max may cause the computed visibility to change for one-half of all the targets [Kaucic
and Zalik 2002]. In a test against reality, Maloy and Dean [2001] compared predicted viewsheds
(computed using different methods and different datasets for 11 viewpoints) with actual viewsheds
from field surveys. They showed that accuracy can vary widely depending on the data resolution and
the visibility criteria.

Fisher [1996] also showed that the standard binary viewshed is very sensitive to multiple decisions
made during algorithm design. They include the definitions of the following essential items: how

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:6 C. R. Ferreira et al.

the elevation is inferred (grid, triangular, grid constraint or stepped), how the observer and target
locations are defined (point to point, cell to point, point to cell or cell to cell), how the elevations
are computed (height, gradient or integer height), the interpolation rule used (linear interpolation,
average, or something else), and, for raster DEMs, the rasterization method.

Haverkort et al. [2013] report a detailed comparison of accuracies for various algorithms to compute
viewsheds on two 500× 500 terrains, one real and one synthetic. They use the GRASS module
R.LOS as a reference. Then they pick a number of topologically interesting observers on valleys and
ridges, and count how many points’ visibilities are computed differently from the reference. However,
they generally do not report running times, except asymptotically. VIS-ITER’s time is Θ(n logn).
Haverkort et al. [2013] report that on the very large SRTM region 6 data, TILEDVS is 2.5 times
faster than VIS-ITER. Table I summarizes numbers extracted from it, where fv ,false visible (and
respectively fi ,false invisible) are the percentage of points that are not visible (visible) in R.LOS
and visible (not visible) in the algorithm under evaluation. IO-RADIAL and IO-CENTRIFUGAL are
quite inaccurate. TILEDVS has a 15.1% difference from the reference implementation compared
to VIS-ITER’s 4.2%. If the reference implementation is taken to be correct, then there is a tradeoff
between speed and accuracy. However, given how many points’ visibility can be changed by minor
changes in the elevation interpolation, more study is required to learn whether this is statistically
significant, and whether it extends to other terrains, or to lines of sight more than 500 points long.

Table I: Accuracies of various viewshed algorithms

Algorithm fv fi
VIZ-ITER 0.1% 4.1%
IO-RADIAL3 53.3% 13.9%
IO-CENTRIFUGAL 7.6% 32.9%
TILEDVS 6.9% 7.2%

(data assembled from Haverkort et al. [2013])

3.3. External memory viewshed algorithms
Since the viewshed algorithms described above are not well suited for external memory, the following
I/O-efficient versions have been created.

3.3.1. EMViewshed. [Andrade et al. 2011], based on RFVS, maintains an external memory list Q
describing the terrain points, sorted by the order that they will be processed by RFVS. Sweeping
that list sequentially avoids random external memory accesses. Q contains pairs (p,k), where p is a
terrain point and k is the order that it will be processed in. Points that need to be processed more than
once will have several entries in Q.

EMVIEWSHED creates the entries in Q, and then orders them with an external sort [Dementiev
et al. 2005]. Then it sweeps Q to calculate the viewshed, making only sequential accesses to external
memory. This is quite I/O efficient, but our new algorithm, shown below, is over 10 times faster.

3.3.2. Algorithms based on Van Kreveld’s algorithm. Van Kreveld’s method was adapted for
external memory processing by various authors using different strategies. IOVIEWSHED [Haverkort
et al. 2009] creates a list of events and sorts them externally. These events are used to process the
terrain with a sweep-line approach. This algorithm was renamed IO-RADIAL1 in Fishman et al.
[2009], which also describes two other algorithms also based on Van Kreveld, IO-RADIAL2 and
IO-RADIAL3. They sweep the terrain by rotating a ray around the viewpoint while maintaining the
terrain profile along the ray (similar to Van Kreveld). The difference between the two algorithms lies
in the preprocessing step before sweeping the terrain. In IO-RADIAL2, the grid points are sorted into

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:7

concentric bands around the viewpoint, while in IO-RADIAL3, the grid points are sorted into sectors
around the viewpoint. Fishman et al. [2009] describe another algorithm, IO-CENTRIFUGAL, which is
not based on Van Kreveld. Instead, it sweeps the terrain centrifugally, growing a star-shaped region
around the observer while maintaining an approximate visible horizon of the terrain within the swept
region.

IOVIEWSHED (or IO-RADIAL1) was implemented as an add-on to GRASS (versions 6.x/7.x),
named R.VIEWSHED [Toma et al. 2010]. It is much slower than IO-RADIAL2 and IO-RADIAL3 [Fish-
man et al. 2009], which is the fastest among these three methods but slower than IO-CENTRIFUGAL.
Our new algorithm is about 8 times faster than IO-RADIAL3 and 4 times faster than IO-CENTRIFUGAL.

4. TILEDVS ALGORITHM
4.1. Algorithm description
Here we present a new external memory viewshed algorithm that improves on TILEDVS and RFVS.
Recall that RFVS sweeps the terrain by rotating a line of sight that connects the observer to points
on the boundary of a square region of interest. For each line of sight, the points along it are processed
in order, to compute their visibility.

As each line of sight is processed, there is two-dimensional locality of reference: each new point is
adjacent in E2 to the previous one. However, with the usual row-major order for array storage, points
in adjacent rows are often in different disk blocks, so that each block might need to be read many
times. Even if the terrain fits in internal memory, the row-major order might be inefficient because of
poor cache locality.

TILEDVS mitigates this problem by using a custom external memory management library named
TiledMatrix [Silveira et al. 2013]. This library subdivides the big array of points into small square
tiles of ω×ω points each, which are then stored in external memory following the pattern shown in
Figure 3. To access a given point, it loads the whole tile containing that point into internal memory.
Since the block size is much smaller than the internal memory size, TiledMatrix keeps a cache of
several of these tiles in internal memory at any time, managed with a least recently used (LRU)
replacement policy. This cache is named MemTiles.

When a tile is accessed, it is labeled with a timestamp; and when necessary to evict a tile from the
cache to load a new one, the tile with the smallest timestamp is chosen. When a tile is evicted, it is
checked for whether it has been updated, and if so, it is written back to disk.

The tile size is chosen to be several times the physical disk block size. This facilitates our next I/O
optimization: using the fast lossless compression algorithm LZ4 [Collet 2012] to compress the tiles
before writing to disk, and to uncompress them after reading. For file management simplification, the
space reserved for each tile on the disk is the original uncompressed size. However, when a tile is
transferred, only its compressed size (recorded in an auxiliary array) is transferred. Experimentally,
this reduces the tile size by 44% on average, which reduces the amount of I/O.

Each tile is loaded in the cache, kept there while being accessed, and evicted when it is no longer
needed. With the memory size assumptions described below, most of the tiles are read only once.
The tiles in a line to the right of the observer are read twice.

A further optimization would be possible with a filesystem, such as ext4 in Linux, that supports
a sparse mode. Here, a block in a file is not reserved on the disk until the block is written. (One
application is large sparse database hash tables.) In this case when a tile is considerably compressed,
the unused disk blocks are not only not written, but do not even take space on the disk.

4.2. TILEDVS analysis
Assume without loss of generality that the slope of a line of sight is is not greater than 1. (Otherwise,
swap x and y.) Remember that a line of sight, from the origin to a border point on the square region
of interest, contains ρ +1 points, one per y-value, and that each square tile contains ω×ω points.
A line of sight crosses through at most two tiles in each column of tiles, except for one tile in the

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:8 C. R. Ferreira et al.

Fig. 3: Partitioning the elevation array into tiles and reorganizing the points in external memory to
store the points of each tile in sequence. The arrows indicate the writing sequence.

column at the observer. Therefore it will contain points from at most

2
⌈

ρ +1
ω

⌉
+1

tiles. Defining a word as the storage required by one point (probably 2 or 4 bytes), the internal
memory required to store the tiles for one line of sight is(

2
⌈

ρ +1
ω

⌉
+1
)

ω
2

words. If the memory size is not smaller than this value then each tile will be read only once since a
tile is read into memory when it is first needed and evicted only after the line of sight has rotated past
all its points. The exception is the line of tiles covering the first line of sight, which extends in the
positive x direction from the observer. Therefore the total number of tiles read is⌈

2ρ +1
ω

⌉2

+

⌈
ρ +1

ω

⌉
+1.

TILEDVS’ memory requirements can be easily satisfied for two reasons. First, as stated in Demaine
[2002], it is common to assume the computers have a “tall cache”, that is, the number of blocks can
fit in memory is larger than the block size (M

B ≥ cB, for a given c≥ 1). Second, the tile size is chosen
to be a relatively small multiple of the number of disk blocks and the number of tiles that need to be
kept in the memory is small if compared with the size of the terrain.

For example, a viewshed with ρ = 250000 would have 500 001×500 001 points within the radius
of interest, requiring 500GB before compression if each point uses 2 bytes. Choosing ω = 250,
each tile would take 125KB before compression. TILEDVS needs to keep 2

⌈
ρ+1

ω

⌉
+1 =2003 tiles

in memory, which requires only 2ω2
(

2
⌈

ρ+1
ω

⌉
+1
)
= 250MB, which is a small fraction of the

available memory on even modest current computers.
A machine with 1GB of internal memory could process a terrain with a viewshed radius of interest

ρ = 1 000 000 points, or 1012 points total, requiring an external memory of 8TB before compression.
Thus, TILEDVS can be classified as a cache-aware algorithm [Frigo et al. 2012] since its efficiency

depends on the tile size whose value is defined based on the internal memory size available.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:9

5. TILEDVS COMPLEXITY
5.1. I/O complexity
TILEDVS uses two external memory arrays: the elevation array Elev and the viewshed array V .
Initially, TILEDVS reads the terrain and initializes Elev. Then the two arrays are accessed during the
viewshed computation and, finally, the array V is written to the output file.

From RFVS, the arrays’ dimension is (2ρ +1)× (2ρ +1) and each array will be divided into at
most d 2ρ+1

ω
e2 tiles each with ω×ω points. As mentioned in section 4.2, each array has a MemTiles

data structure with at least 2
(

ρ

ω
+2
)

tiles, with each tile requiring several disk blocks.
In the first step, array Elev is initialized with the point elevation values and subdivided into tiles

that are stored in external memory. Since the MemTiles data structure has enough slots to store all
the tiles in ω array rows, the Elev array initialization, subdivision and writing can be done using a
standard row-major sweep. Since the array Elev has d 2ρ+1

ω
e rows of tiles, the whole process reads

and writes d 2ρ+1
ω
e2 tiles. Therefore, this first step performs Θ(scan(ρ2)) I/O operations.

During the viewshed computation, Elev array’s tiles are read at most twice and never written. The
number of tiles read is Θ((ρ/ω)2) The viewshed array V ’s tiles are each read and written at most
twice, for a total of Θ((ρ/ω)2) tiles read and written. The I/O cost is Θ(scan(ρ2)), or Θ(scan(n))
since there are n points within the radius of interest of the observer.

5.2. CPU complexity
The array of points within the radius of interest of the observer contains (2ρ +1)2 points, with 8ρ

perimeter points, unless the observer is near the border, in which case it is smaller. TILEDVS shoots
8ρ rays, each with at most ρ +1 points, and so will process at most 8ρ2 +8ρ points. Since there
are (2ρ +1)2 distinct points, each point will be processed 8ρ2+8ρ

(2ρ+1)2 < 2 times on average. Therefore
TILEDVS takes linear time in the number of points, and so is asymptotically optimal since each point
point needs to be read at least once.

6. EXPERIMENTAL RESULTS
We implemented TILEDVS in C++, compiled it with g++ 4.3.4, and compared it against the most
efficient recently published algorithms: IO-RADIAL2, IO-RADIAL3 and IO-CENTRIFUGAL, proposed
in Fishman et al. [2009], and EMVIEWSHED, proposed in Andrade et al. [2011]. We also assessed its
performance in small memory environments, the influence of compressing the tiles, and the effect of
using the operating system’s Virtual Memory Manager (VMM) instead of TiledMatrix for managing
the tiles.

In all experiments, the running time corresponds to the average elapsed time (not the CPU time) of
five executions, and includes the total time taken by the whole process, i.e.: loading the data in its
original format, partitioning the grid, writing the data into tiles, processing the terrain and writing the
output file (the viewshed) in row-major order. TILEDVS automatically optimizes ω from the terrain
and memory size to maintain the minimum requirements for the number of blocks that needs to fit in
memory.

These results improve on Ferreira et al. [2012] by 30% to 40%, mostly because of the new fast
lossless compression strategy. There are also smaller improvements, such as using buffer arrays for
reading the input and writing the output.

Except when noted otherwise, our experiments used real USA terrain datasets from Rabus et al.
[2003]), sampled at approximately 30 meter resolution. To obtain comparable results with other
implementations, the terrain files use one 4-byte integer elevation per point, although 2 bytes would
suffice given the data accuracy (and would halve the I/O). Within the datasets, the regions are
subdivided and numbered according to Figure 4.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:10 C. R. Ferreira et al.

Fig. 4: Subdivision of the SRTM datasets into regions. Source: NASA SRTM

6.1. Comparing TILEDVS with Fishman et al.’s algorithms
We compared TILEDVS to the published results in Fishman et al. [2009] since we lacked access to
that code. We used the same datasets and took great pains to match the compute platform as closely
as possible. While they use HP 220 blade servers, each with an Intel Xeon 2.83GHz processor and a
5400RPM SATA hard drive, we used a computer with an Intel Core 2 Duo E7500 2.93GHz processor,
4GB of RAM memory and a 5400RPM SATA hard drive (Samsung Seagate ST1000LM024 1TB).
The computer was rebooted with 512MB of RAM. The operating system used was Linux, 12.04
64-bit Ubuntu. Although these two platforms are very similar, our CPU is a little slower, according
to the benchmarks in Passmark Software [2013].

To be as fair as possible, we also performed additional tests of TILEDVS with an 5400RPM
external hard drive with a USB 2.0 interface (Samsung M3 HXM101TCB-G), which is very likely
slower than the internal hard drive used in Fishman et al’s experiments.

Like our algorithm, Fishman et al.’s algorithm apparently requires a tall cache. However, their
algorithm is cache-oblivious (it does not need to know the size of the memory or block), while we
need to know the memory size. This makes their algorithm more general and ours more tunable.

Our results are presented in Table II, which reproduces the values presented in Fishman et al.
[2009], with two additional columns with the results from TILEDVS, using both types of hard drives.
Here we used datasets from the same regions as Fishman et al. [2009] used, i.e. some of the regions
shown in Figure 4 and datasets of Cumberland and Washington regions. We also extended the table
to include the processing time of TILEDVS on very large terrains generated by interpolation of
the Region02 data set; see the last two rows. The results show that TILEDVS is faster than the
others in all situations, and on large terrains it is about 4 times faster (see the processing time for
SRTM-region04).

Even when using the slow external hard drive, TILEDVS is faster than Fishman’s algorithms. This
suggests that TILEDVS performs significantly fewer external memory accesses. The results from
Table II are plotted in Figure 5, showing that the bigger the terrain, the better that TILEDVS is in
comparison to the other methods.

Figure 6 plots the number of points processed per second versus the terrain size. All methods
asymptotically process a constant number of points per second. Again, TILEDVS is the fastest by a
factor of about 4.

Finally, once the terrain has been stored as tiles, it may be reread multiple times to compute other
viewsheds with different observers and parameters like observer and target heights and radius of
interest.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:11

Table II: Running times in seconds of Fishman et al.’s algorithms IO-RADIAL2 (IO-R2), IO-RADIAL3
(IO-R3), and IO-CENTRIFUGAL (IO-CENT) and of our algorithm TILEDVS using internal (int.) and
USB external (ext.) hard disk. In all experiments, the memory size was 512MB.

Terrain size Fishman et al.’s algs TILEDVS

Dataset cols rows GB IO-R2 IO-R3 IO-CENT (int.) (ext.)

Cumberlands 8 704 7 673 0.25 72 104 35 17 25
USA DEM 6 13 500 18 200 0.92 2 804 458 115 86 103
USA DEM 2 11 000 25 500 1.04 1 883 735 121 112 120
Washington 31 866 33 454 3.97 13 780 3 008 676 374 449
SRTM1-reg03 50 401 43 201 8.11 37 982 6 644 2 845 828 893
SRTM1-reg04 82 801 36 001 11.10 — 8 834 5 341 1 226 1 268
SRTM1-reg04 68 401 111 601 28.44 — 26 193 12 186 3 215 3 478
Reg02 interp. 150 000 91 000 50.85 — — — 5 577 6 397
Reg02 interp. 200 000 122 000 90.89 — — — 10 638 17 058

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

P
ro

c
e
s
s
in

g
 t

im
e
 (

1
0
3
 s

e
c
o
n
d
s
)

Number of cells x 109

io-r2
io-r3

io-cent
TiledVS-int
TiledVS-ext

Fig. 5: Comparing the running times of the four methods.

6.2. Comparing TILEDVS with EMVIEWSHED

We also compared our new algorithm TILEDVS against our previous one EMVIEWSHED [Andrade
et al. 2011], using different datasets generated from two USA regions (02 and 03) sampled at different
resolutions. Table III presents the results. TILEDVS is about 10 times faster than EMVIEWSHED,
processing 2.8M points per second in the largest case.

6.3. TILEDVS in small memory environments
Table IV presents the TILEDVS running times (in seconds) for different terrain sizes using small
internal memory sizes: 128MB and 512MB. TILEDVS is able to process datasets that are far too large
to fit into internal memory. For example, it was able to process a 40GB terrain using only 128MB
of RAM in 7439 seconds. The extra memory is less beneficial than might be expected because
TILEDVS’s working set size is so small.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:12 C. R. Ferreira et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25

N
u
m

b
e
r

o
f

c
e
ll
s
 p

e
r

s
e
c
 x

 1
0
6

Number of cells x 109

io-r2
io-r3

io-cent
TiledVS-int
TiledVS-ext

Fig. 6: Number of points processed per second by each method.

Table III: Running times (seconds) for EMViewshed (EMVS) and TILEDVS with 512MB of RAM.

Terrain size

cols rows GB EMVS TILEDVS

10 000 10 000 0.37 46 27
20 000 20 000 1.49 1 464 129
30 000 30 000 3.35 4 295 317
40 000 40 000 5.96 9 970 575
50 000 50 000 9.31 17 368 883

Table IV: TILEDVS running times (seconds) with either 128MB or 512MB of RAM.

Terrain size RAM size

cols rows GB 128MB 512MB

37 000 37 000 5 490 481
52 000 52 000 10 1191 993
73 500 73 500 20 2 711 2 238

104 000 104 000 40 7 439 5 271

6.4. The influence of compression
Silveira et al. [2013] report several experiments concerning TiledMatrix’s performance when com-
pressing the tiles to reduce the amount of data needing to be transferred to/from disk. The compression
is fast enough that the time penalty for the compression is small. Also, decompression is faster than
compression, and the data is read a little more often than it is written.

To test this on TILEDVS, we compared the earlier version of TILEDVS presented in [Ferreira et al.
2012] (without compression) with our new implementation (with compression). Each terrain point of
the data being compressed consists of a 4-byte elevation and a 1-byte visibility.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:13

The results were quite favorable. We tested both real terrains from SRTM datasets (region 02) and
two types of artificially generated terrains: “flat” terrains (where all elevation values are zero) and
“random” terrains, where all elevation values are random. These two types of terrains represent the
best and the worst theoretical scenarios for data compression. Table V presents the results, including
the speedups obtained by using compression and the data compression ratios (uncompressed size /
compressed size). The random terrain is compressible by about 20% because the included computed
viewshed array compresses very well.

Table V: Speedups and compression ratios obtained when the compression strategy is used, for real
and artificial terrains. Each terrain point to be compressed contains a 4-byte elevation plus a 1-byte
visibility.

Terrain size Terrain type

cols rows GB Real Flat Random
Speedup Ratio Speedup Ratio Speedup Ratio

10 000 10 000 0.37 1.28 3.06 2.17 250.22 1.00 1.08
20 000 20 000 1.49 1.61 3.39 2.07 252.49 1.01 1.20
30 000 30 000 3.35 1.56 3.61 2.16 253.22 1.02 1.22
40 000 40 000 5.96 1.21 2.22 1.89 253.58 1.04 1.23

As expected, the performance of the real terrains lies between that of the worst and best artificial
terrains.

6.5. TiledMatrix compared against the OS’s Virtual Memory system
Since TILEDVS uses a straightforward implementation of the LRU caching strategy also used by
many operating systems, the obvious suggestion is that similar running times could be obtained by
reorganizing the data into tiles (as shown in Figure 3) and allowing the OS Virtual Memory Manager
(VMM) to manage data swapping. We tested this with an implementation (named VMM VS) that
subdivides and reorganizes the terrain array but does not manage the data accesses, letting the Linux
VMM do that. We compared this implementation against the old version of TILEDVS (with no
compression strategy).

First, the terrain was subdivided into tiles with 1000× 1000 points, and execution times were
compared using VMM VS and TILEDVS for a terrain with 300002 points. The result was that
VMM VS required 1909 seconds while TILEDVS executed in only 350 seconds.

We believe the main reason why TILEDVS’s custom virtual memory manager is faster than the OS
VMM is because TILEDVS knows the tile size and, thus, it can read an entire tile by performing only
one seek operation and, then, transferring all the tile data to the memory. The VMM, on the other
hand, may need to perform several I/O operations to read a tile. That is, since a VMM page has 4096
bytes, a 1000×1000 point tile will use 977 pages. Therefore, when the VMM reads one page of a
tile, it will probably not read all the pages. However TILEDVS reads the points in a tile repeatedly in
various diagonal directions as it rotates the line of sight. Therefore the VMM will need to read the
pages in each tile repeatedly. So, in this application with this data access pattern, a custom virtual
memory manager beats the OS one.

The obvious response is for TILEDVS to reduce ω to 32 so that one tile fits in one virtual memory
page, and also to ensure that things are properly aligned so that tiles do not straddle page boundaries.
In this case, VMM VS is faster, running in 1398 seconds while TILEDVS requires 4381 seconds.
However both these times are much worse than TILEDVS with a larger, multi-block, tile size.

Indeed, Silveira et al. [2013] show that TiledMatrix’s performance decreases with small tiles,
because transferring small, randomly-located, chunks of data does not amortize the disk seek and

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:14 C. R. Ferreira et al.

latency times. Also, disk’s internal cache cannot optimize this access pattern. When the tile size
is increased to 10002 points, TILEDVS’s performance improves, but the performance of VMM VS
becomes worse since each tile requires several pages, which are loaded separately by the VMM.

Fishman et al. [2009] found similar results, concluding that, “one of our findings is that relying
purely on VMM, even for a theoretically I/O-efficient data access, is slow”, and “by telling the
algorithms explicitly when to load a memory-size block (and not using the VMM), we obtained sig-
nificant speedups (without sacrificing I/O-efficiency for the levels of caching of which the algorithm
remained oblivious, and without sacrificing CPU-efficiency).”

7. CONCLUSION AND FUTURE WORK
We have presented TILEDVS, a new algorithm for viewshed computation on large grid terrains stored
in external memory, which is an extension of the internal memory algorithm RFVS [Franklin and
Ray 1994]. TILEDVS uses a special data structure to manage the data transfer between internal and
external memories, thereby reducing the number of I/O operations. For terrains with n points, its I/O
complexity is Θ(scan(n)). It also reinforces the point that a custom virtual memory manager can
outperform the operating system’s one.

The main contributions of this paper, compared to [Ferreira et al. 2012], are the use of a lossless
compression technique that was able to reduce the processing time by 30% to 40%, and reports on
many new experiments, including on various hardware configurations.

The results show that TILEDVS is the fastest viewshed computation algorithm by a factor of about
4. It is also simpler, and requires small amounts of internal memory. For example, the viewshed of a
40GB terrain was computed in 7439 seconds using 128MB of RAM.

Finally, TILEDVS’s source code (in C++) is freely available under GNU General
Public License (GPL) for other researchers and teachers to use and to extend, at
http://www.dpi.ufv.br/%7Emarcus/TiledVS.htm

Acknowledgments
This research was partially supported by FAPEMIG, CAPES (Ciencia sem Fronteiras - grant 9085/13-
0), CNPq, and NSF under grant IIS-1117277. We also would like to thank Mauricio Gruppi for
helping with the experiments.

REFERENCES
Alok Aggarwal and Jeffrey S. Vitter. 1988. The Input/Output complexity of sorting and related problems. Commun. ACM 31,

9 (1988), 1116–1127.
Troy Alderson and Faramarz Samavati. 2015. Optimizing Line-of-sight Using Simplified Regular Terrains. Vis. Comput. 31, 4

(April 2015), 407–421. DOI:http://dx.doi.org/10.1007/s00371-014-0936-3
Marcus V. A. Andrade, Salles V. G. Magalhães, Mirella A. Magalhães, W. Randolph Franklin, and Barbara M. Cutler.

2011. Efficient viewshed computation on terrain in external memory. Geoinformatica 15, 2 (April 2011), 381–397.
DOI:http://dx.doi.org/10.1007/s10707-009-0100-9

Esther M. Arkin, Alon Efraty, and Joseph S. B. Mitchell. 2014. Hybrid algorithms for scheduling sensors for guarding
polygonal domains. In EuroCG 2014. Ein-Gedi, Israel.

Yehuda Ben-Shimol, Boaz Ben-Moshe, Yoav Ben-Yehezkel, Amit Dvir, and Michael Segal. 2007. Automated antenna
positioning algorithms for wireless fixed-access networks. Journal of Heuristics 13, 3 (2007), 243–263.

Sergei Bespamyatnikh, Zhixiang Chen, Kanliang Wang, and Binhai Zhu. 2001. On the planar two-watchtower problem. In 7th
International Computing and Combinatorics Conference. Springer-Verlag, London, 121–130.

Richard J. Camp, David T. Sinton, and Richard L. Knight. 1997. Viewsheds: A complementary management approach to
buffer zones. Wildlife Society Bulletin 25, 3 (1997), 612–615.

Danny C. Champion and John E. Lavery. 2002. Line of sight in natural terrain determined by L1-spline and conventional
methods. In 23rd Army Science Conference. Orlando, Florida.

Yann Collet. 2012. Extremely fast compression algorithm. (2012). http://code.google.com/p/lz4 (accessed Jul. 2014).
Leila de Floriani, Paola Magillo, and Enrico Puppo. 2000. Chapter 7 - Applications of Computational Geometry to Geographic

Information Systems. In Handbook of Computational Geometry, J.-R. SackJ. Urrutia (Ed.). North-Holland, Amsterdam,
333 – 388. DOI:http://dx.doi.org/10.1016/B978-044482537-7/50008-5

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

TiledVS - Viewshed external memory algorithm x:15

Dell Inc. 2016. Dell Chromebook 11. http://www.dell.com/us/p/chromebook-11-3120/pd?ref=PD OC (accessed Feb 2016).
(2016).

Erik D. Demaine. 2002. Cache-oblivious algorithms and data structures. In Lecture notes from the EEF summer school on
massive data sets. BRICS, University of Aarhus, Denmark, 1–29 (accessed Nov. 2014).

Roman Dementiev, Lutz Kettner, and Peter Sanders. 2005. STXXL : Standard Template Library for XXL data sets. Technical
Report. Fakultät für Informatik, Universität Karlsruhe. http://stxxl.sourceforge.net/ (accessed Sep. 2014).

Alon Efrat, Mikko Nikkilä, and Valentin Polishchuk. 2013. Sweeping a terrain by collaborative aerial vehicles. In Proceedings
of 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL’13). ACM,
Orlando, Florida, 4–13. DOI:http://dx.doi.org/10.1145/2525314.2525355

Stephan Eidenbenz. 2002. Approximation algorithms for terrain guarding. Inform. Process. Lett. 82, 2 (2002), 99–105.
Chaulio R. Ferreira, Salles V. G. Magalhães, Marcus V. A. Andrade, W. Randolph Franklin, and André M. Pompermayer.

2012. More efficient terrain viewshed computation on massive datasets using external memory. In Proceedings of the
20th SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL’12). ACM,
Redondo Beach, California, 494–497. DOI:http://dx.doi.org/10.1145/2424321.2424398

Peter F. Fisher. 1993. Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical
Information Science 7, 4 (1993), 331–347.

Peter F. Fisher. 1996. Extending the applicability of viewsheds in landscape planning. Photogrammetric Engineering and
Remote Sensing 62, 11 (1996), 1297–1302.

Jeremy Fishman, Herman Haverkort, and Laura Toma. 2009. Improved Visibility Computation on Massive Grid Terrains.
In Proceedings of the 17th SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL’09). ACM, Seattle, Washington, 121–130. DOI:http://dx.doi.org/10.1145/1653771.1653791

W. Randolph Franklin and Clark Ray. 1994. Higher isn’t necessarily better: Visibility algorithms and experiments. In Advances
in GIS Research: Sixth International Symposium on Spatial Data Handling, Thomas C. Waugh and Richard G. Healey
(Eds.). Taylor & Francis, Edinburgh, 751–770.

W. Randolph Franklin and Christian Vogt. 2006. Tradeoffs when multiple observer siting on large terrain cells. In Progress in
Spatial Data Handling: 12th International Symposium on Spatial Data Handling, Andreas Riedl, Wolfgang Kainz, and
Gregory Elmes (Eds.). Springer, Vienna, 845–861. ISBN 978-3-540-35588-5.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 2012. Cache-Oblivious Algorithms. ACM
Trans. Algorithms 8, 1 (2012), 4. DOI:http://dx.doi.org/10.1145/2071379.2071383

Michael F Goodchild and Jay Lee. 1989. Coverage problems and visibility regions on topographic surfaces. Annals of
Operations Research 18, 1 (1989), 175–186.

Herman Haverkort, Laura Toma, and Bob PoFang Wei. 2013. On IO-efficient Viewshed Algorithms and Their Accuracy.
In Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL’13). ACM, Orlando, Florida, 24–33. DOI:http://dx.doi.org/10.1145/2525314.2525369

Herman Haverkort, Laura Toma, and Yi Zhuang. 2009. Computing Visibility on Terrains in External Memory. Journal of
Experimental Algorithmics 13 (Feb. 2009), 5:1.5–5:1.23. DOI:http://dx.doi.org/10.1145/1412228.1412233

Ferran Hurtado, Maarten Løffler, Inês Matos, Vera Sacrisán, Maria Saumell, Rodrigo I. Silveira, and Frank Staals. 2014.
Terrain visibility with multiple viewpoints. International Journal of Computational Geometry & Applications 24, 04
(2014), 275–306. DOI:http://dx.doi.org/10.1142/S0218195914600085

Branko Kaucic and Borut Zalik. 2002. Comparison of viewshed algorithms on regular spaced points. In Proceed-
ings of the 18th Spring Conference on Computer Graphics (SCCG ’02). ACM, New York, NY, USA, 177–183.
DOI:http://dx.doi.org/10.1145/584458.584487

Iain R. Lake, Andrew A. Lovett, Ian. J. Bateman, and Ian H. Langford. 1998. Modelling environmental influences on property
prices in an urban environment. Computers, Environment and Urban Systems 22, 2 (1998), 121–136.

Niel Lebeck, Thomas Mølhave, and Pankaj K. Agarwal. 2014. Computing highly occluded paths using a sparse network.
In Proceedings of the 22nd SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL’14). ACM, Dallas, Texas, 3–12. DOI:http://dx.doi.org/10.1145/2666310.2666394

Jay Lee, Peter K. Snyder, and Peter F. Fisher. 1992. Modeling the effect of data errors on feature extraction from digital
elevation models. Photogrammetric Engineering and Remote Sensing 58, 10 (1992), 1461–1467.

Jay Lee and Dan Stucky. 1998. On Applying viewshed analysis for determining least-cost paths on digital elevation models.
International Journal of Geographical Information Science 12, 8 (1998), 891–905.

Zhilin Li, Qing Zhu, and Christopher Gold. 2005. Digital Terrain Modeling — Principles and Methodology. CRC Press, Boca
Raton, Florida.

Salles V. G. Magalhães, Marcus V. A. Andrade, and W. Randolph Franklin. 2011. Multiple observer siting in huge terrains
stored in external memory. International Journal of Computer Information Systems and Industrial Management (IJCISIM)
3 (2011), 143 – 149. http://www.mirlabs.org/ijcisim/volume1.html

Mark A Maloy and Denls J Dean. 2001. An accuracy assessment of various GIS-based viewshed delineation techniques.
Photogrammetric Engineering and Remote Sensing 67, 11 (2001), 1293–1298.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

x:16 C. R. Ferreira et al.

MindSites Group. 2016. USGS SDTS format Digital Elevation Model data (DEM). http://data.geocomm.com/dem/ (accessed
Feb. 2016). (2016).

George Nagy. 1994. Terrain Visibility. Computers and Graphics 18, 6 (1994), 763–773.
National Digital Elevation Program. 2015. Digital elevation glossary of terms. http://www.ndep.gov/glossary.html (accessed

July 2015). (2015).
Passmark Software. 2013. CPU Benchmarks. (2013). http://www.cpubenchmark.net/ (accessed Jul. 2014).
Gennady Pekhimenko, Todd C. Mowry, and Onur Mutlu. 2012. Linearly Compressed Pages: A Main Memory Com-

pression Framework with Low Complexity and Low Latency. In Proceedings of the 21st International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT ’12). ACM, New York, NY, USA, 489–490.
DOI:http://dx.doi.org/10.1145/2370816.2370911

Valentin Polishchuk, Esther M Arkin, Alon Efrat, Christian Knauer, Joseph SB Mitchell, Guenter Rote, Lena Schlipf,
Topi Talvitie, and Valentin Polishchuk. 2016. Shortest path to a segment and quickest visibility queries. Journal of
Computational Geometry 07, 02 (2016), 77–100. http://jocg.org/index.php/jocg/article/view/264

Bernhard Rabus, Michael Eineder, Achim Roth, and Richard Bamler. 2003. The Shuttle Radar Topography Mission (SRTM).
NASA, http://www2.jpl.nasa.gov/srtm/. (accessed Jul. 2014).

Clark K. Ray. 1994. Representing Visibility for Siting Problems. Ph.D. Dissertation. Rensselaer Polytechnic Institute.
Jarek Rossignac. 1999. Edgebreaker: Connectivity compression for triangle meshes. IEEE TRANSACTIONS ON VISUALIZA-

TION AND COMPUTER GRAPHICS 5 (1999), 47–61.
Jaqueline A. Silveira, Salles V. G. Magalhães, Marcus V. A. Andrade, and Vinicius S. Conceição. 2013. A library to support

the development of applications that process huge matrices in external memory. In Proceedings of 15th International
Conference on Enterprise Information Systems (ICEIS). SciTePres, Angers, France, 305–310.

Jared Stookey, Zhongyi Xie, Barbara Cutler, W. Randolph Franklin, Daniel M. Tracy, and Marcus V. A. Andrade. 2008.
Parallel ODETLAP for terrain compression and reconstruction. In Proceedings of 16th ACM SIGSPATIAL SIGSPATIAL
International Conference on Advances in Geographic Information Systems (SIGSPATIAL’08). ACM, Irvine, CA, 17.
DOI:http://dx.doi.org/10.1145/1463434.1463456

Laura Toma, Yi Zhuang, and William Richard. 2010. R.viewshed. (2010). https://trac.osgeo.org/grass/browser/grass-
addons/raster/r.viewshed?rev=45442 (accessed Jul. 2014).

Tom’s Guide. 2016. Smartphone Buying Guide. http://www.tomsguide.com/us/smartphone-buying-guide,review-1971.html
(accessed Feb. 2016). (2016).

Marc Van Kreveld. 1996. Variations on sweep algorithms: efficient computation of extended viewsheds and class intervals. In
Proc. 7th Int. Symp. on Spatial Data Handling. Delft, Netherlands, 13–15.

ACM Transactions on Spatial Algorithms and Systems, Vol. x, No. x, Article x, Publication date: 201x.

