Rensselaer Polytechnic Institute
Universidade Federal de Vicosa

Research topics in GIS

Marcus Andrade
Salles Magalhades

W. Randolph Franklin
Wenli Li

RPI - Rensselaer Polytechnic Institute

Our research

* Efficient parallel algorithms for GIS.
* Algorithms for raster and vector maps.
* Main fields in GIS:

* Hydrography

* Visibility

* Operations with vector maps

v
)
S
=
e
7))
=
I!
=
£
S
0
=
2>
o
o
1
o
0
0
)
7))
c
0
e
1
o
e

Previous work: hydrography

* RWFlood
* Fast flow direction and accumulation
* Linear-time algorithm

* More than 100 times faster than others

* EMFlow

* RWFlood for external memory

* TiledMatrix (tiling+fast compression)

* 20x faster than TerraFlow and r.watershed.seg

v
)
S
=
e
7))
=
I!
=
£
S
0
=
2>
o
o
1
o
0
0
)
7))
c
0
e
1
o
e

Previous work: visibility

* TiledVS
* Visibility map computation on external memory
* Uses TiledMatrix

* Parallel Viewshed
* Multi-core implementation of the sweep-line viewshed
* OpenMP
* Up to 12x faster than the serial (using 16 threads)

LA "

AT £ ;
[¥s z -, { o \ X
oy N . 7
4, el

LR Nz ‘ 3

\, ¢ &5
,"' . L ~ l
| 3 BN &
o R 3 iy
% kY

o

v
)
S
=
e
7))
=
I!
=
£
S
0
=
2>
o
o
1
o
0
0
)
7))
c
0
e
1
o
e

Previous work: visibility

* GPU observer siting
* Local search heuristic for observer siting

* Given a solution S, iteractively replace S with its
best neighbor

* Neighbor(S): solution where an observer in S is
replaced with an observer not in S.

* Challenge: efficiently find the best neighbor

* Solution: sparse matrices, adapted sparse-dense
MM to compute visible areas.

* Up to 3x faster than our previous GPU
implementation.

* Up to 7000x faster than our previous serial
implementation (using dense matrices).

Q
i’
-
-
e
7))
=
o
c
=
®)
()
i’
>
o
(o
|
()
L
Q
7))
7))
c
Q
(a4
1
o
(4’4

Previous work: map generalization

* Problem proposed in GISCUP 2014.
* Simplify polylines in a map.
* Remove points (except endpoints)

* Challenge: avoid topological problems and changes in topological
relationships (control points).

L1

L4 L4 : L6

Q
ol
-
b
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

Source: hitp://mypages.iit.edu/~xzhang22/GISCUP2014

6

Previous work: map generalization

* Grid-Gen (ACM GISCUP)
* Process polylines independently.
* Remove polyline point < no topological problem.
* No topological problem < no point in triangle!

@ May be removed
® May not be removed

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

Previous work: map generalization

* Special cases:
* Coincident endpoints & I:I . J‘: . I .
no control point inside.
* Solution: dummy points. .I:I — .h

* Two polylines with the
same endpoints & no CQ_} /\./_’ 3 .

control point inside.

* Also solved with dummy @_}M_},/\

()]
i
=
=
o
n
=
=
c
L
S
()]
i
2
o
o
1
()
L
O
)
7))
c
)
[+ 2
1
o
[+ 2

points.

8

Previous work: map generalization

* For efficiency: uniform grid.
* Polylines points & control points — grid.

""""""""""""""""""""""""""""""""""""

. @ May be removed
. ® May not be removed

Q
ol
-
b
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

Previous work: map generalization

* Grid-Gen: We only try to satisfy the constraints.
* Grid-Genz2:
* Points ranked based on “effective area” (Visvalingam-Whyatt).
* Remove first points with small “area”.
* Areas of neighbors are updated.
* For efficiency — priority queue.

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

10

Previous work: map generalization

* Experiments:

* i7-3520M 3.6 GHz processor, 8GB of RAM memory
* Samsung 840 EVO SSD (500 GiB)

* Grid-Gen vs Grid-Gen2

* Time (ms) for each step (only simplification is different).
* Bottleneck: I/0 and simplification step.
* Simplification: Grid-Gen2 is 8 times slower.

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4

1
o
(4’4

Dataset 3 4 5 6 7
input points 8531 3x10* 3x10* 3x10° 4x10°
Input reading 10 22 29 257 37092
Unif. grid init. 0 1 1 24 1472
Simp. (Grid-Gen2) 2 15 13 435 23759
Simp. (Grid-Gen) 1 4 3 54 3481
Output writing 6 21 21 170 1817

11

Previous work: map generalization

* Good visual quality:
* Example of solution (blue = original, red = Grid-Gen, green =
Grid-Gen2)

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

12

Current work: map intersection

* Finite precision of floating point — roundoff errors.

* Big amount of data — increase problem.

* Proposed solution: Rat-overlay
* Uses rational numbers.

* Parallelizable.

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

Current work: map intersection

7N ¢ Topological representation.

5
= * Each region has one id.

)

— * Edges represent boundaries.

o)

= * Sequence of edges bounding two regions:

S

0 . . o o

:>* o chain: (id, #vertices, node0 , node1 , polleﬁ, polﬂght)

e

5 53 oono crans

— 1!4!112’2!0

§ node 1 region 1 node 2 o noc:e 3 Egig)i(g’?;z()z’o);(z’z)
E, (0,2) (2,2) [@3.2) (5,2) (0.2):(2,2)

. region 2 region 2 8’352(’;;)[’:;[)’?% 2)

E { ! It ! (4,5,3,3,2,0)

(0,0) (2,0) (3,0) (5,0) (5.2):(3,2):(3,0):(5,0):(5.2)

14

Current work: map intersection

* Algorithm:
* Find all intersections.
* Locate vertices in the other map.

* Compute output polygons.

()]
i
=
=
o
n
=
=
c
L
S
()]
i
2
o
o
1
()
L
O
)
7))
c
)
[+ 2
1
o
[+ 2

15

Current work: map intersection

* Computing the intersections
* Test pair of edges for intersection.
* For efficiency: uniform grid.
* Insert edges in grid cells (edge may be in several cells).

* For each grid cell ¢, compute intersections in c.

4x7 uniform grid.
Blue map: 8 edges
Black map: 16 edges

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

16

17

* Also implemented using a uniform grid.
* Given p, find the lowest edge above p.

Current work: map intersection
* Locating vertices in the other map

931N1I3SuU] J1UYyd331A|od J3e|3SSUdY - |dY

18

* Also implemented using a uniform grid.
* Given p, find the lowest edge above p.

Current work: map intersection
* Locating vertices in the other map

931N1I3SuU] J1UYyd331A|od J3e|3SSUdY - |dY

19

* Also implemented using a uniform grid.
* Given p, find the lowest edge above p.

Current work: map intersection
* Locating vertices in the other map

931N1I3SuU] J1UYyd331A|od J3e|3SSUdY - |dY

20

* Also implemented using a uniform grid.
* Given p, find the lowest edge above p.

Current work: map intersection
* Locating vertices in the other map

931N1I3SuU] J1UYyd331A|od J3e|3SSUdY - |dY

Current work: map intersection

.u e O vy 1.0 Ov
I R

()]
i
=
=
o
n
=
=
c
L
S
()]
i
2
o
o
1
()
L
O
)
7))
c
)
[+ 2
1
o
[+ 2

o T
56n5 6
—¢—o —o " ¢ 60
.—1i2 03 04 05 o

21

Current work: map intersection

* This algorithm — few data dependency — very parallelizable.
* Uniform grid creation: edges in parallel.
* Locate vertices in polygons.
* Compute intersections: cells in parallel.
* Compute output edges: process input edges in parallel.

* Implemented using C++/OpenMP.

)
C =
=
=
e
)
=
=
=
<
S
]
=
>
o
a
1
]
L
]
)
)
c
Q
e
1
o
e

source: wikipedia 22

Current work: map intersection

* Computation is performed using rational numbers — no roundoff
eITors.

* Rat-overlay implemented using GMPXX.

* Special cases: simulation of simplicity.

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

23

Current work: map intersection

* Rat-overlay implemented in C++ .

* Tests:
* Dual Xeon E5-2687 — 16 cores / 32 threads.
* 128 GiB of RAM.
* Linux Mint 17

Q
i’
-
=
e
0
=
o
c
=
®)
()
i’
>
o
(o
|
()
L
Q
7))
7))
c
Q
(2’4
1
o
(4’4

24

Current work: map intersection

* 2 Brazilian and 2 North American datasets.
* Shapefiles converted to our format.

BrCounty: 342,738 vertices, 2,959 polygons
BrSoil: 258,961 vertices, 5,567 polygons.

e
*"ﬁ . l‘%’” -
Wl
il
S b L G
iy '5%?.%‘%?&%’“ G 5
% l}:ﬁ‘;@,‘%" e
R

v
o)
S
=
e
7))
=
=
=
£
S
0
=
2
o
o
1
o
L
o,
7))
7))
c
0
o
1
o
e

25

Current work: map intersection

* 2 Brazilian and 2 North American datasets.
* Shapefiles converted to our format.

* UsAquifers: 195,276 vertices, 3,552 polygons
* UsCounty: 3,648,726 vertices, 3,110 polygons

v
o)
S
=
e
7))
=
=
=
£
S
0
=
2
o
o
1
o
L
o,
7))
7))
c
0
o
1
o
e

26

Current work: map intersection

* Sequential vs Parallel Rat-overlay vs GRASS GIS (sequential).

* Parallel:
* Always faster than GRASS.
* Speedup << 32
* (Critical sections.
* 16 physical cores.
* Amdahl's law.

Q
ol
-
b
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

Map 1 Map 2 # intersections Grid size Time (5)
Serial Parallel GRASS

BrCounty BrCounty 105,754 2,000 34.5 11.5 30.3

BrSoil BrSoil 56,246 2,000 23.3 74 32.3
BrCounty BrSoil 20,860 1,000 16.1 5.9 81.7
UsAquifers UsAquifers 50,329 8,000 37.2 11.9 47.3
UsCounty UsCounty 300511 16,000 625.5 124.4 175.0
UsCounty UsAquifers 11,744 8,000 67.5 28.3 86.3

27

Current work: map intersection

* Time (secs.) spent in each step.
* We used the best grid size.

* [/0O: 16% to 38% of time.
* Edge intersection time: big mainly when intersecting same map.

Map 1 BrCounty BrSoil BrCounty UsAquifers UsCounty UsCounty
Map 2 BrCounty BrSoil BrSoil UsAquifers UsAquifers UsCounty

/O 24 1.6 1.9 2.2 10.9 204

Compute areas 0.5 0.3 0.2 0.3 1.1 3.1
Create grid 1.7 1.3 1.1 3.5 7.4 17.7
Intersect edges 2.3 1.7 0.7 3.0 2.0 60.6
Locate points 1.6 0.8 0.9 1.6 4.7 13.7
Compute output 3.0 1.6 1.0 1.3 2.3 0.0
Total 11.5 7.4 5.9 11.9 28.3 124.4

Q
ol
-
b
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4

1
o
(4’4

28

Current work: map intersection

* Bottleneck: Edge-edge intersections.
* We've been trying to improve this step.
* Problem: parallel memory allocation when rational numbers are
created.
* Solution: avoid creating “local” temporary rationals.
* The new version:
* 17 seconds (vs 60 seconds) for intersecting US_County with
itself.
* More scalable: 16 times speedup (vs 8x) if compared with the
serial version.

Q
ol
-
=
ol
n
=
o
c
=
®)
()
]
>
o
o.
|
()
L
Q
7))
7))
c
Q
(4’4
1
o
(4’4

29

Future work

* Automatic map cleanup.
* GIS such as GRASS have some cleanup tools.
* Not well documented.
* Frequently do not work very well.
* Our idea: develop automatic map cleanup tools.
* Useful for the intersection problem.

* Intersection in 3D.
* Perform exact 3D intersection.
* Use rationals.

()]
i
=
=
o
n
=
=
c
L
S
()]
i
2
o
o
1
()
L
O
)
7))
c
)
[+ 2
1
o
[+ 2

30

31

Salles Magalhaes
vianas@rpi.edu

CAPES

Any gquestions or suggestions?

Acknowledgement

931N3Ijsuj d1Uyd331Ajod 19e|9aSsudy - |dY

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

