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Introduction
 Problem: siting observers in a raster terrain in order to 

obtain an optimal visual coverage.

 Example: cover 95% of a terrain. How many and where to 
site observers to achieve this coverage?
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Terrain visibility
 An observer is a point from which we wish to see or 

communicate with other points, called targets. 

 Visibility depends on the radius of interest (R) of an 
observer and on the terrain topography. 
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Terrain visibility

Terrain visualization Viewshed Joint viewshed 
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Observer siting

 Observer siting: given a set of candidate 
observers, select the smallest subset of the 
candidates that is able to cover a minimum area.

 This problem is NP-Hard → usually solved using a 
heuristic.

 A greedy solution: Site method (Franklin 2002).

 Idea: greedily insert the observers in the solution 
until the target visibility index is reached.
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Multiple observer siting
 The greedy solution is (mostly) not optimal.

 We propose  a local search strategy (to try) to 
increase the terrain coverage preserving the 
number of observers selected → this may reduce 
the number of observers needed.

 It was used with the greedy heuristic, but it can 
be used as part of other heuristics to improve 
the solutions.

 Local search + greedy: improve each partial 
solution → less iterations.
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Important concepts

 A neighbor solution of S is a solution S’ where 
an observer in S is replaced with another 
observer not in S.

 Local search: given a solution S, interactively 
improve S by replacing it with its best neighbor 
solution.

 Stop when reach a solution without better 
neighbor.



B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 8

Our propose – local search
 For example: Suppose P with 5 observers whose 

viewsheds are V1, V2, …, V5 and let S={V1, V2, V3} 
be a partial solution. Thus, the neighbors of S are
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Our propose – local search

 Challenge: for each neighbor solution, it is 
necessary:

• to compute the overlap of all viewsheds;
• to count the number of visible points;

 There are many neighbors: for 1000 (candidate) 
observers and a partial solution with 100 there are 
 90000 neighbors.

 This process is repeated in each iteration of the 
local search!
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Local search: an efficient implementation

 The local search bottleneck is the computation 
of the visibility index of all neighbor solutions.

 Let P = {p1,…,pn} be the candidate set and        
S = {s1,…, sk} be a partial solution.

 The neighbors of S are

               S’ij = S \ {si} U {pj} 

      for all i=1,..,k and j=1,..,n with i ≠ j and pj ∉  S 
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Local search: an efficient implementation

 The visibility indices computation can be 
subdivided in two steps:

① Create an array B of size k and for i=1,…,k, 
store in B[i] the joint viewshed of S \ {si};

② Create a matrix Vix of size k x n and for each 
i=1,…,k and j=1,…,n, with j ≠ i, store in Vix[i,j] 
the visibility index of the joint viewshed 
obtained overlapping B[i] with the viewshed of 
the observer pj. 
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Local search: an efficient implementation

 A straightforward implementation of step 1 is:

for i ← 1 to k do
   for m ← 1 to k do
      if m ≠ i then 
         // overlap B[i] with S[m]
         B[i] ← B[i]  U S[m]

 This code performs Θ(k2) overlapping operations;

 We can make it much better using dynamic 
programming.
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Local search: an efficient implementation

 Suppose the partial solution S has 5 observers, 
that is, S = {S1,…, S5}. 

 Then, the computation of B would require the 
overlapping of the following viewsheds:

B[1] = S[2] S[3] S[4] S[5]

B[2] = S[1] S[3] S[4] S[5]

B[3] = S[1] S[2] S[4] S[5]

B[4] = S[1] S[2] S[3] S[5]

B[5] = S[1] S[2] S[3] S[4]
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Local search: an efficient implementation

 Suppose the partial solution S has 5 observers, 
that is, S = {S1,…, S5}. 

 Then, the computation of B would require the 
overlapping of the following viewsheds:

B[1] = S[2] S[3] S[4] S[5]

B[2] = S[1] S[3] S[4] S[5]

B[3] = S[1] S[2] S[4] S[5]

B[4] = S[1] S[2] S[3] S[5]

B[5] = S[1] S[2] S[3] S[4]

The matrix with all B’s 
can be split in the 

following way
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Local search: an efficient implementation
 The computation of the matrix storing all B’s can be 

rewritten as following:

 These two matrices can be computed separately using 
dynamic programming.

 B[1]= S[2] S[3] S[4] S[5]

 B[2]= S[1] S[3] S[4] S[5]

 B[3]= S[1] S[2] S[4] S[5]

 B[4]= S[1] S[2] S[3] S[5]

 B[5]= S[1] S[2] S[3] S[4]

S[1]

S[1] S[2]

S[1] S[2] S[3]

S[1] S[2] S[3] S[4]

S[2] S[3] S[4] S[5]

S[3] S[4] S[5]

S[4] S[5]

S[5]

= +

L1 = Φ  and  Li = Li-1 U Si-1     for i=2,…,k

      Rk = Φ  and Ri = Si+1 U Ri+1  for i=k-1,…,1 

L R
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Local search: an efficient implementation

 Thus, the step 1 can be computed performing 
Θ(k) overlapping operations: 

• k  to compute L;

• k  to compute R;

• k  to overlap L and R
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Local search: an efficient implementation

 In step 2, to compute the matrix Vix:

 each joint viewshed stored in B is overlapped 
with the viewshed of each candidate observer 
did not include in the solution yet;

 the number of 1 bits in the resulting joint 
viewshed is counted.
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Local search: an efficient implementation

 A straightforward implementation of step 2 is:

        for i ← 1 to k do
   for j ← 1 to n do
         // count the number of 1 bits in B[i ] U P[ j ]
        for w ← 1 to Vsize do  
           Vix[i,j ] ← Vix[i,j ]+(B[i,w] OR P[ j,w])

Vix of S/{si} + pj Points in S/{si} Points in pj
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Local search: an efficient implementation

 Which is equivalent to:

        for i ← 1 to k do
   for j ← 1 to n do
         // count the number of 1 bits in B[i ] U P[ j ]
        for w ← 1 to Vsize do  
           Vix[i,j ] ← Vix[i,j ]+(B[i,w] OR PT[ w,j])

 This code: similar to matrix multiplication.
 X → OR
 → Adapt a matrix multiplication algorithm. 
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Local search: an efficient implementation

 Vix[i,j ] ← Vix[i,j ]+(B[i,w] OR PT[ w,j]) 

 B is “multiplied” by PT 

 B[i]: joint viewshed of S \ {si}  → dense

 P[j] : viewshed of point j → sparse

 → For efficiency: sparse-dense MM!
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Challenge

 0 is the absorbing element in the multiplication 
operation.

 … but not in the OR operation.
 →sparse-dense MM algorithms cannot be 

directly used.

 Solution: compute the vix increment instead of 
the visibility index of the union.

1 1 1
1 1 1

0 0
0 0
0 0

x 0 0
0 0

=
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Area increment

 Before: Vix[i,j] = vix obtained when the i-th 
observer in the solution is replaced with the j-th 
candidate observer.
• Vix[i,j] ← Vix[i,j]+(B[i,w] OR PT[w,j])

 
 Now: Vix[i,j] = how much would the vix of B[i] 

increase if we add the j-th candidate observer.
• Vix[i,j ] ←Vix[i,j]+((B[i,w] OR PT[w,j]) AND ~ B[i,w])

 A “0” creates a null contribution.
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Reducing the memory usage

 The B matrix stores the joint viewsheds → it is 
dense → may not fit in the GPU's memory.

 Proposed solution: divide the B matrix in smaller 
matrices Ba,b.

 In each step, compute Vixa,b : area increment 

Vix B PT
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Reducing the memory usage
 Challenge: compute Ba,b efficiently.

B[1] S[2] S[3] S[4] S[5] S[6]

B[2] S[1] S[3] S[4] S[5] S[6]

B[3] S[1] S[2] S[4] S[5] S[6]

B[4] S[1] S[2] S[3] S[5] S[6]

B[5] S[1] S[2] S[3] S[4] S[6]

B[6] S[1] S[2] S[3] S[4] S[5]

S[1]

S[1] S[2]

S[1] S[2] S[3]

S[1] S[2] S[3] S[4]

S[1] S[2] S[3] S[4] S[5]

S[2] S[3] S[4] S[5] S[6]

S[3] S[4] S[5] S[6]

S[4] S[5] S[6]

S[5] S[6]

S[6]

+

B
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Reducing the memory usage
 Solution: compute the two rows before performing each 

dynamic programming step.

 Viewsheds are in GPU → fast.

B[3] S[1] S[2] S[4] S[5] S[6]

B[4] S[1] S[2] S[3] S[5] S[6]

B[5] S[1] S[2] S[3] S[4] S[6]

S[1] S[2]

S[1] S[2] S[3]

S[1] S[2] S[3] S[4]

S[4] S[5] S[6]

S[5] S[6]

S[6]
+

B3,5

We need this rowWe need this row

We need this row
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Results
 Our algorithm SparseSite was implemented 

using CUDA and an efficient sparse-dense MM 
algorithm from the literature.

 Compared against: Site+ and SiteGSM.
 Both are also based on the greedy strategy and 

use local search, but 

• Site+ uses a sequential (CPU) implementation. 
Does not use MM and dynamic programming.

• SiteGSM: does not represent the viewsheds 
using sparse matrices. Also, it does not divide 
the matrices.
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Results
 The tests were executed on a computer with a  

GPU NVIDIA Tesla Kepler K20x (2688 cores) 
and CUDA 5.0.

 Terrains obtained from NASA STRM.

source: Nvidia.com



B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 28

Results
 Large terrains.

 Site+: > 5 days

 SiteGSM: out of 
memory
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Results
 Memory usage vs time.

 Terrain: 75002 , Coverage: 
95%

 Even keeping 5 rows in 
the memory → good 
performance.
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 Smaller terrains.

 Table: time(s) and 
speedup.

 Up to 7000x of 
speedup over 
Site+.

 Up to 2.7 times 
faster than 
SiteGSM.

 Slower than 
SiteGSM using 
larger radius.
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Conclusion

 Fast implementation of a observer siting method.

 Based on a greedy strategy combined with a local 
search. Dynamic programming + GPU + 
sparse-dense matrix multiplication.

 Saves memory using sparse matrices and dividing 
the dense matrices.

 Can be used to improve other heuristics that 
solves other optimization problems.
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Thank you!
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Future work

 Develop parallel implementation using GPU to: 

• compute the viewshed of each observer;

• replace the greedy strategy. 
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