
Guilherme C. Pena
Salles V. G. Magalhães

Marcus V. A. Andrade
W. Randolph Franklin

Chaulio R. Ferreira
Wenli Li

Universidade Federal de Viçosa (UFV)
Rensselaer Polytechnic Institute (RPI)

RPIUFV

An efficient GPU multiple-observer siting An efficient GPU multiple-observer siting
method based onmethod based on

sparse-matrix multiplicationsparse-matrix multiplication

Source: wikipedia

3rd ACM SIGSPATIAL 3rd ACM SIGSPATIAL
International Workshop International Workshop

on Analytics for Big on Analytics for Big
Geospatial DataGeospatial Data

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 2

Introduction
 Problem: siting observers in a raster terrain in order to

obtain an optimal visual coverage.

 Example: cover 95% of a terrain. How many and where to
site observers to achieve this coverage?

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 3

Terrain visibility
 An observer is a point from which we wish to see or

communicate with other points, called targets.

 Visibility depends on the radius of interest (R) of an
observer and on the terrain topography.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 4

Terrain visibility

Terrain visualization Viewshed Joint viewshed

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 5

Observer siting

 Observer siting: given a set of candidate
observers, select the smallest subset of the
candidates that is able to cover a minimum area.

 This problem is NP-Hard → usually solved using a
heuristic.

 A greedy solution: Site method (Franklin 2002).

 Idea: greedily insert the observers in the solution
until the target visibility index is reached.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 6

Multiple observer siting
 The greedy solution is (mostly) not optimal.

 We propose a local search strategy (to try) to
increase the terrain coverage preserving the
number of observers selected → this may reduce
the number of observers needed.

 It was used with the greedy heuristic, but it can
be used as part of other heuristics to improve
the solutions.

 Local search + greedy: improve each partial
solution → less iterations.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 7

Important concepts

 A neighbor solution of S is a solution S’ where
an observer in S is replaced with another
observer not in S.

 Local search: given a solution S, interactively
improve S by replacing it with its best neighbor
solution.

 Stop when reach a solution without better
neighbor.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 8

Our propose – local search
 For example: Suppose P with 5 observers whose

viewsheds are V1, V2, …, V5 and let S={V1, V2, V3}
be a partial solution. Thus, the neighbors of S are

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 9

Our propose – local search

 Challenge: for each neighbor solution, it is
necessary:

• to compute the overlap of all viewsheds;
• to count the number of visible points;

 There are many neighbors: for 1000 (candidate)
observers and a partial solution with 100 there are
 90000 neighbors.

 This process is repeated in each iteration of the
local search!

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 10

Local search: an efficient implementation

 The local search bottleneck is the computation
of the visibility index of all neighbor solutions.

 Let P = {p1,…,pn} be the candidate set and
S = {s1,…, sk} be a partial solution.

 The neighbors of S are

 S’ij = S \ {si} U {pj}

 for all i=1,..,k and j=1,..,n with i ≠ j and pj ∉ S

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 11

Local search: an efficient implementation

 The visibility indices computation can be
subdivided in two steps:

① Create an array B of size k and for i=1,…,k,
store in B[i] the joint viewshed of S \ {si};

② Create a matrix Vix of size k x n and for each
i=1,…,k and j=1,…,n, with j ≠ i, store in Vix[i,j]
the visibility index of the joint viewshed
obtained overlapping B[i] with the viewshed of
the observer pj.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 12

Local search: an efficient implementation

 A straightforward implementation of step 1 is:

for i ← 1 to k do
 for m ← 1 to k do
 if m ≠ i then
 // overlap B[i] with S[m]
 B[i] ← B[i] U S[m]

 This code performs Θ(k2) overlapping operations;

 We can make it much better using dynamic
programming.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 13

Local search: an efficient implementation

 Suppose the partial solution S has 5 observers,
that is, S = {S1,…, S5}.

 Then, the computation of B would require the
overlapping of the following viewsheds:

B[1] = S[2] S[3] S[4] S[5]

B[2] = S[1] S[3] S[4] S[5]

B[3] = S[1] S[2] S[4] S[5]

B[4] = S[1] S[2] S[3] S[5]

B[5] = S[1] S[2] S[3] S[4]

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 14

Local search: an efficient implementation

 Suppose the partial solution S has 5 observers,
that is, S = {S1,…, S5}.

 Then, the computation of B would require the
overlapping of the following viewsheds:

B[1] = S[2] S[3] S[4] S[5]

B[2] = S[1] S[3] S[4] S[5]

B[3] = S[1] S[2] S[4] S[5]

B[4] = S[1] S[2] S[3] S[5]

B[5] = S[1] S[2] S[3] S[4]

The matrix with all B’s
can be split in the

following way

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 15

Local search: an efficient implementation
 The computation of the matrix storing all B’s can be

rewritten as following:

 These two matrices can be computed separately using
dynamic programming.

 B[1]= S[2] S[3] S[4] S[5]

 B[2]= S[1] S[3] S[4] S[5]

 B[3]= S[1] S[2] S[4] S[5]

 B[4]= S[1] S[2] S[3] S[5]

 B[5]= S[1] S[2] S[3] S[4]

S[1]

S[1] S[2]

S[1] S[2] S[3]

S[1] S[2] S[3] S[4]

S[2] S[3] S[4] S[5]

S[3] S[4] S[5]

S[4] S[5]

S[5]

= +

L1 = Φ and Li = Li-1 U Si-1 for i=2,…,k

 Rk = Φ and Ri = Si+1 U Ri+1 for i=k-1,…,1

L R

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 16

Local search: an efficient implementation

 Thus, the step 1 can be computed performing
Θ(k) overlapping operations:

• k to compute L;

• k to compute R;

• k to overlap L and R

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 17

Local search: an efficient implementation

 In step 2, to compute the matrix Vix:

 each joint viewshed stored in B is overlapped
with the viewshed of each candidate observer
did not include in the solution yet;

 the number of 1 bits in the resulting joint
viewshed is counted.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 18

Local search: an efficient implementation

 A straightforward implementation of step 2 is:

 for i ← 1 to k do
 for j ← 1 to n do
 // count the number of 1 bits in B[i] U P[j]
 for w ← 1 to Vsize do
 Vix[i,j] ← Vix[i,j]+(B[i,w] OR P[j,w])

Vix of S/{si} + pj Points in S/{si} Points in pj

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 19

Local search: an efficient implementation

 Which is equivalent to:

 for i ← 1 to k do
 for j ← 1 to n do
 // count the number of 1 bits in B[i] U P[j]
 for w ← 1 to Vsize do
 Vix[i,j] ← Vix[i,j]+(B[i,w] OR PT[w,j])

 This code: similar to matrix multiplication.
 X → OR
 → Adapt a matrix multiplication algorithm.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 20

Local search: an efficient implementation

 Vix[i,j] ← Vix[i,j]+(B[i,w] OR PT[w,j])

 B is “multiplied” by PT

 B[i]: joint viewshed of S \ {si} → dense

 P[j] : viewshed of point j → sparse

 → For efficiency: sparse-dense MM!

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 21

Challenge

 0 is the absorbing element in the multiplication
operation.

 … but not in the OR operation.
 →sparse-dense MM algorithms cannot be

directly used.

 Solution: compute the vix increment instead of
the visibility index of the union.

1 1 1
1 1 1

0 0
0 0
0 0

x 0 0
0 0

=

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 22

Area increment

 Before: Vix[i,j] = vix obtained when the i-th
observer in the solution is replaced with the j-th
candidate observer.
• Vix[i,j] ← Vix[i,j]+(B[i,w] OR PT[w,j])

 Now: Vix[i,j] = how much would the vix of B[i]

increase if we add the j-th candidate observer.
• Vix[i,j] ←Vix[i,j]+((B[i,w] OR PT[w,j]) AND ~ B[i,w])

 A “0” creates a null contribution.

23

Reducing the memory usage

 The B matrix stores the joint viewsheds → it is
dense → may not fit in the GPU's memory.

 Proposed solution: divide the B matrix in smaller
matrices Ba,b.

 In each step, compute Vixa,b : area increment

Vix B PT

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 24

Reducing the memory usage
 Challenge: compute Ba,b efficiently.

B[1] S[2] S[3] S[4] S[5] S[6]

B[2] S[1] S[3] S[4] S[5] S[6]

B[3] S[1] S[2] S[4] S[5] S[6]

B[4] S[1] S[2] S[3] S[5] S[6]

B[5] S[1] S[2] S[3] S[4] S[6]

B[6] S[1] S[2] S[3] S[4] S[5]

S[1]

S[1] S[2]

S[1] S[2] S[3]

S[1] S[2] S[3] S[4]

S[1] S[2] S[3] S[4] S[5]

S[2] S[3] S[4] S[5] S[6]

S[3] S[4] S[5] S[6]

S[4] S[5] S[6]

S[5] S[6]

S[6]

+

B

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 25

Reducing the memory usage
 Solution: compute the two rows before performing each

dynamic programming step.

 Viewsheds are in GPU → fast.

B[3] S[1] S[2] S[4] S[5] S[6]

B[4] S[1] S[2] S[3] S[5] S[6]

B[5] S[1] S[2] S[3] S[4] S[6]

S[1] S[2]

S[1] S[2] S[3]

S[1] S[2] S[3] S[4]

S[4] S[5] S[6]

S[5] S[6]

S[6]
+

B3,5

We need this rowWe need this row

We need this row

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 26

Results
 Our algorithm SparseSite was implemented

using CUDA and an efficient sparse-dense MM
algorithm from the literature.

 Compared against: Site+ and SiteGSM.
 Both are also based on the greedy strategy and

use local search, but

• Site+ uses a sequential (CPU) implementation.
Does not use MM and dynamic programming.

• SiteGSM: does not represent the viewsheds
using sparse matrices. Also, it does not divide
the matrices.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 27

Results
 The tests were executed on a computer with a

GPU NVIDIA Tesla Kepler K20x (2688 cores)
and CUDA 5.0.

 Terrains obtained from NASA STRM.

source: Nvidia.com

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 28

Results
 Large terrains.

 Site+: > 5 days

 SiteGSM: out of
memory

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 29

Results
 Memory usage vs time.

 Terrain: 75002 , Coverage:
95%

 Even keeping 5 rows in
the memory → good
performance.

30

 Smaller terrains.

 Table: time(s) and
speedup.

 Up to 7000x of
speedup over
Site+.

 Up to 2.7 times
faster than
SiteGSM.

 Slower than
SiteGSM using
larger radius.

B
IG

S
P
A
T
IA

L
 2

0
1
4
 –

 D
a
ll
a
s
 –

 U
S

A

GPU parallel observer siting algorithm 31

Conclusion

 Fast implementation of a observer siting method.

 Based on a greedy strategy combined with a local
search. Dynamic programming + GPU +
sparse-dense matrix multiplication.

 Saves memory using sparse matrices and dividing
the dense matrices.

 Can be used to improve other heuristics that
solves other optimization problems.

32

Thank you!

 Acknowledgements

B[3] S[1] S[2] S[4] S[5] S[6]

B[4] S[1] S[2] S[3] S[5] S[6]

B[5] S[1] S[2] S[3] S[4] S[6]
source: Nvidia.com

source: wikipedia

33

Future work

 Develop parallel implementation using GPU to:

• compute the viewshed of each observer;

• replace the greedy strategy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

