
An efficient map generalization heuristic based on the
Visvalingam-Whyatt algorithm

Salles V. G. de Magalhães (salles@ufv.br)
Marcus V. A. Andrade (marcus@ufv.br)
Universidade Federal de Viçosa, Brazil

W. Randolph Franklin (mail@wrfranklin.org)
Wenli Li (liw9@rpi.edu)

Rensselaer Polytechnic Institute, USA

ABSTRACT
We present Grid-Gen2, an efficient heuristic for map simplifi-
cation that deals with a variation of the generalization prob-
lem where the idea is to simplify the polylines of a map with-
out changing the topological relationships between these poly-
lines or between the lines and control points. Grid-Gen2 is a
strategy based on the Visvalingam-Whyatt algorithm to create
simplified geometries with shapes similar to the original map.
The simplification process is accelerated using a uniform grid.
Grid-Gen2 can process a map with more than 3 million poly-
line points and 10 million control points in 24 seconds in a
Lenovo T430s laptop.

1. INTRODUCTION
One important problem in computational geometry is the curve
generalization (or simplification) problem, where the objective
is to reduce the amount of information needed to represent a
curve while keeping it “similar” to the original geometry. The
most well-known algorithms to solve this problem are Douglas-
Peucker [1, 3] and Visvalingam-Whyatt [5].

While methods such as Douglas-Peucker try to simplify lines
while keeping them as “similar” to the original input as possi-
ble, the direct application of these algorithms to simplify poly-
lines in a map may create undesirable features. For example, if
Douglas-Peucker is applied to a county dataset, the counties’
boundaries may be simplified in a way that a point represent-
ing a city will be in the wrong county. Also, simplifying a
polyline may make it cross another line in the map.

In this work we will deal with the following variation of the
geometry generalization problem: given a set of polylines and a
set of control points, simplify these polylines by removing some
of their points (except the endpoints) such that the topological
relations between pairs of polylines and between the polylines
and the control points do not change. In a previous paper [4],
we proposed Grid-Gen, which uses a uniform grid to efficiently
generalize maps. This paper presents Grid-Gen2 that is an
extension of our previous method Grid-Gen where we included
a new heuristic based on the Visvalingam-Whyatt [5] algorithm
to generate maps with better quality than the maps generated
by Grid-Gen.

2. THE GRID-GEN HEURISTIC
Given a set of control points C and an input map M composed
of a set P of polylines, our heuristic simplifies M by iteractively
processing each polyline independently. When a polyline is
processed, Grid-Gen [4] iterates through all its interior points
vi (that is, the points excluding the endpoints) and removes
vi if this deletion would not change the topological relations
between the map’s elements. This process is repeated until
the number of points in the simplified map reaches a target
value defined by the user or until the map cannot be further
simplified without changing its topology.

To determine if the deletion of a polyline point vi would
change the map topology, Grid-Gen verifies if there is any con-
trol point or polyline point inside the triangle t whose vertices
are vi and its two adjacent points (i.e., vi−1 and vi+1).

Figure 1 presents an example of the possible topological
changes that may happen during the deletion of points. No-
tice that there is a control point x inside the triangle (in red)
formed by polyline point a and its two adjacent points. If
a polyline is simplified by removing a, then the topological

Figure 1: Determining if the deletion of some points
would change the map topology.

(a) (b)

Figure 2: Use of dummy control points (in orange) to
avoid invalid simplifications.

relation between the curve and x will change. Point b also
cannot be removed since polyline point y is inside the red tri-
angle containing b as vertex and, thus, the deletion of b would
change the topological relation between b’s polyline and y’s
polyline (in fact, the two polylines would cross if b was re-
moved). Therefore, neither a nor b could be removed from the
current map.

There are two special cases that Grid-Gen needs to deal in
order to avoid creating a simplified map with invalid topol-
ogy. First, if one polyline p has coincident endpoints and the
polygon (or island) defined by this polyline does not have any
control point or other polylines in its interior, then Grid-Gen
may remove all interior points from p (creating an invalid poly-
gon). Second, if two polylines p1 and p2 have the same end-
points and the polygon formed by them does not contain any
control point or polyline in its interior, then Grid-Gen may
remove all interior points of p1 and p2, creating two coincident
line segments.

To solve these two problems, Grid-Gen preprocess the input
adding dummy control points that ensure that the heuristic
would never simplify the polylines to an invalid state. If a
polyline p has coincident endpoints, two dummy control points
are added at an infinitesimal distance around one of the line
segments that forms p. See an example in Figure 2 (a). This
ensures that one of these control points will be always in the
interior of the polygon defined by p and, therefore, the heuristic
will never remove all interior points of p.

If an input polyline p has only two points Grid-Gen, also
adds two dummy control points in an infinitesimal distance
around p. Furthermore, if during the simplification all the
internal points of a polyline are removed, the dummy points
are also added around the resulting polyline. This ensures
that no simplification would create a polyline coincident to p.
Figure 2 (b) presents an example where all interior points of
a polyline p are removed and, then, two dummy points are
added to the map.

Since the bottleneck of Grid-Gen is to detect if a polyline or
control point lies inside a triangle, a uniform grid [2] is used to
accelerate this process. More specifically, the idea is to create
a N ×M grid (where N and M are parameters defined by the
user), superimposed over the map being simplified. Each cell

c of the grid contains a list of all points (polyline and control
points) inside it. Given a triangle t, only the points in the cells
that intersect t need to be checked in order to verify if there
is any point in t. If a polyline is simplified, the point removed
from the polyline is also removed from the uniform grid.

3. THE PROPOSED EXTENSION
As explained in section 2, Grid-Gen iteratively process the in-
put map removing from the polylines the interior points whose
deletion would not cause a change in the map topology. This
strategy can efficiently create simplified maps with no topo-
logical inconsistency, but it does not try to keep the simplified
map similar to the original geometry.

We propose Grid-Gen2, an extension of Grid-Gen that ranks
the interior polyline points based on their “importance” to the
map shape and try to perform the simplification by removing
the least important points first. More specifically, the points
are ranked using the same strategy as Visvalingam-Whyatt [5]
algorithm and, then, a simplification process similar to Grid-
Gen is performed in the map, processing the points in an order
based on their rank. Thus, while the point ranking strategy
tries to generate simplified maps similar to the original input
data, the topological inconsistency detection strategy derived
from Grid-Gen ensures that no topological error is introduced
in the output map.

Given a polyline point pi, the rank of pi is defined based
on the area (called effective area) of the triangle defined by
pi and its two adjacent points from its polyline. As shown by
Visvalingam-Whyatt [5], points with higher effective areas are
usually “more important” than points with smaller areas and,
thus, the latter should have a higher priority when choosing
which point to remove during the simplification process.

For efficiency purposes, Grid-Gen2 initially preprocess the
input data computing the effective area of the polyline points.
These points are kept in a priority queue with priority based on
the point’s effective areas. When a point pi is deleted from the
map, this may change only the effective area of its two adjacent
points pi−1 and pi+1 (in p’s polyline) and, thus, these two
areas are recomputed and the new values are used to update
the priority of pi−1 and pi+1 in the queue.

4. EXPERIMENTAL EVALUATION
Grid-Gen2 was tested on a laptop with the following config-
uration: i7-3520M 3.6 GHz processor, 8GB of RAM memory,
Samsung 840 EVO SSD (500 GiB) and Linux Mint Mate 16 op-
erating system. The tests were performed on the same datasets
previously used by Magalhães et al. [4]. However, due to the
lack of space in this paper, we will not present the results from
datasets 1 and 2 (the smallest datasets).

We compared the processing time of Grid-Gen2 against the
processing time of Grid-Gen. Both methods were configured
to simplify the maps by removing 50% of their points. The
uniform grid size was chosen based on the configuration that
leaded to the fastest performance in Magalhães et al. paper [4].
Table 1 presents the processing time (in milliseconds) for each
step of the simplification process (the time for computing the
effective area and for initializing the priority queue is included
in the the simplification step of Grid-Gen2). Since the time
for data I/O and the uniform grid initialization step are the
same for both methods (since these steps use the same imple-
mentation in the two algorithms), only the simplification time
is presented separately.

Observe that, in the worst case, the simplification step of
Grid-Gen2 was 8 times slower than the same step in Grid-Gen.
However, even though the tests were performed in a machine
with a fast SSD drive, in all scenarios both algorithms spent
most of their processing time performing I/O. Indeed, if we
consider the total running time of the algorithms, Grid-Gen2
was less than 2 times slower than Grid-Gen in the worst test.

Dataset 3 4 5 6 7
input points 8531 3×104 3×104 3×105 4×106

Input reading 10 22 29 257 37092
Un. grid init. 0 1 1 24 1472

Simp. (Grid-Gen2) 2 15 13 435 23759
Simp. (Grid-Gen) 1 4 3 54 3481

Output writing 6 21 21 170 1817

Table 1: Processing-time (in milliseconds).

(a) (b)

Figure 3: (a) Region of a simplified map. The poly-
lines in blue, red and green represent, respectively,
the original map and the maps simplified by Grid-Gen
and Grid-Gen2 ; (b) Zoomed region from the map.

Figure 3(a) presents an example of a region from dataset
3. In this Figure, the original dataset and the simplified map
obtained by the two methods are overlayed, with the original
map (in blue) in the top layer. It is easy to see that Grid-Gen2
maintained the map shape better than Grid-Gen. Indeed, it is
difficult to see in this figure regions where the green polylines,
that represents the map simplified by Grid-Gen2, are visible.
Figure 3(b) displays a zoomed region from the map in Fig-
ure 3(a) where it is possible to observe the difference between
the three maps. Notice that Grid-Gen2 ’s output keeps the
similarity with the original map better than Grid-Gen.

5. CONCLUSIONS AND FUTURE WORKS
We presented Grid-Gen2, a heuristic that uses techniques based
on the Visvalingam-Whyatt [5] algorithm to perform map sim-
plification generating maps that not only are topologically cor-
rect but also preserves the shapes of the original map better
than Grid-Gen, our previous heuristic. Even though Grid-
Gen2 uses a simplification strategy much more sophisticated
than Grid-Gen, it is only two times slower (considering the
total processing time).

Future work includes evaluating Grid-Gen and Grid-Gen2
by comparing their performance and the quality of their solu-
tions with other methods. Furthermore, another extension is
determining an efficient strategy to automatically determine
an adequate uniform grid size for each input map.

This research was partially supported by NSF grant IIS-
1117277 and by CAPES (Ciencia sem Fronteiras).

6. REFERENCES
[1] D. H. Douglas and T. K. Peucker. Algorithms for the

reduction of the number of points required to represent a
digitized line or its caricature. Cartographica 1973.

[2] W. R. Franklin, D. Sun, M.-C. Zhou, and P. Y. Wu.
Uniform grids: A technique for intersection detection on
serial and parallel machines. In Proc. Auto Carto 9.

[3] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Comp. Graphics and
Image Proc. 1972.

[4] S. V. G. de Magalhães, W. R. Franklin, W. Li, and M. V.
A. Andrade. Fast map generalization heuristic with a
uniform grid. In ACM SIGSPATIAL 2014.

[5] M. Visvalingam and J. Whyatt. Line generalisation by
repeated elimination of points. The Cartographic J. 1993.

