

FAST MAP GENERALIZATION HEURISTIC WITH A **UNIFORM GRID**

Salles V. G. Magalhães Marcus V. A. Andrade

W. Randolph Franklin Wenli Li

Universidade Federal de Viçosa, MG, Brazil Rensselaer Polytechnic Institute, Troy, NY, USA

Map generalization

- ➤ Geometry generalization: reduce details in a geometry.
- ➤ Generalization applied to map features → challenge.
- ➤ Simplify polylines: remove interior points and keep topological relations between polylines and control points.
- Example: simplify counties boundaries avoid but autointersection and a city (represented by a point) does not lie in a wrong county.

The proposed heuristic

- simplified ➢ Polylines are individually.
- > Heuristic: pass (more than once) through the polylines removing points.
- >Satisfying topological constraints: point p_i is removed \longleftrightarrow triangle $(p_{i-1},$ p_i , p_{i+1}) doesn't contain control/polyline point.
- > How to accelerate point in triangle detection? Uniform grid with control points + polyline points.

Drawbacks and solutions

>Two polylines with the same endpoints → simplified to two identical line segments:

>A polygon with both endpoints equal \rightarrow simplified to a point:

Solutions

- \triangleright Add *dummy* points \rightarrow the heuristic does not need to be changed!
- ➤ Polyline with no interior point (from input or created during simplification) \rightarrow add a pair of dummy points (in and outside):

➤ Polyline with equal endpoints → add a pair of dummy points:

➤ Points in triangle border → consider they inside the triangle.

Example of simplified map

Results

- Tests in a Lenovo T430s laptop with a 3.6 GHz i7 processor and Samsung EVO 840 SSD.
- ✓ Datasets 2-5 are from GISCUP
- ✓ Datasets 6/7: Brazil/USA counties

Dataset	2	3	4	5	6	7
Control pts	127	151	256	1607	10000	10000000
Polyline pts	1564	8531	28014	28323	342738	3645559
Pts removed	1435	7545	25212	23411	308992	3613026

Grid size	Dataset					
GHU SIZE	2	3	4	5	6	7
125	0	2	11	10	333	163875
250	2	3	9	8	170	48940
500	5	6	12	10	134	22529
1000	17	15	19	17	132	14307
2000	65	51	50	45	203	10708
4000	269	171	168	149	376	9172

Processing time (ms) excluding I/O

Dataset	Grid size	I/O	Init.	Simpl.
2	125	2	0	0
3	125	11	0	2
4	250	27	1	8
5	250	35	1	6
6	1000	315	25	107
7	4000	37726	1567	7605

Processing times (ms) for the best grid sizes

Conclusions

- ➤ Bottleneck: I/O (tests performed in a SSD!).
- ➤ No topological change.

Future work

- Compare heuristic with other methods.
- >Automatically choose grid size.
- >Improve "similarity" of the output with input.
- >3D version of the problem.

Acknowledgements

This work was partially supported by Capes (Ciência Sem Fronteiras), FAPEMIG and NSF grant IIS-1117277.

FAPEMIG

