An efficient GPU multiple-observer siting method based on
sparse-matrix multiplication

Guilherme C. Pena
Universidade Fed. de Vicosa
Vigosa, MG, Brazil
guilherme.pena@ufv.br

W. Randolph Franklin
Rensselaer Polytechnic Inst.
Troy, NY, USA
mail@wrfranklin.org

ABSTRACT

This paper proposes an efficient parallel heuristic for siting
observers on raster terrains. More specifically, the goal is
to choose the smallest set of points on a terrain such that
observers located in these points are able to visualize at least
a given percentage of the terrain. This problem is NP-Hard
and has several applications such as determining the best
places to position (site) communication or monitoring towers
on a terrain. Since siting observers is a massive operation,
its solution requires a huge amount of processing time even
to obtain an approximate solution using a heuristic. This is
still more evident when processing high resolution terrains
that have become available due to modern data acquiring
technologies such as LIDAR and IFSAR.

Our new implementation uses dynamic programming and
CUDA to accelerate the swap local search heuristic, which
was proposed in previous works. Also, to efficiently use
the parallel computing resources of GPUs, we adapted some
techniques previously developed for sparse-dense matrix mul-
tiplication.

We compared this new method with previous parallel im-
plementations and the new method is much more efficient
than the previous ones. It can process much larger terrains
(the older methods are restrictive about terrain size) and it
is faster.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]|: Ge-
ometrical problems and computations

General Terms
Algorithms, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

3rd ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data (BigSpatial) 2014 Dallas/Fort Worth, TX, USA
Copyright 2014 ACM ISBN 978-1-4503-3132-6 ...$15.00

Salles V. G. Magalhaes
Rensselaer Polytechnic Inst.
Troy, NY, USA
salles@ufv.br

Chaulio R. Ferreira
Universidade Fed. de Vigosa
Vicosa, MG, Brazil
chaulio.ferreira@ufv.br

Marcus V. A. Andrade
Universidade Fed. de Vigosa
Vicosa, MG, Brazil
marcus@ufv.br

Wenli Li
Rensselaer Polytechnic Inst.
Troy, NY, USA

liw9@rpi.edu

Keywords
Siting, Terrain Visibility, Viewshed, GPU parallel algorithm.

1. INTRODUCTION

Terrain modeling plays an important role in geographic in-
formation science (GIS). Many applications concern visi-
bility, that is, determining the set of points that are visi-
ble from a particular point, called the observer, which can
be located at some height above the terrain. These ap-
plications include telecommunications, environmental plan-
ning, autonomous vehicle navigation and military monitor-
ing [1,6,7,12]. Among these applications, we can point out
the siting problem, where the goal is to select a set of ob-
servers in order to “optimally cover the terrain”. These ob-
servers may represent radio, TV, Internet or mobile phone
towers, or monitoring cameras or towers [2, 3].

As described in [12], the siting problem is NP-Hard and,
therefore, there is no known efficient algorithm to find its
optimal solution. Thus, in general, a heuristic is used to ob-
tain an approximate solution. But even obtaining approxi-
mate solutions for this optimization problem can demand a
long processing time since sometimes it is necessary to pro-
cess a huge amount of high-resolution geographic data. For
example, new satellite sensors are able to sample the Earth
surface elevations at 1m resolution generating very huge el-
evation matrices.

Thus, the geographic information system applications have
required the development of some advanced techniques to
process this volume of data. A technique that has been
successfully used is to design parallel algorithms based on
general purpose graphics processing units (GPGPUs), which
are present in most current graphics cards.

This paper presents an approximate solution for an instance
of the multiple observer siting problem where the goal is
to determine a set of observers on a terrain represented by
an elevation matrix such that these observers together can
achieve a given visual coverage of the terrain. A first solu-
tion for this problem was presented in [5], which was based
on a greedy strategy. In this paper, we extend that method
including a local search heuristic based on a swapping strat-
egy to achieve the desired coverage using a smaller number

of observers. As the main contribution of this paper, this
heuristic was implemented in parallel using Graphics Pro-
cessing Units (GPUs) and dynamic programming.

This local search strategy to reduce the number of observers
was already used in [10,15] and, as shown in those papers, it
allows a reduction of up to 20% in the number of observers
required to achieve the desired coverage (which may repre-
sent an important improvement since the observer can be an
expensive facility as, for example, a communication tower).

Both methods are very restricted since they can not process
large terrains. As presented in those papers, the largest
terrains that these methods can process have about 3601 x
3601 cells. However, applications usually have to process
much larger terrains. Thus, in this paper, we present an
efficient new implementation, named SparseSite, which is
able to process larger terrains (we tested it on terrains with
up to 2 x 10® cells). Also, while processing larger terrains,
this new method is, very often (mainly in larger terrains),
faster than the other methods (we also executed the new
method on small terrains to compare its execution time and
memory usage with the other methods).

2. TERRAIN VISIBILITY DEFINITIONS

A terrain represents a region of the earth surface where
the terrain’s value at any point is the elevation of the cor-
responding earth surface point above a reference ellipsoid
called the geoid that represents sea-level. For this paper,
a terrain is represented by a matrix of elevation posts on a
square grid, whose vertical and horizontal spacing is uniform
either in distance, e.g., 10m, or in angle, e.g. 1 arc-second.

An observer is a point in the space that wants to see or
communicate with other points in the space, called targets.
The notations for observer and target are O and T. The
base points of O and T are the points on the geoid directly
below O and T respectively, which are denoted as O, and
Ty. Both O and T are at height h > 0 above O, and Tp. All
symbols used in this work are shown in Table 5.

The radius of interest, R, of O is the radius of the circle cen-
tered on O, that contains all points that can be seen by the
observer in the absence of obstructions. E.g., if O is a radio
transmitter, R is a function of the transmitter power and
receiver sensitivity. For convenience, R is usually compared
to the distance between O and T} rather than between O
and 7', which is equivalent when A is much smaller than the
radius of the earth.

A target T is visible from O iff |T, — Op| < R and there is no
terrain point blocking the line segment, called the Line of
Sight (LOS), between O and T'; see Figure 1. In this figure,
Ty is visible from O but 7% is not.

The viewshed, V', of O is the set of base points whose corre-
sponding targets are visible from O. In general, V is stored
as a bit matrix of size 2R x 2R where 0 represents a non-
visible point and 1 represents a visible point.

The wvisibility index, w, of O is the number of targets that
are visible from O. Points with a large w are usually good
candidate places to site observers in order to maximize the

LOS to visible target

-------- »LOS to hidden target
Base points of visible targets

Figure 1: Visibility queries using a line of sight.

area of the terrain that is seen by at least one observer [6].

The joint viewshed, V, of a set of observers S = {O;} is the
union of the individual viewsheds V;, i.e., the bitwise-or of
their bit matrices.

The joint visibility index, €2, of S is the number of targets in
the terrain that are visible from at least one observer in S.
Usually, €2 is normalized as a percentage of the terrain area.

Multi-observer siting means optimizing the locations of a
set of observers such that) is as large as possible. This
is an NP-Hard problem [12] and has important practical
facilities-location applications, such as siting mobile phone
towers, fire monitoring towers, and radar systems.

In this paper we will consider the following equivalent multi-
observer siting problem: to obtain a set of observers whose
joint visibility index €2 is, at least, a given percentage of the
terrrain.

3. RELATED WORK

There are some important related works addressing the sit-
ing problem. Ben-Moshe [2] presents an algorithm to site
facilities that considers radio coverage, frequency allocation
and connectivity. The input includes a weighted set of de-
mand locations, a set of feasible facility locations and a dis-
tance function that measures the cost of travel between a
pair of locations. Ben Shimol et al [3] describe an algorithm
to site a minimal set of fixed-access relay antennas on a given
terrain to generate the communication links between multi-
ple base stations. Although the goals of these two methods
are a little different of the problem addressed on this paper,
they use some important concepts related to our approach.

Considering that the observer siting problem is NP-Hard,
Franklin [5] proposed an approximate heuristic solution,
called Site, to find a set of observers to cover the terrain.
This method uses a greedy approach to obtain a set S of
observers such that a given percentage of the terrain is cov-
ered. Shortly, the solution S is initialized as empty and a
set P = {P;} of candidate observers is selected. Then, at
each step, the P; that will most increase the current joint
visibility index of § is inserted into S.

Other papers describing solutions to site observers on ter-
rains are [9-11,15]. In [11] the method Site was extended to
process huge terrains stored in external memory, where the
main idea is to subdivide the terrain in smaller pieces (sub-
regions) and process each piece in the internal memory. In

order to consider the influence of observers sited near to the
borders of the subregions, each subregion is augmented with
a band of width R (the observer radius of interest) around
it. Also, the viewshed representation used in the method
Site was improved to require a smaller amount of memory.

Since an observer may represent an expensive facility (for
example, a telecommunication tower), it is important to
develop methods that can achieve a same coverage using
fewer observers than the greedy strategy implemented in
the method Site. This goal is addressed by the three meth-
ods Site+, SiteGPU and SiteGSM, respectively described
in [9,10,15], where the idea is to try to reduce the number
of observers selected by the original method Site. Basically,
these methods extend the method Site including, in each it-
eration of the greedy algorithm, a swap local search to try to
improve the visibility index of the current (partial) solution
while keeping fixed the number of observers used. Thus, the
greedy algorithm may achieve a feasible solution in fewer
iterations (that is, using less observers).

These three methods differ from each other mainly in how
the local search is implemented. Magalhées et al [9] imple-
mented the local search using CPU sequential programmings
and, in [10], they presented a first parallel implementation
of the local search using CUDA. As the amount of data be-
ing processed is too big, these data are stored and processed
in the GPU’s global memory (the biggest, but the slowest
memory in the GPU’s memory hierarchy). In [15] the par-
allel routines were reimplemented to use a faster memory
access pattern and to store (temporally) the data being pro-
cessed in the GPU’s shared memory which is much faster
than the global memory. These improvements were based
on techniques used in fast matrix multiplication algorithms
for GPUs since the viewshed overlays adopt a data access
pattern similar to matrix multiplication. A similar strat-
egy was used in [4] where the Floyd-Warshall shortest path
algorithm was adapted to be executed using GPU threads.
Also, the heuristic efficiency was improved using dynamic
programming.

It is important to mention that all three previous methods
(Site+, SiteGPU and SiteGSM) and also the method pro-
posed in this paper always obtain a same solution, that is,
select the same set of observers because they are based on
a same heuristic. But, although the two methods SiteGPU
and SiteGSM are efficient (considering their execution time)*
they are very restricted since they require too much mem-
ory and, the GPUs usually have a small amount of memory
(ranging from 1 GB for low-end GPUs to 6GB for high-end
scientific GPU accelerators). Thus, they are not suitable
for recent GIS applications that demand the processing of
high resolution terrains. In this paper, we propose a more
efficient parallel implementation for observer siting on ter-
rains. This new method, named SparseSite, not only is able
to site observers faster than SiteGPU and SiteGSM, but
mainly uses less memory, allowing the processing of much
larger terrains. As the tests showed, the improvements are
particularly important because observer siting is a very mas-
sive application that could take several hours (or even days)
of processing time when performed using a sequential ap-

n fact, as described in [15], SiteGSM is more than 20 times
faster than SiteGPU.

proach. Also, the lower use of memory allows the method
to be used even in inexpensive low-end GPUs

4. THE PROPOSED METHOD

We propose a new method for siting observers on terrains,
named SparseSite, which is an important improvement of
the method SiteGSM described in [15]. In this new method,
the observer siting heuristic is the same heuristic used by
SiteGPU and SiteGSM, that is, observers are sited using a
greedy algorithm improved with the swap local search. But,
as described in details later, this new implementation cir-
cumvents an important restriction in the previous methods
since it can process (much) larger terrains. It is important
mentioning that, despite we used a greedy method with the
swap local search, our fast implementation of the swap can
be used to accelerate other observer siting heuristics once
the local search is often a bottleneck of other heuristics such
as Simulating Annealing or GRASP.

4.1 The Local Search - Swap

Given an initial solution S, the objective of the local search
is to iteratively perform small changes in S such that each
change transforms S in a solution S’ with the same num-
ber of observers as S, but with higher joint visibility index.
In the swap local search strategy, each small change corre-
sponds to swapping an observer in S with an observer not
in S. More specifically, given a solution S and a set with
n candidate observers whose viewsheds are represented by
V ={V1,--+,V,}, the local search iteratively changes S by
replacing the observer V; € S with the observer V; € V,
where (V;,V;) is the pair of observers that maximizes the
visibility index of § — V; + V;. The swap local search ends
when no swap of observers leads to a better solution.

In each iteration of the local search it is necessary to eval-
uate all solutions S’ (called neighbors) that can be created
by replacing one observer in S with an observer not in S.
Figure 2 presents an example of the solutions that are eval-
uated performing one iteration of the swap local search in
the solution S = {Vi, V2, V3}.

Figure 2: Given V = {V4, V2, V5,V4, V5}, each S; is ob-
tained performing a swap in S = {Vi, Vs, V3}.

To simplify the notation, a solution S = {Vj,, -+, V;, } will
be written as S = {41, - ,ix} indicating that the solution,
in fact, corresponds to the joint viewshed of the observers
whose indices are i1,---,i,. Thus, the local search may

be implemented (sequentially) as follows: given the set of
candidate viewsheds V = {V1,---,V,}, let S be a solution
composed of k viewsheds, i.e., S = {i1, - ,ir} such that
the joint viewshed of S'is Vi, @--- @V}, , where @ represents
the union operation between two viewsheds.

Furthermore, let V= be the joint viewshed of all viewsheds
in S except V;,. and assuming the viewsheds and joint view-
sheds are linearized using a row-major order, let V be the
matrix storing all V= for r = 1,--- k. In each iteration, the
neighbors of S are generated in order to find the best so-
lution for the next iteration. The visibility indices of the
neighbor solutions are obtained computing the number of
visible points in V;@Vr forr =1---kand j =1---n, with
jF#ET

The most time-consuming step in this heuristic is computing
the joint visibility index for each neighbor solution. Algo-
rithm 1 presents the code for this step that computes the
number of visible points in V;@Vr (for all r = 1---k and
j=1---n;j #r) and stores them in the element Viz[j][r].
In the next step, this matrix will be used to find the best
neighbor of S.

Algorithm 1 Calculate the Viz matrix where vsize is the
number of points in each viewshed, k is the number of ob-
servers in the solution S and n is the number of candidate
observers. The output is the matrix Viz, where Viz[j][r] is
the joint visibility index of a solution replacing observer r
with j.

1: Viz[n][k] < {{0}}

2: V[k][vsize] < {{0}}

3: for r + 1 to k do

4: for m <+ 1tok do

5: if r # m then

6: s« S[m]

7 for w < 1 to VSize do
8: Vr][w] < V[r][w] or Vs][w]
9: end for

10: end if

11: end for

12: end for

13: for r + 1 to k do
14: for j + 1 ton do

15: for w < 1 to vsize do

16 Vialjllr] « Vizljlir] + (V[j][w] or Virlfw])
17: end for

18: end for

19: end for

20: return Viz

For efficiency, in this work the viewsheds are packed in 64-
bit words (where each word represents the visibility of 64
points). Thus, the viewshed unions and visibility indices
can be computed using, respectively, bitwise-or operator and
bit population count functions, which are available in the
hardware of most current computers.

4.2 An Efficient Swap Heuristic Implementa-
tion

Observe that Algorithm 1 performs ©(k?) union operations

@ to compute V. This number of union operations can be

reduced using dynamic programming as described below.

Given a solution S = {i1,- - ,ir}, for each r € {1,--- ,k},
we have Vi = (Viy @ --- @ Vi) ® (Vi,y, & - D Vi,). Let
A and \F be

A =V @ @ V4
)\;*':Vir“@...@vik

Notice that both A~ and A" can be obtained by the following
recurrence relations:

M =0and A\ =X\, 0V, _forallre2, -k
M =0and \f =V;,, @\ forallrel, - k-1

For example, Figure 3 illustrates the V computation for k =
5: in this figure, each row r of matrix V contains the joint
viewsheds Vr. Observe that the value of V= may be obtained
by performing the union between the corresponding \;. and
M. Also, each row 7 in A~ can be computed from the
previous row 7 — 1 using only one @ operation. Analogously,
the AT values can be obtained in a similar way using the
reverse order.

% A AT
1 Viz Vi3 Vi4 Vis 1 1 Viz Vi3 Vi4 Vis
2 Vil VfIESVilleIS 2 Vil 2 Vi3 Vi4 Vi5
3| Vi | Vi, | Vi, | Vig| = 3|Viy|Vi, @ 3 Vi, |Vig
4 Vi1 Vi2 Vi3 Vi5 4 Vi1 Vi2 Vi3 4 Vi5
5 Vil Viz Vi3 Vi4 5 Vil Viz Vi3 Vi4 5

Figure 3: Matrix illustrating Vr in a solution with
k =5 observers.

Based on these recurrence relations, Algorithm 2 uses dy-
namic programming to compute a matrix V' that stores Vr,
for r = 1---k. Notice that this algorithm performs only
O(k) viewshed unions and can replace the piece of code com-
posed by lines 2 to 11 in Algorithm 1 where are performed
O(k?) viewshed unions.

As presented in the SiteGSM algorithm [15], the Viz compu-
tation given in Algorithm 2 can be implemented in the GPU
using the following strategy. The viewsheds were kept in
GPU’s global memory. Then, the union of viewsheds (loop
in lines 4, 11 and 17 of Algorithm 2) were performed using
GPU’s threads, that is, each thread performs a bitwise-or
operation with one element of a viewshed and the corre-
sponding element of another viewshed.

After computing V, the next step is to compute the joint
visibility index of the neighbor solutions, as performed by
lines 12 to 18 in Algorithm 1. A straightforward implemen-
tation of this step in GPU was presented in [10], where all
viewsheds are kept in the GPU’s global memory and, then,
each element of matrix Viz (that stores the joint visibility
index) is computed using a parallel algorithm to overlap a
pair of viewsheds followed by a parallel reduction operation
to determine the number of visible points. However, this
strategy does not take advantage of the GPU resources ef-
ficiently because it requires too many accesses to the global

Algorithm 2 Compute the matrix V that stores Vy, for
r =1---k using a dynamic programming strategy.

Vo[k][vsize] < {{0}}
forr< k—1to1ldo
10: rg «+ S[r+1]

1: Vi[k][vsize] < {{0}}

2: for r < 2 to k do

3 Uf « S[r—1]

4: for w <+ 1 to vsize do // using GPU threads
5: Vi [r][w] = Vi[r — 1][w] or V[lf][w]

6: end for

7: end for

8:

9:

11: for w < 1 to vsize do // using GPU threads
12: Vo[r][w] = Va[r + 1][w] or V[rg][w]

13: end for

14: end for

15: V[k][vsize] < {{0}}
16: for r + 1 to k do

17: for w + 1 to vsize do // using GPU threads

18: V(r][w] < Vi[r][w] or Valr|[w]
19: end for
20: end for

memory, which is much slower than other memories such as
the shared memory.

In order to make a better use of the GPU memory hierar-
chy, also in SiteGSM [15], we proposed a strategy based on
a fast GPU matrix multiplication algorithm. Notice that
each element of the joint visibility index (that is, each po-
sition of the Viz matrix) is obtained overlapping one row
of matrix V' with another row of matrix V using a bitwise-
or operation (see lines 12 to 18 of Algorithm 1). It means
that the two matrices are swept in a row major order, but
the matrices could be reorganized such that the overlapping
could be computed using an access pattern similar to matrix
multiplication. More precisely, line 15 in Algorithm 1 can
be replaced with

Via[j][r] + Viz[j][r] + V[j][w] or V' [w]lr]
where V7T is the transposed matrix of V.

Thus, the Viz matrix can be computed using a simple adap-
tation of some very fast algorithm for matrix multiplication
in GPU. In particular, we adapted the algorithm presented
in [14], replacing the multiplication operation by a bitwise-or
followed by a binary population count operation. This algo-
rithm subdivides the matrices into blocks, which are loaded
iteratively in the GPU’s shared memory as the multiplica-
tion process is performed. Therefore, most of the algorithm
accesses are to the shared memory which is much faster than
the global memory.

4.3 Using a sparse-dense matrix multiplication

algorithm
Since the viewsheds usually contain a large amount of non
visible points (mainly when the radius of interest is much
smaller than the dimensions of the terrain), the swap heuris-
tic performance can be improved storing the matrix V' (con-

taining the candidate observers Viewsheds2) using a sparse
matrix format and, then, using an algorithm to overlay the
sparse viewsheds in V' with the joint viewsheds in V. The
matrix V is stored as a dense matrix since each of its lines is
composed by a joint viewshed which is usually much denser
than an individual viewshed.

In this work, the matrix V' was coded using the ELLPACK-
R matrix format [8]. The overlay of the viewsheds in V with
the joint viewsheds in V were performed using an adapta-
tion of the sparse-dense matrix multiplication algorithm pro-
posed by [8].

Observe that in a (conventional) matrix multiplication, each
entry (4,7) in the resulting matrix corresponds to the scalar
product of the i-th row of the first matrix with the j-th
column of the second matrix. Thus, when replacing the
multiplication operation in the scalar product with a bitwise
or followed by a population count operation, the resulting
value corresponds to the visible area of the union of the
viewshed ¢ with the joint viewshed j.

However, since the sparse-dense matrix multiplication algo-
rithm proposed in [8] does not process 0 in the first (sparse)
matrix then this straightforward adaptation does not work
in this case because while in the multiplication a 0 operand
yields 0 as result, this is not true for the or operation.

To circumvent this problem, we changed the Viz matrix
computation as following: instead of evaluating the total
visible area of the overlay between each viewshed in V' with
each joint viewshed in V to select that one with the largest
visible area, we compute the area increment® that each view-
shed in V would generate to the joint viewsheds in V and,
at the end, the entries in the Vix matrix are obtained by
adding the corresponding increment to the visible area of
each joint viewshed. Notice that if an entry has value 0
in V, this entry will never increment any entry in) and,
therefore, this 0 entry in V' does not need to be processed.
Thus, the sparse-dense matrix multiplication algorithm may
be adapted to efficiently compute the contribution area.

In other words, we use the same access pattern of the sparse-
dense multiplication algorithm to overlap the matrices V'
and V replacing the multiplication operation a x b (where a is
an element of V and b is an element of V) with the operation
((a or b) and ~ a) followed by a bitwise population count.
Notice that, when a viewshed b is overlapped with a, the
operation ((a or b) and ~ a) returns the points that are
visible in b but not in a. Thus, this operation returns the
contribution (exclusively) from b to the visible area, that is,
the area increment.

4.4 Reducing the swap heuristic’s memory us-
age

As previously described, given a partial solution S with &

observers and a set of n candidate observers V', the proposed

2Each viewshed is stored using a linear row-major order ar-
ray.

3The area increment represents how much the area of a joint
viewshed would be incremented if this joint viewshed is over-
lapped with that viewshed

algorithm tries to improve the visual coverage of the (par-
tial solution with) k observers performing a swap heuristic
to check if there is a pair of observers (p;,p;) with p; € S
and p; € V such that the visual coverage of S would in-
crease by replacing p; with p;. This process checks all p;
with ¢ = 1.--k and all p; with j = 1---n. In this paper,
we present an implementation for this strategy that is not
only time efficient, but also that can reduce the amount of
memory used by the matrix that stores the candidate ob-
servers viewsheds, since these viewsheds are stored using a
sparse matrix format. The V matrix is still stored as a dense
matrix because it stores the joint viewsheds that are “dense”
(that is, they have, in general, many visible points). But,
even using this representation, often it is not possible to
keep the whole V matrix in the GPU memory (as required
by that method) because the memory of a GPU is usually
much smaller than the CPU main memory (in general the
GPU memory size ranges from 1 GB for a gaming GPU to
6GB for high-end scientic GPUs such as a nVIDIA K20x).

Thus, to allow processing larger terrains, we proposed a new
strategy where the basic idea is to split the V and Vix ma-
trices computation in small parts composed by some rows
of the whole matrix. More precisely, the idea is to iter-
atively compute a submatrix Vi composed by the rows
i,54+1,---,j of V and, then, to obtain the submatrix Vi ;
corresponding to the visible area of the overlay of each view-
shed in V with each joint viewshed V; - -- V5. These overlays
are still computed as described in Section 4.3. That is, using
an adaptation of sparse-dense matrix multiplication algo-
rithm to overlay the viewsheds in the sparse matrix formed
by the candidate observers with a dense matrix where each
row represents a joint viewshed. After concluding each step,
the resulting submatrix Vix;,; is copied to the CPU’s mem-
ory and the corresponding entries of this submatrix are used
to fill the Vix matrix .

Notice that the dynamic programming approach presented
in Section 4.2 needs to be adapted since, to compute V¢, it
is necessary to have A, _; and)‘:+1 previously computed.
As the computation of the submatrix V;—; starts in row 4
and ends in row j, the base case for A~ must be A; and
the base case for AT must be)\;-r. See an example in Fig-
ure 4. Thus, before starting the computation of V;— the
matrix \; is initialized with the union of viewsheds of points

S1,52,---,8;—1 and)\;— is initialized with the union of the
viewsheds of points Sj, Sj42, -+, Sk.

YUs A At
3V ViV Vi ViV 3 Vi 3 Vi, ViViVi,
4|Vi Vi, |Vig| Vig Vi | Vi, =4 Vi, Vi, |Vig @4 Vig|Vig|Vi,
5 Vi [Vi, | Vig| Vi, |Vig[Vi,| 5 |Vig|Vi,|Viy| Vi, 5 Vig Vi,
6 Vi1 Vi2 Vi3 Vi4 Vi5 Vi7 6 Vi1 Vi2 Vi3 Vi4 Vi5 6 Vi7

Figure 4: Matrix illustrating V55 in a solution with
k = 7 observers. Notice that the base case for com-
puting matrix A\~ is A\; (indicated in gray) and, sim-
ilarly, the base case for computing A\ is \{.

The time complexity to process each slice of size n, of the
matrix V (that is, each submatrix with n, rows of the matrix
V) is ©(n,) + ©(k — n.), since to process each slice Vi— it

is necessary the initialization of A, (this process performs
i—1 viewshed overlays) and)\;L (that performs k—j overlays)
resultingink—j+i—1=k—(j—i+1) = k—n, viewshed
overlays. After initializing the base cases, the computation
of each line of the submatrix requires 1 viewshed overlay.
In total, n, overlays are performed. Since the matrix V is
subdivided into @(n%) slices, the total processing time of

the dynamic programming algorithm is 6(%) x (©(n,) +
Ok —n,)) = O(k) + O(%) = 0(£).

Thus, the larger the size of V matrix that is kept in the
GPU’s memory, the more efficient the computation is. When
n, is close to k, the efficiency of this new approach is simi-
lar to the efficiency of the dynamic programming algorithm
presented in Section 4.2, that is, @(fl—z) ~ @(k—:) = O(k).
On the other hand, if n, is too smaﬁ, this efficiency will
be closer to ©(k?). Therefore, n, should be chosen such
that the submatrices use the maximum amount of memory
available in the GPU.

S. EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we defined a set
of tests and compared it against Site+ [9], that is a se-
quential implementation of the swap heuristic and against
SiteGSM [15], which, as far as we know, is the fastest paral-
lel implementation of the swap. It is important to mention
that we do not compare the proposed method against tra-
ditional GISs such as GRASS and ARCGIS because, to the
best of our knowledge, these softwares provide tools to per-
form visibility analysis (for example, to compute viewsheds),
but they do not contain any method that is able to perform
observer siting. Also, the method proposed in [10] was not
evaluated in our tests because, as shown in [15], SiteGSM is
much faster than it.

All heuristics were implemented in C++/CUDA and com-
piled using g++ 4.8 (for the sequential heuristic) and nvcc
4.0 (for the parallel heuristics) with optimization level (-O3).
The tests were executed on a computer running Ubuntu
12.04 LTS Linux and with the following hardware configu-
ration: Dual Intel Xeon E5-2687 3.1GHz processor, 128GiB
of memory and GPU NVidia Tesla Kepler K20x with 6GiB
of global memory, 48KB of shared memory per block and
2688 CUDA processing cores running CUDA 5.0.

The tests were performed on 4 terrains, that contain 30-
meter-resolution elevation data from the state of Illinois, in
the United States, and were obtained from the NASA SRTM
project [13]. The terrains, that are numbered from 1 to
4, represent square regions and contains, respectively, the
following number of cells: 12012, 36012, 7500 and 150002.

Initially, the set P of candidate observers was generated us-
ing the observer selection step of the Site method [5], that
selects observers with high visibility indices in the terrain.
The size of the candidate points set for the terrains 1,2,3
and 4 were, respectively, 1008, 3008, 5625 and 22500. Then,
the viewshed of each candidate observer was computed using
the viewshed utility also available in the Site method. Dur-
ing the viewshed computation, the observer height above the
terrain was defined as 30 meters, since this value represents
typical elevation for communication antennas.

Table 1: Processing time and memory usage of
SparseSite in large terrains.

it
Ter. R Q #Obs. SparseSite
Time(sec) Memory(MB)
75% 346 720
200 85% 410 1158 1043
3 95% 517 1950
5% 87 279
400 85% 102 381 1590
95% 126 610
75% 354 11830
4 400 85% 420 19011 3819
95% 549 33863

Since the biggest contribution of SparseSite is its ability to
efficiently process high resolution terrains, in our first set of
tests we evaluated its efficiency during the processing of the
bigger terrains. In these tests, it was not possible to com-
pare SparseSite against other methods since SiteGSM was
not able to handle these large terrains in the GPU memory
and Site+ was not able to terminate its execution even after
running for 5 days.

As described in Section 4.4, SparseSite can be configured
to use different sizes for the portion of the sparse matrix
that is kept in the GPU’s memory. Thus, in exchange for a
bigger processing time, the heuristic may be configured to
process large terrains even in GPUs that do not have enough
memory to store all the data being processed. To evaluate
how SparseSite behaves as the amount of memory available
to the heuristic is reduced, we performed a set of tests where
the parameter n, (the parameter that defines the number
of rows of the sparse matrix kept in the GPU’s memory)
varies. Table 2 presents the running-time (in seconds) and
total memory usage (in MB) of SparseSite as a function of
nr. These tests where performed in Terrain 3 using radius
of interest with 200 cells and target coverage of 95%.

Observe that, except in the case where only one line of the
sparse matrix is kept in the memory, there is little variation
in the performance of the heuristic. In fact, the difference
between the test case where only 5 lines were kept in the
memory and the test case where n, equals to 260 (this was
the largest value for n, that we managed to use in the K20x
GPU, that has 6GB of memory) is smaller than 5%. This re-
sult is important because it indicates that, differently of the
previous methods, the proposed heuristic could process big
terrains using an amount of memory that is available even
in lower ends GPUs. In fact, as it will be explained latter,
SiteGSM was not able to process the terrain evaluated in
this test, even though, SparseSite managed to efficiently
process it using only 304 MB of memory.

To compare SparseSite against other methods, we per-
formed a set of tests on smaller terrains that can be pro-
cessed in a feasible amount of time by the sequential imple-

Table 2: Processing-time and memory usage of
SparseSite as a function of the number of rows (n,)
of the dense matrix kept in the memory. These tests
were performed on Terrain 3, using radius of interest
equal to 200 cells and target coverage of 95%.

SparseSite
n, Time(sec) Memory(MB)
4533 217
5 2069 304
10 2043 410
20 1939 621
40 1952 1043
80 1958 1887
160 1957 3577
260 1972 5688

mentation of the swap heuristic (Site+ [9]) and, also, that
can be processed using less than the available 6GB of mem-
ory by the previous parallel implementation (SiteGSM [15]).
The test scenarios use radii of interest 100, 200 and 300 cells
for the smallest terrain, 200, 300 and 400 cells for the largest
one. For each terrain, the desired coverages (joint visibility
indices) were 75%, 85% and 95% of the terrain area. The
results are presented in Table 3. Column #Obs shows the
number of observers sited in each case and the speedup of
each method (if compared against the sequential method) is
presented in parenthesis.

In all situations both SparseSite and SiteGSM were much
faster than Site+. Notice that the greatest speedup obtained
by SparseSite was 7352%, while the greatest speedup ob-
tained by SiteGSM was 2762x. Observe that in most of
the cases SparseSite was faster than SiteGSM, being up to
2.7 times faster. However, in the cases where the radius of
interest leads to viewsheds whith size that represents a con-
siderable portion of the terrain, SparseSite was faster. This
behaviour is explained because in these cases the matrices
being processed are less sparse and, also, in these cases the
number of observers needed to achieve the target coverage
is very small (for example, in the test case in Terrain 1 with
radius of interest equal to 300 cells and target coverage of
75%, the algorithm used only 4 observers). Thus, the over-
head of the method that was specially designed for sparse
matrices reduces its performance.

As shown by Magalhaes et al. [9], the use of local search pro-
cedures with greedy heuristics can generate solutions that
use fewer observers than the solutions obtained by methods
that use a pure greedy method. Even though the focus of
this paper is to present a fast parallel implementation for the
swap local search and evaluate its performance, in the last
set of experiments we evaluated the quality of the solutions
obtained by the proposed method. Table 4 presents a com-
parison between SparseSite (the greedy method improved
with the proposed swap heuristic) and by the Site heuristic
(that uses a pure greedy method). These tests were per-
formed in terrains 2, 3 and 4 using radius of interest 400

Table 3: Processing time (in seconds) of three methods: two parallel methods using GPU (SparseSite and
SiteGSM) and a sequential one (Site+) to site observers on terrains with different sizes considering different
radii of interest (R) to achieve some desired coverages ().

Processing Time (s)

Ter. R Q #QObs.
SparseSite SiteGSM Site+
75% 36 1 (1017) 2 (509) 1017
100 85% 44 1 (1599) 2 (800) 1599
95% 56 2 (1767) 4 (883) 3533
75% 9 05 (150) 02 (375) 75
L 200 85% 12 05 (256) 0.4 (320 128
95% 15 07 (437) 0.8 (383) 306
75% 04 (28) 0.1 (110) 11
300 85% 04 (58) 0.2 (115 23
95% 7 05 (142) 04 (178) 71
75% 81 30 (5398) 76 (2131) 161951
200 85% 97 42 (6725) 110 (2568) 282433
95% 126 65 (7352) 173 (2762) 477855
75% 36 19 (1737) 27 (1222) 33000
2 300 85% 43 25 (2369) 39 (1518) 59221
95% 54 37 (2887) 61 (1751) 106824
75% 20 16 (708) 14 (809) 11321
400 85% 25 18 (985) 20 (887) 17731
95% 31 23 (1340) 27 (1141) 30813

Table 4: Processing time and number of observers
used by the SparseSite heuristic (greedy with lo-
cal search) and by the Site method (pure greedy
heuristic). The last column presents the percentual
difference in the number of observers used by the
heuristics.

SparseSite Site .
Ter. Difference
#Obs. Time(s) #Obs. Time(s)
24 27 27 13 13%
102 381 112 95 10%
420 19011 461 2082 10%

cells and desired coverage 85%. Notice that SparseSite was
able to achieve the same coverage as Site using, on average,
11% less observers. Of course, since the local search per-
forms much more computation than a pure greedy method,
it is much slower. However, the reduction in the number of
observers may represent an important (economic) improve-
ment, since observers may represent expensive facilities such
as cell phone antennas.

Figure 5 compares the solution returned by the Greedy method

with the solution obtained using the Greedy method with
the swap heuristic. This siting was performed in Terrain 1,

using radius of interest of 200 cells and the desired coverage
was 75%. In this figure, we used a small terrain with high
radius of interest and low desired coverage just to show the
difference between the methods. Notice that the solution
obtained using the swap heuristic used 9 observers, while
the solution obtained using the purely Greedy method used
10 observers to reach the same minimum coverage.

6. CONCLUSIONS AND FUTURE WORK
This paper presented an efficient observer siting heuristic,
that uses CUDA enabled GPUs to efficiently process high
resolution terrains. The proposed method stores the view-
sheds using a sparse-matrix format in order to reduce its
memory usage and, as the tests showed, it was able to pro-
cess terrains that could not be handled by previous parallel
methods even in high-end GPUs. Also, tests in smaller ter-
rains that can be processed by other methods showed that
the use of processing techniques specially designed for sparse
matrices led to a speedup of up to 2.7 times if compared
against the fastest previous parallel implementation and up
to 7352 if compared against the sequential method. This
speedup was achieved not only by using GPU, but also due
to the new strategies used to overlay the viewsheds using a
fast sparse matrix multiplication algorithm and the dynamic
programming.

These results are important in several applications like, for
example, optimizing the position of communication towers

(a) Greedy method.

(b) Greedy method improved
with the swap heuristic.

Figure 5: Comparing the solutions obtained using
(a) the Greedy method with (b) the Greedy method
improved with the swap local search.

or sensors such that a given percentual of a terrain is visually
covered. By using the proposed parallel method, a terrain
that would need more than 5 days to be processed using a
sequential implementation could be processed in 65 seconds.

For future work, we intend to improve the performance and
memory usage of the proposed implementation for situations
where the viewshed data is not sparse (for example, when
the observers have radii of interest closer to the terrain size)
and, also, to perform experiments using the proposed local
search in other heuristics such as GRASP and Simulating
Annealing.

ADDITIONAL AUTHORS

Daniel Benedetti (Rensselaer Polytechnic Institute)
daniel.n.benedetti@gmail.com

ACKNOWLEDGEMENTS
This work was partially supported by FAPEMIG, CNPq,
CAPES (Ciéncia sem Fronteiras) and NSF I1IS-1117277.

2]

8]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

M. V. A. Andrade, S. V. G. Magalhaes, M. A.
Magalhdes, W. R. Franklin, and B. M. Cutler.
Efficient viewshed computation on terrain in external
memory. Geolnformatica, 15(2):381-397, 2011.

B. Ben-Moshe. Geometric Facility Location
Optimization. PHD thesis, Ben-Gurion University,
Israel, Department of Computer Science, 2005.

Y. Ben-Shimol, B. Ben-Moshe, Y. Ben-Yehezkel,

A. Dvir, and M. Segal. Automated antenna
positioning algorithms for wireless fixed-access
networks. Journal of Heuristics, 13(3):243-263, 2007.
A. Bulug, J. R. Gilbert, and C. Budak. Solving path
problems on the GPU. Parallel Comput.,
36(5-6):241-253, June 2010.

W. R. Franklin. Siting observers on terrain. In
Springer-Verlag, editor, In D. Richardson and P. van
Oosterom editors, Advances in Spatial Data Handling:
10th International Symposium on Spatial Data
Handling, pages 109-120, 2002.

W. R. Franklin and C. Ray. Higher isn’t necessarily
better: Visibility algorithms and experiments. In
Advances in GIS research: sizth international
symposium on spatial data handling, volume 2, pages
751-770. Edinburgh, 1994.

Z. Li, Q. Zhu, and C. Gold. Digital terrain modeling:
principles and methodology. CRC Press, 2005.

G. O. Lépez, F. Vazquez, 1. Garcia, and E. M.
Garzén. Fastspmm: An efficient library for sparse
matrix matrix product on GPUs. Comput. J.,
57(7):968-979, 2014.

S. V. G. Magalhaes, M. V. A. Andrade, and

C. Ferreira. Heuristics to site observers in a terrain
represented by a digital elevation matrix. In Geolnfo,
pages 110-121, 2010.

S. V. G. Magalhaes, M. V. A. Andrade, and R. S.
Ferreira. Using GPU to accelerate heuristics to site
observers in DEM terrains. In IADIS Applied
Computing (AC 2011), pages 127-133. 2011.

S. V. G. Magalhées, M. V. A. Andrade, and W. R.
Franklin. An optimization heuristic for siting observers
in huge terrains stored in external memory. In Hybrid
Intelligent Systems (HIS), 2010 10th International
Conference on, pages 135-140. IEEE, 2010.

G. Nagy. Terrain visibility. Computers & graphics,
18(6):763-773, 1994.

J. P. L. NASA. Shuttle Radar Topography Mission.,
2013. Available at http://www2.jpl.nasa.gov/srtm
(accessed on July 2014).

NVIDIA. CUDA C programming guide. NVIDIA
Corporation, July, 2014. Available at
http://docs.nvidia.com/cuda (accessed on July 2014).
G. C. Pena, M. V. A. Andrade, S. V. G. Magalhaes,
W. R. Franklin, and C. R. Ferreira. An improved
parallel algorithm using GPU for siting observers on
terrain. In 16th International Conference on
Enterprise Information Systems (ICEIS-2014), pages
367-375, Lisbon, Portugal, 2014.

Table 5: Table of notations.

Symbol Description
O Observer
T Target
Oy Observer’s base point
T Target’s base point
h Height of an observer or target above terrain
R Radius of interest of an observer
14 Viewshed of an observer
w Visibility index of an observer
S Set of observers
1% Joint viewshed of a set of observers
Q Joint visibility index of a set of observers
P Set of candidate observers
n Number of candidate observers
A Set of candidate observers
S Subset of A
k Number of observers in S
S’ Neighbor solution of S
i1, ,ik | Observers’ Indices
&) Union operation between two viewsheds
Vie Viewshed of the observer k in S
V= Joint viewshed of all viewsheds in S except V;,.
vsize Number of points in each viewshed
Viz[r][j] | Joint visibility index of a solution replacing observer r with j
Ar Union between the viewsheds Vi, ---V; |
AP Union between the viewsheds V; ,, -+ Vi

